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Abstract
The existence of implicit (unconscious) learning has been demonstrated in several laboratory paradigms. Researchers have 
also suggested that it plays a role in complex real-life human activities. For instance, in social situations, we may follow 
unconscious behaviour scripts or intuitively anticipate the reaction of familiar persons based on nonconscious cues. Still, it 
is difficult to make inferences about the involvement of implicit learning in realistic contexts, given that this phenomenon 
has been demonstrated, almost exclusively, using simple artificial stimuli (e.g., learning structured patterns of letters). In 
addition, recent analyses show that the amount of unconscious knowledge learned in these tasks has been overestimated 
by random measurement error. To overcome these limitations, we adapted the artificial grammar learning (AGL) task, and 
exposed participants (N = 93), in virtual reality, to a realistic agent that executed combinations of boxing punches. Unknown 
to participants, the combinations were structured by a complex artificial grammar. In a subsequent test phase, participants 
accurately discriminated novel grammatical from nongrammatical combinations, showing they had acquired the grammar. 
For measuring awareness, we used trial-by-trial subjective scales, and an analytical method that accounts for the possible 
overestimation of unconscious knowledge due to regression to the mean. These methods conjointly showed strong evidence 
for implicit and for explicit learning. The present study is the first to show that humans can implicitly learn, in VR, knowledge 
regarding realistic body movements, and, further, that implicit knowledge extracted in AGL is robust when accounting for 
its possible inflation by random measurement error.
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It is unclear to what extent nonconscious knowledge 
influences human behaviour in realistic, ecological, contexts. 
Studies conducted in several experimental paradigms have 
found that humans have the capacity to extract and use 
knowledge they seem to have no conscious access to. The 
prototypical example is the artificial grammar learning 
(AGL) paradigm, in which participants are exposed to 
meaningless strings of letters that are structured by a 
complex regularity (an artificial grammar). In subsequent 
test phases, participants are able to discriminate new strings 
that follow the artificial grammar from strings that do not, 
indicating they have learned the grammar. However, they 

are able to report limited amounts of knowledge of the 
grammar, which indicates they are not completely aware of 
the acquired knowledge (e.g., Dienes & Scott, 2005; Norman 
et al., 2019; Reber, 1967). This process of nonconscious 
knowledge acquisition, called implicit or unconscious 
learning (e.g., Dienes & Seth, 2018; Reber, 1967, in press), 
has been proposed to play a role in human behaviour not only 
in such laboratory paradigms but also in domains of human 
activity governed by regularities that are not always taught 
in an intentional, explicit manner. An often-suggested area 
regards the social realm: We might be able to anticipate the 
behaviour of a familiar person based on cues that are difficult 
to verbalize (e.g., a subtle configuration of their facial 
muscles), or we seem to follow scripts of appropriate social 
behaviour without resorting to a conscious representation 
of those scripts (cf. Costea et al., 2022; Dienes & Seth, 
2018; Lewicki, 1986; Lieberman, 2000; consider the rules 
of politeness in Fox, 2014). Similarly, theories of decision-
making in sports propose that decisions about the best 
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course of action during gameplay could be sustained by 
implicit knowledge (e.g., Raab & Johnson, 2008; Weiss & 
Masters, 2022).

However, the evidence that implicit learning and 
knowledge can operate in real life-like contexts is limited, 
from at least two perspectives. First, the vast majority of 
the studies showing evidence of implicit learning have been 
conducted in experimental paradigms that use relatively 
simple, artificial stimuli. As mentioned, in AGL, participants 
are typically exposed to meaningless letter strings (e.g., 
XMVTRM) that follow a structure; or, in visuomotor 
sequence learning tasks, participants learn a regularity that 
determines the location of a simple stimulus (e.g., a dot; cf. 
Nissen & Bullemer, 1987). In other words, the stimuli and 
learning contexts are different from those that could appear 
in ecological situations. This is an important limitation, 
since numerous studies have found that characteristics of 
the surface stimuli significantly influence the amount of 
implicit learning: In AGL, the magnitude of learning differs 
as a function of the nature of the stimuli (Norman & Price, 
2012), of the familiarity with the stimuli (Scott & Dienes, 
2010a), of the typical mode of interacting with the stimuli 
(Jiménez et  al., 2020), or of their ecological relevance 
(Eitam et al., 2014; Ziori & Dienes, 2015). Consequently, it 
is difficult to make sound inferences about the functioning 
of implicit learning in real-life social contexts based on the 
extant results; almost all empirical data on implicit learning 
and knowledge have been obtained with simpler and more 
artificial stimuli compared with those that may occur in real-
life situations (cf. Costea et al., 2022; Jiménez et al., 2020; 
Norman & Price, 2012).1

There have been, however, attempts to use more realistic 
socially relevant stimuli in implicit learning: Norman 
and Price (2012) presented participants with sequences 
of static images depicting a person in different postural 
positions (yoga poses), and their order was determined 
by an artificial grammar. Participants acquired implicit 
knowledge of the grammar since, in the trials attributed to 
implicit knowledge, they were accurate in classifying novel 
sequences as grammatical or ungrammatical (see also Orgs 
et al., 2013). Similarly, Ziori and Dienes (2015) showed the 
implicit learning of face sequences. To our knowledge, only 
one previous study has shown implicit learning of human-
like movement (Q. Zhang et  al., 2020; see also Opacic 
et  al., 2009). Q. Zhang et  al. (2020) used sequences of 

simplified patterns of point-light displays showing biological 
movements (waving, jumping, etc.) and found people 
could implicitly learn sequences showing an inversion 
symmetry, again as shown by participants’ accuracy in 
classifying novel sequences in the trials attributed to 
implicit knowledge. Although there is anecdotal evidence 
that sports performance can be sustained by unconscious 
knowledge, there have been very few investigations focused 
on disentangling the conscious or unconscious status of 
knowledge supporting behaviours relevant for sport contexts. 
Reed et al. (2010) showed that humans can determine where 
a flying ball will land by unconsciously tracking the changes 
in the angle at which their gaze follows the ball. Masters 
et al. (2009) also showed that feedback below the subjective 
threshold of where a golf ball landed allowed learning of 
how to strike a golf ball to a concealed target. However, most 
investigations on implicit knowledge in sport focus not so 
much on the conscious availability (or lack thereof) of the 
knowledge that supports performance, but rather on its mode 
of acquisition (i.e., implicit operationalized as incidental, as 
opposed to intentional, acquisition) or on its automaticity 
and efficiency (i.e., implicit operationalized as automatic 
and robust to pressure or to interference from a secondary 
task; e.g., Raab & Johnson, 2008; Weiss & Masters, 2022). 
For instance, Abernethy et al. (2012) exposed participants 
to video recordings of handball penalty throws. In the 
explicit condition, participants were provided with explicit 
contingencies between the body dynamics prior to the 
release of the ball and the ball’s subsequent trajectory and 
were instructed to predict the ball’s trajectory based on 
these contingencies. In the implicit condition, participants 
were incidentally exposed to these contingencies, under 
the disguise of a short-term memory task. Following 
training, participants in the implicit condition were able to 
formulate fewer rules compared with those in the explicit 
condition. However, when asked to predict the ball’s 
trajectory under stress, only participants in the implicit 
condition outperformed the control group. This pattern of 
results suggests that in sports-relevant situations, incidental 
learning may produce knowledge that is less conscious but 
more robust to pressure—though counting rules in post-task 
recall is not the best way of measuring quality of conscious 
knowledge.

A second impediment in establishing the magnitude 
of involvement of implicit learning, in realistic and in 
laboratory contexts, stems from the difficulty in determining 
whether, when learning occurs, it is indeed unconscious. 
The issue of properly measuring the conscious/unconscious 
status of knowledge has been the subject of many theoretical 
and methodological debates (e.g., Berry & Dienes, 1993; 
Shanks & John, 1994; Timmermans & Cleeremans, 
2015). The current theories of consciousness agree on the 
reportable character of conscious knowledge (e.g., Baars, 

1  Most exceptions seem to be restricted to the linguistic domain, 
where researchers have been able to embed regularities in simple 
linguistic phrases that resemble those used in real life (e.g., Chen 
et  al., 2011; Paciorek & Williams, 2015). Results from social 
paradigms, which claimed to induce learning of covariations between 
physical and psychological traits of persons (e.g., Lewicki, 1986) 
have been difficult to replicate (e.g., Hendrickx et al., 1997).
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2007; Dienes, 2012; Rosenthal, 2004), and the majority of 
consciousness researchers favour the use of subjective (i.e., 
introspective, self-reported) methods for assessing whether 
participants possess conscious knowledge (Francken et al., 
2021; Rosenthal, 2019; but see Shanks, 2005). To ensure 
the sensitivity of a subjective report, it is usually collected 
immediately after the participant uses that knowledge (e.g., 
for a grammaticality judgment in AGL) in a trial-by-trial 
manner. A common approach is then to analyze, separately, 
participants’ accuracy in the trials in which they claim to 
possess no conscious knowledge, and an above-chance 
accuracy in these trials is taken to indicate the presence 
of unconscious knowledge. This approach has important 
advantages: It ensures a high level of measurement 
sensitivity (e.g., Jurchiș et al., 2020; Newell & Shanks, 
2014) and can detect momentary fluctuations in awareness 
(Skora et al., 2020). Also, this approach has produced most 
of the evidence for the existence of implicit learning from 
the past two decades, in AGL and many other paradigms 
(e.g., Dienes & Scott, 2005; Fu et al., 2010; Fu et al., 2018; 
Jurchiș et  al., 2020; Waroquier et  al., 2020). However, 
Shanks and colleagues (Shanks, 2017; Shanks et al., 2021) 
have shown that whenever a task produces both conscious 
and unconscious trials, some conscious trials will inevitably 
be misclassified as “unconscious” due to some amount of 
random measurement error. Accordingly, the observed 
unconscious accuracy might be, at least partially, explained 
by knowledge that is, in reality, conscious.

To conclude, it is difficult to determine the involvement 
of implicit learning even in some established paradigms, 
given that most of the evidence for this phenomenon could 
have been inflated by measurement error. It is even more 
difficult to infer to what extent implicit learning could be 
involved in real life situations, since the extant research has 
employed stimuli and contexts that are very different from 
those found in real life.

The present study

To our knowledge, only one previously published study 
investigated whether people could implicitly learn 
regularities from dynamic stimuli showing human movement 
by using schematic patterns of point-light displays (Q. Zhang 
et al., 2020). We aim to determine whether implicit learning 
can be involved in extracting regularities in a realistic yet 
controlled context, from stimuli that are relatively complex, 
dynamic, and socially relevant. In this sense, we take the 
basic structure of an AGL paradigm and, for the first time, 
implement it in an immersive virtual reality environment, in 
which participants are exposed not to strings of letters, but 
rather to sequences of continuous, dynamic body movements 
executed by a virtual human agent—namely, boxing/martial 

arts punches. In an acquisition phase, participants are 
exposed to combinations of punches, while the order of the 
punches is determined by an artificial grammar. Then, in 
a test phase, we test whether they can discriminate novel 
“grammatical” from “nongrammatical” combinations. To 
determine the conscious/unconscious status of learning, 
we use a subjective, trial-by-trial awareness scale and test 
whether participants are accurate in the trials in which they 
claim to lack conscious knowledge. Importantly, we adapt 
a method of testing whether the observed unconscious 
accuracy is superior to the maximum amount of the 
observed unconscious learning effect that could be attributed 
to the conscious contamination of “unconscious” trials, due 
to regression to the mean based on random measurement 
error (Shanks, 2017; Shanks et  al., 2021; Skora et  al., 
2020). This method was recently developed by one of the 
authors in the context of a subliminal conditioning study 
(Dienes, 2022; Skora et al., 2020), and we adapt it here in 
the context of implicit learning. As an additional method 
for minimizing possible effects of measurement error, we 
include a secondary trial-by-trial awareness scale and test 
whether there is evidence of learning in the trials deemed 
unconscious by both awareness scales (Shanks, 2017; 
Shanks et al., 2021).

Method

Participants

Ninety-three (74 women, Mage = 20.60 years, SD = 
4.09 years) undergraduate students from two Romanian 
universities attended the experiment voluntarily or in 
exchange for course credit. All had normal or corrected-to-
normal vision.

Materials

We employed two commonly used artificial grammars 
that typically generate strings of letters by following the 
order of the arrows (e.g., Dienes & Scott, 2005; Jurchiș 
et al., 2020; Reber, 1967; Norman et al., 2019; Fig. 1). We 
replaced, however, the letters from the structure of these 
grammars with body movements—specifically, boxing 
punches—executed by a virtual human (cf. Norman & Price, 
2012; Opacic et al., 2009; see Fig. 2). We chose boxing 
punches because they also appear as structured sequences 
in real life; also, they are relatively fast movements, which 
increases the chances of chunking successive stimuli in a 
unitary structure. We used a list of strings generated from 
the mentioned grammars that was used in several previous 
studies, which comprises 32 acquisition strings and 20 
test strings for each grammar (Dienes et al., 1995; Jurchiș, 
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2021; Jurchiș et al., 2020; Norman et al., 2011; Norman 
et al., 2016; Norman et al., 2019; Wan et al., 2008), but 
we transformed each letter string into a boxing combination 
(e.g., the string XMVRXM became straight left—left hook—
straight right—right hook—straight left—left hook). For 
examples, see the following: https://​youtu​be.​com/​playl​ist?​
list=​PL9Lh​7Wa5X​rwiyh​F2e19​dd5p3​aFtvu​sL9Y or https://​
osf.​io/​94xbv/. The combinations were five to nine punches 
long, and there was no break between two consecutive 
punches from a combination.

The virtual human agent consisted in a 3D, high-
resolution photorealistic representation of a human male, 
generated for the Character Creator 3 software (Reallusion, 
Inc). The virtual human was “rigged,” meaning that it 
supported motion files that made it move similar to a real 
human body. From Character Creator, we exported the 
agent into the Unity game engine (Unity Technologies Inc), 
where we applied the motion files and programmed the VR 
task. For the guard position and for the boxing punches, 
we downloaded from Adobe Mixamo (Adobe Inc) motion 
files, generated by capturing movements of real humans 
with motion capture devices. As in real boxing, each punch 
involves the movement of almost the entire body (e.g., legs, 
torso, shoulders, arms, head), starting from, and returning to, 
the guard position. Using the uMotion plugin for Unity, we 

trimmed the downloaded motion files, resulting movements 
with durations from 500 ms to 850 ms for the punches, and 
of 2,700 ms for the guard position. Finally, we arranged the 
motion files in the order specified by the grammars, using 
Unity’s Animator component. The agent was placed inside 
a boxing ring, and the entire scene took place in the default 
environment provided by Unity, which contains no other 
stimuli apart from the sky. Unity broadcasted the entire 
VR experience, through the SteamVR plugin, to an HTC 
VIVE Cosmos Elite (HTC Inc) VR headset, powered by a 
VR-ready laptop.

Procedure

Acquisition phase

After signing informed consent, participants were informed 
that they would see, in an immersive VR environment, 
a person that executed several continuous boxing 
combinations. They were instructed to pay close attention 
and try to memorize as much as possible from these 
combinations, because they will undergo a subsequent 
task that relied on what they observe regarding those 
combinations. Nothing was mentioned about the existence 
of any structure or regularity. The experimenter ensured the 

Fig. 1   The artificial grammars employed in the study (e.g., Dienes & Scott, 2005; Reber, 1967)

Fig. 2   The mappings between punches and the letters from the grammars. The punches consisted in continuous movements in the study, but in 
the figure they are depicted as static images at their peak departure from the guard position
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VR headset was properly fitted on the participants’ head, that 
they could clearly see the VR environment and the virtual 
agent, then the experimenter initiated the first acquisition 
block. There were four acquisition blocks, and 32 unique 
combinations presented in a fixed sequence in each block. 
In each block, all 32 combinations were exposed once; 
hence, in the entire acquisition phase, participants saw 32 
combinations × 4 blocks = 128 total combinations. Between 
each two consecutive combinations, the virtual agent 
displayed the guard position for 2,700 ms. Each block lasted 
approximately four and a half minutes, and participants 
could take a one-minute break after each block.

Test phase

Following typical AGL protocol, before beginning the 
test phase, participants were informed that the previously 
seen combinations were generated from a complex set of 
rules. Also, they were informed that they would see novel 
combinations, some of which followed the previous rules, 
some of which violated the rules, but no details were given 
about the structure of these rules. They also received 
extensive explanations regarding the use of the awareness 
scales, detailed below. Given that the entire experimental 
session lasted for about 50 minutes, for reducing fatigue 
and possible sickness associated with a prolonged use of 
VR (Chang et al., 2020), the test phase did not take place 
in VR; participants saw the stimuli, instructions, questions, 
and response options on a wide screen (108-cm diagonal) 
and gave the responses using the mouse. The test phase was 
conducted using the platform gorilla.sc (Anwyl-Irvine et al., 
2020). The combinations were thus presented in a video 
format. In this phase, participants saw 20 new combinations 
from Grammar A and 20 new from Grammar B in a random 
sequence generated for each participant. For participants that 
saw combinations from Grammar A in the previous phase, 
the novel Grammar A combinations were grammatical, 
while the Grammar B combinations were nongrammatical; 
for participants exposed to Grammar B in the acquisition, the 
grammatical/nongrammatical status of the test combinations 
was reversed. After seeing each combination, participants 
performed a grammaticality judgment, then responded to 
two scales that probed their awareness level.

Grammaticality judgment

Participants judged for each test combination whether it 
followed the previous grammar or not (“Does this combination 
follow the previous rules? Yes/No”). An above-chance  
(50%) accuracy in discriminating whether the combinations 
followed the grammar or not would indicate that participants 
learned the grammar.

Structural and judgment knowledge attribution 
(Dienes & Scott, 2005; Norman et al., 2019; 
Waroquier et al., 2020)

In the test phase of an AGL (or other implicit learning 
paradigm) study, participants can use two main types 
of knowledge. Their structural knowledge refers to 
the knowledge acquired in the acquisition phase about 
the structure, the configuration, of the grammar (e.g., 
“Whenever the combination began with a straight left, the 
second punch was a left hook”). Then, in the test phase, 
when they judge whether a stimulus is grammatical or not, 
they apply judgment knowledge (e.g., “This combination is 
grammatical”), which is based on the structural knowledge 
(“. . . because the first punch was a straight left, and the 
second one was a left hook”). Structural and judgment 
knowledge can be either conscious or unconscious. 
Whenever participants possess conscious structural 
knowledge (e.g., “I remember that whenever the first 
punch was a straight left, the second one was a left hook”), 
their judgment knowledge is also conscious (“. . . hence I 
[consciously] believe this combination is grammatical”), 
and they have the experience of using a conscious rule or 
a conscious recollection. However, when their structural 
knowledge is unconscious (“I have no clue what the rule 
was”), their judgment knowledge can be either conscious, 
experienced as a feeling of intuition or (un)familiarity (“. . . 
but I [consciously] feel this combination is somehow similar 
to the previous ones”) or the judgment knowledge can be 
unconscious, experienced as a guess (“. . . so I just guessed/
put at random that the combination is grammatical”). In sum, 
conscious structural knowledge of the rules generally results 
in conscious judgment knowledge, experienced as using 
a conscious rule or recollection; unconscious structural 
knowledge results either in conscious judgment knowledge 
(a feeling of intuition or familiarity) or in unconscious 
judgment knowledge (guessing; e.g., Dienes, 2012; Dienes 
& Scott, 2005). Hence, after each grammaticality judgment, 
participants report whether they used conscious rules/
recollection, a feeling of intuition or familiarity, or whether 
they just guessed. Using this method, numerous studies 
have found evidence that participants extract conscious 
and unconscious structural knowledge, in AGL (Dienes & 
Scott, 2005; Ivanchei & Moroshkina, 2018; Jurchiş & Opre, 
2016; Mealor & Dienes, 2013a, 2013b; Norman et al., 2016; 
Norman et al., 2019; Norman & Price, 2012; Scott & Dienes, 
2008, 2010a, 2010b; Wan et al., 2008), and in a variety of 
other implicit learning and conditioning tasks (e.g., Fu et al., 
2010; Fu et al., 2018; Jurchiș, 2021; Neil & Higham, 2012, 
2020; Paciorek & Williams, 2015; Waroquier et al., 2020; 
J. Zhang & Liu, 2021). In the context of AGL, studies show 
that the present method distinguishes between conscious and 
unconscious structural knowledge consistent with theories 
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of conscious and unconscious knowledge: For instance, the 
instruction to actively search for rules increases the accuracy 
of explicit, but not that of implicit responses; the accuracy 
of explicit knowledge decreases when participants’ attention 
is divided in the acquisition phase, but implicit knowledge 
remains unaffected. Further, when asked to classify twice 
the same string, conscious knowledge generates more 
stable responses compared with implicit knowledge (Dienes 
& Scott, 2005; see Dienes, 2012, and Mealor & Dienes, 
2013a, 2013b, for other empirical dissociations between 
the conscious and unconscious knowledge revealed by this 
method). Ivanchei and Moroshkina (2018) show that this 
method makes participants think more analytically and 
attend more closely to their conscious knowledge, compared 
to other awareness measures. A recent fMRI study showed, 
in a different paradigm, that implicit and explicit attributions 
are supported mostly by different brain areas (J. Zhang & 
Liu, 2021).

To test their awareness of structural and judgment 
knowledge, we asked participants to report the basis of 
their grammaticality judgment (“What was the basis of your 
response?”), choosing from the options presented in Table 1. 
Before the start of the test phase, participants first read the 
written definitions of these options (Table  1), then the 
experimenter discussed the definitions with the participant 
and stressed the fact that they should use the Guess, Intuition, 
and Familiarity options only when they have absolutely no 
conscious information about the rules, and that they should 
use Rules or Remembering whenever they possess some 
conscious information, even if it is fragmentary and they are 
unsure of its accuracy. The written definitions also appeared 
on the screen on each trial, when participants had to report 
their structural/judgment knowledge attribution. Note that 
the wording of the definitions and the mode of administering 

the scale were thought as to maximize its adherence to the 
recommended criteria of immediacy, sensitivity, reliability, 
information (relevance; Berry & Dienes, 1993; Newell & 
Shanks, 2014; Shanks & John, 1994; Sweldens et al., 2017): 
participants reported their awareness immediately after 
the grammaticality judgment (immediacy); participants 
were explicitly and repeatedly encouraged to report as 
conscious even knowledge that is fragmentary and they are 
usure of (sensitivity); they were instructed that conscious 
knowledge could refer to any information they are aware 
of (rules, fragments, etc.; information criterion); regarding 
the reliability criterion: reporting conscious knowledge was 
less influenced by irrelevant factors, such as participants’ 
expressive language abilities (as it required one mouse 
click), and the scale had excellent split-half reliability when 
distinguishing between conscious and unconscious structural 
knowledge (r = .94, Spearman–Brown corrected, calculated 
as the proportion of unconscious trials in the odd and even 
trials).

The Rule Awareness Scale (RAS; Wierzchoń et al., 
2012)

Immediately after participants reported their structural/
judgment knowledge attribution, they were directly enquired 
about their level of awareness of the rule, using an adaptation 
of the RAS. RAS provides a continuous assessment of 
awareness of the structural knowledge, using four levels: 
“1–I did not have the vaguest idea or experience of any 
rule/rule fragment”; “2–I had a vague idea or experience 
of a rule, but I am not sure of it”; “3–I think I knew the 
rule”; “4–I knew the rule.” Participants could choose one 
of these four options as a response to the question “To what 
extent have you noticed the rule/rule fragment that the 

Table 1   The response options for reporting the structural/judgment knowledge attribution

The bold text also appeared in bold in the experiment

Response option Definition

Guess or random response You do not have the slightest idea what the correct answer was, and you answered completely at random. You might 
as well have flipped a coin to respond.

Intuition You had an impression, a feeling, that this is the right answer, but you don't know, you don't have the slightest 
idea, what this impression was based on.

Familiarity You had an impression, a feeling, that something from this combination you just saw appeared in the previous 
phase, but you don't know, you don't have the slightest idea, what this impression was based on. Or you had a 
feeling that something of the seen combination did NOT appear in the previous stage (if you answered It does not 
follow the rules), but you don't know, you don't have the slightest idea, what this impression was based on.

Rules Your answer was based on a certain rule(s), or fragment(s) of rules that you are, or you were aware of and which 
you could or could have described, at least in part, if you were asked to. Importantly, if you have relied on 
such a rule / rules, you can answer RULES, even if the identified rule is not complete or even if you are unsure 
whether it is correct.

Remember Your response was based on certain information that you consciously remembered, and that you could or could 
have described, at least in part, if you were asked to. As with the "Rules" option, you can respond with 
REMEMBER, even if you're not sure if the information you remembered is correct or complete.
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combination follows or violates?” Following Wierzchoń 
et  al. (2012), we only interpret Level 1 of the scale as 
excluding, unequivocally, any conscious knowledge of 
the rule; Level 2 could mean that the participant had an 
impression that there is a rule or structure in the combination 
without having access to the content of the rule, but could 
also mean they held a low confidence idea about the content 
of the rule; Levels 3 and 4 indicate that participants think 
they had conscious access to the rule. For increasing the 
sensitivity of the RAS, we slightly rephrased the response 
options and included the reference to “rule fragments”; 
also, we made explicit the fact that vague knowledge held 
with low confidence should be attributed to level 2 (“. . . 
not sure of it”), so to decrease the chances that participants 
would use Level 1 for conscious knowledge held with low 
confidence. The RAS had excellent split-half reliability (r = 
.97, Spearman–Brown corrected) and very good convergent 
validity (i.e., it correlated r = .77, with the structural/
judgment attribution scale).

While both structural/judgment knowledge attribution 
and the RAS evaluate the conscious/unconscious status of 
the structural knowledge, they do so from different angles: 
While the former requires participants to report what they 
think it was that supported their grammaticality judgment, 
the latter asks them to only and directly consider their level 
of awareness of the grammar. However, as explained, there 
is ambiguity whether level 2 of the RAS captures conscious 
or unconscious knowledge, while structural/judgment 
knowledge attribution clearly differentiates between the two. 
Moreover, there is more empirical evidence for the validity 
of the structural/knowledge attribution scale. Consequently, 
we use structural/judgment attribution as our main method 
of discriminating conscious from unconscious knowledge 
and use Level 1 of the RAS as a supplementary check of the 
unconscious status of knowledge.

Results

The data set is available online (https://​osf.​io/​28vbj/). We 
use both significance testing and Bayesian analyses and 
interpret Bayes factors (noted as “B”) as follows: 3 ≤ B < 10 
represents moderate, and B ≥ 10 represents strong evidence 
for the alternative hypothesis; 0.10 < B ≤ 0.33 represents 
moderate, and B ≤ 0.10 represents strong evidence for the 
null; 0.33 < B < 3 is interpreted as insensitive (e.g., Lee 
& Wagenmakers, 2014). Bayesian analyses are conducted 
with a normal prior distribution with the mean equal to an 
expected learning effect of 5% above the 50% chance level, 
and the SD = mean/2 = 2.5% (noted BN[5%; 2.5%]; e.g., Dienes, 
2016, 2021). This expected learning effect was estimated 
from the implicit learning effect (55% accuracy) obtained 
by Norman and Price (2012). We also report Robustness 

Regions (noted as RR), which indicate, in our case, the 
range of means of the models of H1 that would yield the 
same qualitative conclusions (i.e., support for H1, for H0, or 
insensitive data; e.g., Dienes, 2021). For example, a RRB > 3 
= [0.2%; 50%] signifies that a Bayes factor above 3 (i.e., 
supporting the alternative hypothesis) would be obtained 
with priors with means ranging from 0.2% to 50% (50% 
being the maximum possible performance above chance, 
which corresponds to a raw performance of 100%; the SDs 
of the priors are always mean/2).

The null hypothesis was modelled as a point null, except 
for the analyses on unconscious structural knowledge, where 
we use an interval (uniform) null, ranging from 0 to the 
maximum effect that could be attributed to measurement 
error—namely, 0.9% (Dienes, 2022; Skora et al., 2020). 
The logic was as follows. Assume that whatever the true 
proportion of unconscious and conscious trials is, each 
is misclassified by the same percentage. Given that the 
percentage of conscious structural knowledge attributions 
was 33%, the maximum proportion error in measurement 
is 33% (i.e., if all trials were in fact unconscious). One 
can then consider all possible error proportions between 
0 and 33% and find the error proportion that maximizes 
the proportion of measured unconscious trials which are 
misclassified (see Skora et al., 2020, and the supplementary 
material for equations and full description). Applying the 
formulae derived in Skora et  al. (2020), this maximum 
contaminated effect would be achieved at a classification 
error of the conscious vs unconscious structural knowledge 
of 21%, which would translate to 6.7% of the trials measured 
as unconscious being, in reality, misclassified conscious 
trials. The accuracy of the conscious trials was 14% above 
the chance level of 50%, see below, thus the maximum 
percentage above chance in the measured unconscious trials 
that could have been explained by conscious contamination 
is 6.7% × 14% = 0.9%. For the analyses that account for this 
maximum contamination effect, we note the corresponding 
Bayes factor as BM0:U[0; 0.9%]; M1:N[5%; 2.5%] (cf. Palfi & Dienes, 
2019). The analyses were conducted with the General 
Bayesian Tests module from the JASP (JASP Team, 2022).

Table 2 shows the frequency of different response types 
and their associated accuracy. A one-sample t test showed 
strong evidence that participants’ overall accuracy was 
above chance, indicating they had learned the grammar and 
were accurate in judging whether the combinations from the 
test phase followed the grammar or not, BN[5%; 2.5%] = 2.09 × 
1019, RRB > 3 = [0.2%; 50%], t(92) = 9.68, p < .001, Cohen’s 
dz = 1.00, Maccuracy = 59.46%, 95% CI [57.55%, 61.38%]. 
When analyzing the responses to the structural/judgment 
attribution scale, we found that two thirds of responses 
(M = 66.67%, SD = 15) were attributed to unconscious 
structural knowledge (Guess, Intuition, Familiarity), 
while one third (M = 33.33%, SD = 15) were attributed 
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to conscious structural knowledge (Rules, Remembering). 
The trials attributed to conscious structural knowledge had 
above chance accuracy, indicating that participants extracted 
accurate conscious knowledge of the grammar, BN[5%; 2.5%] = 
1.01 × 1011, RRB > 3 = [0.2%; 50%], t(87) = 7.58, p < .001, 
dz = 0.81, Maccuracy = 63.97%, 95% CI [60.36%, 67.59%].

For testing our key hypothesis, that participants will 
extract implicit knowledge of the structure, firstly, we 
compared the accuracy of trials attributed to unconscious 
structural knowledge (Guess, Intuition, Familiarity, pooled 
together), while accounting for the possible inflation of 
unconscious accuracy due to measurement error. We found 
strong evidence that participants’ accuracy was above 
chance, BM0:U[0; 0.9%]; M1:N[5%; 2.5%] = 2.14 × 106, RRB > 3 = 
[1%; 50%], t(92) = 5.97, p < .001, dz = 0.62, Maccuracy = 
58.45%, 95% CI [55.67%, 61.22%]. Secondly, we tested 
whether the accuracy was above chance only on the trials 
shown by both awareness scales as unconscious. From the 
trials attributed to Guess, Intuition, and Familiarity, 71.00% 
(SD = 34.40) were also rated with Level 1 at the RAS and 
their accuracy was above chance, BN[5%; 2.5%] = 1.52 × 106, 
RRB > 3 = [0.5%, 50%], t(86) = 5.11, p < .001, dz = 0.55, 
Maccuracy = 58.20%, 95% CI [55.06%; 61.35%].2 Finally, we 
compared participants’ conscious and unconscious structural 
knowledge accuracies (as classified by the judgment/
structural attribution scale) and found moderate evidence 
that conscious structural knowledge was more accurate 
than unconscious structural knowledge, BN[5%; 2.5%] = 6.56, 
RRB > 3 = [2%; 10%], t(87) = 2.19, p = .03, dz = 0.23, 
Mdifference = 5.16%, 95%CI [0.48%, 9.84%].

Discussion

The present study adapted the AGL task and structured, 
based on artificial grammars, successions of dynamic body 
movements executed by a realistic virtual human. We found 
strong evidence that participants learned the grammars, since 
they were able, in the test phase, to discriminate grammatical 
from nongrammatical combinations. Importantly, we found 
strong evidence that participants were able to do so even 
when they reported having no conscious knowledge of 
the grammar; that is, participants implicitly learned the 
structures followed by these realistic body movements.

Studies conducted mostly in the AGL task have shown 
that implicit learning is influenced by the characteristics 
of the surface stimuli (e.g., Jiménez et al., 2020; Norman 
& Price, 2012), but there have been very few attempts to 
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2  The remaining trials attributed to Guess, Intuition, Familiarity, 
were rated at the RAS as follows: 25.5% (SD = 31.2) with Level 2; 
3.4% (SD = 12.1) with Level 3; 0.02% (SD = 2.65) with Level 4.
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test whether this process can operate on stimuli that are 
as complex and dynamic as a moving human body. While 
previous studies have already shown that structures of 
images depicting static body postures and movements 
revealed by point-light displays can be learned implicitly, we 
find that is also true for dynamic body movements. Similar 
to Norman and Price (2012), and to typical AGL studies, 
we found that two thirds of participants’ responses were 
attributed to unconscious structural knowledge. However, 
Norman and Price found that implicit knowledge was 
more accurate than explicit knowledge, but in the present 
study the accuracies were reversed (i.e., explicit knowledge 
outperformed implicit knowledge), likely because our 
participants saw 128 combinations in acquisition, as opposed 
to 45 sequences in Norman and Price. Q. Zhang et al. (2020) 
found virtually all the attributions indicated unconscious 
structural knowledge; but their grammar was supra-finite 
state (inversion symmetry).

A methodological contribution of the present study is 
that it showed, for the first time, that implicit knowledge in 
the AGL paradigm is robust even when accounting for the 
possible contamination of the detected unconscious trials 
with misclassified conscious trials (cf. Skora et al., 2020). 
This is a significant aspect, given that several recent analyses 
cast doubt on the extant evidence for learning in the absence 
of awareness due to the problem of conscious contamination, 
and even advocate for ceasing the classification of conscious 
and unconscious trials using subjective measures (Shanks, 
2017; Shanks et  al., 2021). Another methodological 
contribution of the present research is that it shows VR as 
a viable tool for producing implicit learning effects in more 
realistic settings, which could stimulate future explorations 
of the ecological relevance of this phenomenon (see also 
Sense & van Rijn, 2018). While in our study only the 
acquisition phase was conducted in VR, the fact that we 
observed robust evidence of both implicit and explicit 
learning even with the non-VR-testing phase suggests 
that a VR-testing phase that better matches the encoding 
environment should also show learning.

The present results are consistent with dual-process 
models of social cognition. These models essentially 
maintain that that the judgments and predictions we make 
regarding the characteristics and behavior of social stimuli 
can be guided not only by explicit reasoning, but can also be 
intuitive and based, sometimes, on nonconscious knowledge 
(e.g., Amodio, 2019; Lieberman, 2000; Smith & DeCoster, 
2000). However, recent analyses have found little evidence 
that implicit (defined as nondeliberative) social cognition is 
supported by unconscious social knowledge (e.g., Greenwald 
& Lai, 2020; Hahn et al., 2014). We propose that the absence 
of this evidence has been caused, partly, by a lack of robust 
experimental methods to investigate the possibility of 
unconscious acquisition of socially relevant information 

(cf. Norman & Price, 2012). While the present study shows 
that judgments regarding a virtual human's behavior can be 
based on unconscious knowledge, our learning paradigm 
tackles only an isolated form of behavior of a social agent 
(structured body movements), and lacks the motivational, 
emotional and interactive aspects that usually characterize 
social situations (see Costea et al., 2022). Nevertheless, 
future studies could develop the present paradigm and 
experiment with more complex, emotionally relevant 
behaviors, structured by regularities. Relatedly, an important 
task for future research would be to determine the constraints 
on the behaviors that can be chunked in implicit structures, 
including constraints on the temporal span, complexity, and 
the nature of such behaviors.

Theories of sport-specific skill learning suggest that much 
of the knowledge involved in sports judgment and decision-
making (e.g., anticipating the opponent's action, quickly 
identifying the best course of action) is acquired through 
implicit learning (e.g., Raab & Johnson, 2008; Weiss & 
Masters, 2022). We find that one can acquire unconscious 
knowledge about sports-specific body movements and 
can use it to judge sequences of such movements. Clearly, 
the extent to which such acquisitions can facilitate actual 
training or athletic performance is a matter that future 
research could address.

In conclusion, the present study is the first to show that 
humans can implicitly learn, in VR, knowledge regarding 
realistic body movements. Hence, it extends our knowledge 
concerning the realism and complexity boundaries of 
implicit learning and brings support for the tenet that 
implicit learning could sustain social and sports-related 
cognition. It is also the first to show that implicit knowledge 
extracted in the AGL is robust when accounting for its 
possible inflation by random measurement error.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​3758/​s13423-​022-​02175-0.
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