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Abstract
This paper analyzes the savings measures introduced by Ebbinghaus in his monograph of 1885. He measured memory 
retention in terms of the learning time saved in subsequent study trials relative to the time spent on the first learning trial. 
We prove mathematically that Ebbinghaus’ savings measure is independent of initial encoding strength, learning time, 
and relearning times. This theoretical model-free result demonstrates that savings is in a sense a very ‘pure’ measure 
of memory. Considering savings as an old-fashioned and unwieldy measure of memory may be unwarranted given this 
interesting property, which hitherto seems to have been overlooked. We contrast this with often used forgetting functions 
based on recall probability, such as the power function, showing that we should expect a lower forgetting rate in the initial 
portion of the curve for material that has been learned less well.
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Introduction

It is hard to overestimate the importance of Hermann 
Ebbinghaus’ contribution to experimental psychology 
(Ebbinghaus, 1880, 1885, 1913/1885). In 1885, he published 
a monograph with a series of rigorous experiments on 
the basis of his habilitation’s thesis from 1880 on the 
shape of learning and forgetting. He introduced the use of 
nonsense syllables, which had more uniform characteristics 
than words or other verbal material, though verified his 
findings with more natural material such as poems. He was, 
furthermore, one of the first psychologists to make extensive 
use of statistics and mathematical modeling, notably fitting 
mathematical equations to his now famous forgetting curve.

Ebbinghaus (1913; we shall mainly refer to this early 
English translation, which is readily available) based nearly 
all of his experiments on the savings measure of learning 

and memory, which is defined as the relative amount of 
time saved on the second learning trial as a result of having 
had the first. So, if it takes only half the time to relearn a 
list, savings will be 0.5 (we use proportions here instead of 
percentages). If it takes exactly as long to relearn the list as 
it took to learn it originally, then savings is 0. If the list is 
still completely known at the second trial (i.e., no forget-
ting at all), then savings is 1. If we call savings after time 
t as Q(t), this can be summarized as:

Here, L is the time (or number of repetitions) needed to 
learn the material to criterion at t = 0 and Lt is the time 
needed to relearn the material at time t.

The savings measure of learning and forgetting remained 
popular for several decades (Ammons et al., 1958; Boreas, 
1930; Finkenbinder, 1913; Krueger, 1929; Radossawljew-
itsch, 1907), but is used only sporadically today (see https:// 
osf. io/ xtfnd for a data repository with savings data and curve 
fits). This is remarkable because many papers use Ebbing-
haus’ classic savings data to test hypothesis about the shape 
of learning and forgetting (e.g., Anderson & Schooler, 1991; 
Rubin & Wenzel, 1996; Wixted & Ebbesen, 1991). Nelson 
(1985) summarizes several reasons why the savings meas-
ure was abandoned. First, there may be a relatively large 

Q(t) =
L − Lt

L
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learning-to-learn effect, because it takes a lot of experience 
with the nonsense syllable materials and the savings pro-
cedure to get used to them. During this time, performance 
continues to improve, simply because the subject is still get-
ting used to the experimental method. Ebbinghaus realized 
this, which is why he spent a relatively long time learning 
and relearning lists before he started the actual experiment; 
we followed him in this in our replication of his classic for-
getting curve (Murre & Dros, 2015). Second, savings scores 
may be unreliable when learning to once or twice correct, 
which had already been observed by Luh (1922). With learn-
ing to once correct, learning proceeds until the trial on which 
all nonsense syllables can be produced correctly (100% cor-
rect); with learning to twice correct, learning proceeds until 
two successive trials are 100% correct. This can be rem-
edied by learning to a lower criterion, such as 80% or 50% 
correct. Third, the savings measure can only be interpreted 
on an interval scale if the underlying learning process pro-
ceeds in a linear fashion with learning trials or time. If not, 
it is not really possible to compare different magnitudes of 
the savings measure (Nelson, 1985, p. 475). This is most 
troubling because if the underlying learning process is non-
linear and unknown, fitting a “forgetting curve” to savings 
data becomes meaningless (Wixted, 1990). As we shall see 
below, assuming a linear learning process for Ebbinghaus’ 
data seems warranted.

In this paper, we analyze the savings measure in more 
detail. Our analyses demonstrate that, unexpectedly, Ebb-
inghaus’ savings measure is an exceptionally good measure 
of memory, which in many ways is to be preferred above the 
more usual measures such as free or cued recall. In particu-
lar, we prove analytically that under many circumstances, 
savings is a “pure” retention measure: the shape of forgetting 
as measured through the savings method does not depend on 
the strength of the initial memory encoding or initial length 
of learning.

Analysis of Ebbinghaus’ Savings Measures

Savings experiments differ from other memory retention 
experiments in the role of learning time. In recall experi-
ments, subjects typically learn items for some pre-estab-
lished time, during which memory encoding is hypothesized 
to take place. In Ebbinghaus’ classical savings experiment, 
learning time is a running variable where subjects continue 
learning until a pre-set criterion has been reached (e.g., one 
perfect recitation or 80% correct). One implication of the 
difference between the classical savings and other types of 
memory measures is that recall always (also) takes place 
immediately after a learning trial in a savings experiment. 
This is necessary to assess the initial level of learning. One 
might suspect that leaving learning time a free variable leads 

to less controlled testing, but as we argue here, the opposite 
is true: The savings measure may well suffer from fewer 
confounding variables than recall or recognition measures.

In our analysis, we first derive the expression for Ebb-
inghaus’ classical savings measure. Let L and Lt denote the 
learning times at the first and the second trial, respectively, 
which are separated by a retention lag t. Without loss of 
generalization, we assume that learning continues on both 
trials until the stimulus material can be fully recalled, rather 
than, say, to 80% correct. Learning, thus, continues until a 
certain “minimum memory strength” or “intensity” has been 
acquired that leads to successful recall. To make our line of 
reasoning easier to follow, we present two versions of our 
analyses, where the second one makes fewer assumptions 
than the first: (1) This analysis is based on a specific forget-
ting function and serves as an example for the next version. 
(2) Here, we show that the analysis of Version 1 can be 
generalized to all viable forgetting functions.

Analysis Based on Power Function Decline

We assume that learning proceeds until the memory trace 
has reached a strong enough intensity to produce learned 
behavior that meets the criterion (e.g., perfect recall of a list 
of words or nonsense syllables). We often denote memory 
intensity as μ where 0 ≤ μ ≤ 1. Without further addressing 
the theoretical implications of this here, we note that this 
assumes that for the purposes of our analyses it is meaning-
ful to speak of the scalar-valued “intensity” of a memory 
trace. Another assumption – which we shall pursue in more 
detail below – is that intensity increases linearly with learn-
ing time L. After a delay of t time units (e.g., seconds or 
days or learning trials), the relearning time to reach the set 
criterion once again is denoted as Lt. We assume for Version 
1 of the proof that the original strength has declined with a 
power function to μ(1 + t)−a, where a ≥ 0 is the forgetting 
parameter. During the relearning trial, the declined strength 
is increased through additional learning during Lt seconds, 
giving an additional strength of νLt, denoting the learning 
rate as ν. This is a formal introduction of the linear learning 
assumption. Keeping in mind that μ = νL,we now have:

or

We can rearrange this as:

But this is the expression for the savings measure Q(t), 
so we have:

�L = �(1 + t)
−a + �Lt = �L(1 + t)

−a + �Lt = �

[

L(1 + t)
−a + Lt

]

L = L(1 + t)
−a + Lt

L − Lt

L
= (1 + t)

−a
.
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In other words, if we assume power function decline 
of the underlying strength of a memory trace, the savings 
method will measure exactly this function, independently 
of the original memory strength.

Analysis Generalized to any Decline Function

The previous analysis can easily be generalized to any 
decline function f(t), assuming that the original strength of 
the memory trace has declined to μf(t). We then have

or

giving

We can summarize this result as follows: If there is 
some function f(t) that describes the decline of the memory 
strength underlying memory performance as a function of 
time t, the savings method will directly measure this. Moreo-
ver, the savings method is completely independent of the 
initial learning strength and learning criterion: the observed 
savings-based forgetting curves should be the same for a 
criterion of 30%, 80%, or 100%. In this sense, the savings 
method is a “pure” measure of underlying memory strength.

Varying Initial Level of Learning

Ebbinghaus (1913, Ch. VI) also includes an experiment 
where he systematically varied the initial level of learning 
by increasing the number of initial learning trials on the first 
day. After 24 h, he relearned until once successful recall and 
measured the learning time on the second day. In a similar 
manner as that described above, we can derive the expres-
sion for the expected relation between learning time on Day 
1 and Day 2, as follows.

Suppose it would take L seconds to learn a list to some 
criterion (e.g., once correct) corresponding with a memory 
intensity of μ. Now, instead of learning to criterion, we learn 

Q(t) =
L − Lt

L
= (1 + t)

−a
.

�L = �f (t) + �Lt = �Lf (t) + �Lt = �

[

Lf (t) + Lt
]

L = Lf (t) + Lt,

Q(t) =
L − Lt

L
= f(t).

for fewer seconds, L1 < L, at Time 1. That is, we stop learn-
ing before we have reached the criterion. Then at Time 2, 
which takes place t seconds later (in Ebbinghaus’ case, 24 h 
later), we do learn until the criterion has been reached, this 
time taking L2 seconds.

Assuming a linear learning process and an initial learning 
trial of L1 seconds, this gives an initial intensity after learn-
ing on Day 1 of μ1 = νL1, where ν is the learning rate. After 
t seconds have passed, the intensity will have declined as 
described by the forgetting function. Above, we found the 
forgetting function to be equivalent to the savings measure 
itself, Q(t). So, on Day 2 after t seconds have passed, we 
retain an intensity of νL1Q(t). This intensity must now be 
increased to reach the memory intensity μ corresponding 
to the criterion by doing additional learning trials for L2 
seconds. This gives an extra contribution to the intensity of 
νL2. We are interested in how L2 depends on L1.

We have:

From this, we can derive the relationship between partial 
learning time L1 and relearning time to criterion L2, where 
savings at time t is a non-free parameter:

This relationship is a simple linear one and we are able 
to predict this learning data without using any estimated 
parameters, as is shown below.

Table 1 summarizes the mean relearning time as a func-
tion of the number of initial learning trials with only relearn-
ing until successful recall, as reported by Ebbinghaus (1913, 
Ch. VI). In the first column of this table, we see that the 
mean relearning time after zero initial learning trials is equal 
to 1,270 s, which we use as an estimate for L. Because the 
stimulus material used in this experiment is the same as the 
lists used in Ebbinghaus’ classical savings experiment, for 
the 24-h data point, Ebbinghaus reports that Q(t) = 0.337, 
where t = 24 h after initial learning.

Ebbinghaus (1913, Ch. VI, p. 57) also reports that a rep-
etition of a single 16-syllable series takes between 6.6 and 
6.8 s. If we use an approximation of 6.7 s per list and noting 
there are six of such 16-syllable lists per repetition, then each 
repetition took about 40.2 s. The data and fit are shown in 
Fig. 2. The predicted function coincides well with the data 
points, explaining 99.75% of the variance (sum of squared 

�L1Q(t) + �L2 = � = �L.

L2 = L − Q(t)L1.

Table 1  Relearning time in seconds until once correct recall on Day 2 as a function of a fixed number of initial learning trials on Day 1 (Ebbing-
haus, 1913, Ch. VI)

Number of initial trials 0 8 16 24 32 42 53 64

Mean relearning time, s 1,270 1,167 1,078 975 863 697 585 454
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differences is 5963.64). Note that this function was not fitted 
to the data but based on separate values reported by Ebbing-
haus. If we allow a shorter time than 6.7 s per list, we find 
that 6.38 s explains the same amount of variance but gives 
the lowest attainable sum of squared differences, namely 
1,521.49. Given the excellent fit, one might argue that the 
assumption of a linearly increasing intensity with time is a 
reasonable one for Ebbinghaus’ data.

Discussion

As we show above, Ebbinghaus’ classical savings func-
tion is independent of initial learning time and encoding 
strength and directly measures the underlying forgetting 
curve, assuming a learning process by which the memory 
intensity increases linearly with learning time. The fit of 
Ebbinghaus’ data relating initial learning time to relearning 
time in Fig. 1 further illustrates this, explaining nearly 100% 
of the variance without any free parameters.

We should, perhaps, point out here that other measures of 
memory do not have this characteristic. For example, con-
sider the power function, using probability of recall as a 
measure of memory: p(t) = μ(1 + t),−a where μ is the initial 
intensity of the underlying learning process, which again is 
assumed to increase with learning time. If we take the first 
derivative of the forgetting function, we obtain the predicted 
initial forgetting rate for various levels of initial learningμ: 
p′(t) =  − a(1 + t)−1 − aμ. With various levels of initial learn-
ing at t = 0, we have p′(0) =  − aμ. In other words, if there 
is a stronger initial memory (with higher μ), there will be 
relatively higher forgetting rates at t = 0 (see Fig. 2 for an 
illustration).

It can easily be shown that the same result obtains for 
other forms of the power function, or for the exponential 

function (Loftus, 1985). More generally, any forgetting func-
tion of shape p(t) = μf(t), where f(t) is a function that does not 
itself depend on μ, will give the same result because of the 
standard “constant factor rule” for finding the derivative of 
a product of a constant and a function: p′(t) =  f′(t)μ.If f(t) is 
a declining function, at t = 0,  f′(0) =  − a, for some positive 
constant a, sop′(t) =  − aμ. This means that for a large class 
of functions, we predict a lower forgetting rate in the initial 
portion of the curve for material that has been learned less 
well. This is also intuitively understandable from the idea 
that the role of the μ parameter is to shrink (or stretch, up to 
probability 1) the entire curve along the vertical axis; shrink-
ing implies flattening, implying in turn lower forgetting rates. 
Of course, it will depend on the exact nature of a particu-
lar forgetting function f(t) how difficult it is to disentangle 
the effects of intensity (e.g., Wixted & Ebbesen, 1991). Our 
analysis of the relationship between learning and forgetting 
here is brief and incomplete. Indeed, there is a rich litera-
ture on this topic (Kauffman & Carlsen, 1989; Loftus, 1985; 
Slamecka & McElree, 1983; Yang et al., 2016) with ongoing 
experimentation and theorizing (Fisher & Radvansky, 2019; 
Radvansky et al., 2022; Rivera-Lares et al., 2022). We merely 
intend to illustrate that the savings measure cannot directly 
be compared with other measures of memory – for example, 
probability correct in cued recall – but that from a theoretical 
perspective it is expected to behave differently. In particular, 
from a theoretical perspective, its shape is independent of 
level of initial learning.

In conclusion, the savings measure introduced by Ebb-
inghaus (Ebbinghaus, 1880, 1885, 1913/1885) should not be 
regarded as old-fashioned and unwieldy. Among all memory 
retention measures proposed, it may be the purest one and 
worthy of renewed attention.

Acknowledgements This research was supported by NWO, the Neth-
erlands Society for Scientific Research. We would like to thank Jeroen 
Raaijmakers for helpful comments.

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000 2500 3000

R
el

ea
rn

in
g 

tim
e 

L2
 (s

)

Initial learning time L1 (s)

Fig. 1  Varied levels of initial learning time L1 versus relearning time 
L2 to criterion after 24 h (Ebbinghaus, 1913, Ch. VI). The data are 
shown as diamonds. The predicted data are shown as a solid line

0 2 4 6 8 10
Time0.0

0.2

0.4

0.6

0.8

1.0
p

Fig. 2  Power functions with a = 0.5 and two levels of initial inten-
sity: μ = 1 (solid line) and μ = 0.25 (dashed line)

306 Psychonomic Bulletin & Review (2023) 30:303–307



1 3

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.
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