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Abstract
Multiple representations in visual working memory (VWM) can vary in mnemonic precision. This inhomogeneity of VWM 
precision has received some support from recent studies with the whole-report procedure, in which all memory items are 
recalled in free or forced orders. Recently, Hao et al. (2021, Cognition, 214, 104739) added a novel item-selection stage 
before each memory recall and found smaller between-trial variance in mouse trajectory during the selection stage in free-
recall condition as compared with forced recall, which was taken as evidence for less between-item interference and the 
resulting precision benefit under free recall. Here, we reanalyzed the original dataset with a different analytic approach and 
attempted independent hypothesis testing focusing on within-trial trajectory deviations. We found that the direction of trial-
by-trial trajectory bias for the first to-be-recalled item was predictive of the relative mnemonic precision of the remaining 
items. Critically, this relationship was only present for forced recall but not for free recall. Hierarchical Bayesian modeling 
of recall errors further identified that this relationship was selectively driven by VWM precision. Together, our reanalysis 
provides evidence for the source of between-item interference and its direct association with variable precision of VWM 
representations, and further highlights the novel methodological benefits of probing memory decisional processes using 
mouse trajectory data.
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Visual working memory (VWM) is an online cognitive 
system that represents task-relevant information over a 
short period at the service of ongoing mental activities. 
Models of VWM assume that it is a highly limited process 
and characterize such limit by estimating the variability 
of error responses from continuous estimation tasks, as a 
summary statistic of mnemonic precision (Bays & Husain, 
2008; Zhang & Luck, 2008). This variability estimate has 
successfully captured individual differences in VWM pre-
cision in various populations (Xie et al., 2018) and experi-
mental manipulations such as emotion induction (Xie & 
Zhang, 2017). However, the variability measure is based 
on data collapsing across items and trials. Consequently, it 

is insensitive to capture inhomogeneity in VWM precision 
across items, even though it by no means implies that differ-
ent memory items are of homogeneous quality (i.e., equal 
amount of attentional resources allocated for each item).

Growing evidence showed that the quality of retained 
representations considerably varies across items, some 
are represented more precisely than others due to intrinsic 
(Oberauer, 2002) or experimental factors (Zhang & Luck, 
2008). This inhomogeneous VWM precision has received 
further support from studies using a whole-report proce-
dure that allows investigation of within-trial variability of 
retained items (Adam et al., 2017; Fougnie et al., 2012). The 
whole-report task requires sequential recalls of all memory 
items; thus, a key manipulation is the order of recall. Specifi-
cally, participants could either select to-be-reported item for 
each recall (free recall) or simply report items in a forced 
order determined by the experiment program (forced recall). 
Overall, memory performance tends to decrease from earlier 
to later recalls, presumably due to prolonged between-item 
interference and/or forgetting (Oberauer & Lin, 2017; Shin 

 * Hyung-Bum Park 
 hpark053@ucr.edu

1 3132 Psychology Building, Department of Psychology, 
University of California, Riverside, 900 University Ave., 
Riverside, CA 92521, USA

/ Published online: 6 June 2022

Psychonomic Bulletin & Review (2022) 29:2181–2191

http://orcid.org/0000-0001-6560-2406
http://crossmark.crossref.org/dialog/?doi=10.3758/s13423-022-02128-7&domain=pdf


1 3

et al., 2017; Zhang & Luck, 2009). In addition, a robust 
free-recall benefit was found in earlier recalls, indicating a 
tendency of reporting the best-remembered item first (Adam 
et al., 2017). This suggests that participants had fairly accu-
rate meta-knowledge of the variable quality across concur-
rent VWM items, consistent with previous findings that sub-
jective confidence rating of memory performance strongly 
predicts mnemonic precision (Adam & Vogel, 2017; Rade-
maker et al., 2012).

Hao et al. (2021) recently revised the whole-report task 
by adding a separate item-selection stage immediately before 
each recall (Fig. 1). Specifically, following a cue indicat-
ing recall type (free or forced recall), participants were 
instructed to identify the next to-be-recalled item by click-
ing its placeholder. Mouse cursor trajectory during item 
selection was recorded to provide additional data to explore 
the nature of the free-recall benefit arise from variable WM 

precision across items. Critically, they found that free-recall 
benefit was associated with less variance in mouse trajec-
tories during the item selection across trials. As such, they 
reasoned that the free-recall benefit may largely arise from 
reduced between-item interference during retrieval, as well 
as minimized mnemonic cost due to switching of representa-
tions for the focus of attention (FoA; Oberauer, 2002). Under 
forced recall, however, when an item currently outside of 
FoA (or even out of representations successfully maintained) 
is prompted to be recalled, the current FoA item needs to be 
switched (or simply undergo prolonged delay), leading to 
mnemonic degradation.

Furthermore, they examined the location preference effect 
and its asymmetric consequences in free and forced recall. 
Under free recall, items in the upper-left visual field had 
highest probability to be chosen, but without precision ben-
efit over the other items from the nonpreferred locations. 

Fig. 1  Task procedure and primary results from Hao et  al. (2021), 
reconfigured from the original Figs. 1 and 2. a Participants remem-
bered three color squares briefly presented. After a short delay 
interval, a center cue appeared to indicate the recall type of the 
trial. Afterward, participants were asked to click the to-be-recalled 
item (item-selection; probe randomly selected under forced recall, 
whereas chosen by participants under free recall), then immediately 
followed by actual color recall. The item-selection and color recall 
were repeated for all three memory items. b Variance of mouse 
trajectory during the item-selection stage between free and forced 

recall, for each of the first, second, and third recalled items, respec-
tively. The variance was estimated from intersection angles at each 
radius normalized from the starting point to the ending point. The 
free recall benefit was associated with less variance in item-selec-
tion mouse trajectory for earlier recalls, interpreted as less between-
item interference. Note, the variance of intersection angle at the last 
radius (0.98; right before mouse click response) was well above 
zero and considerably different between free and forced recall in the 
first two item selections
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Under forced recall, on the other hand, randomly chosen 
items from the preferred upper-left locations were associ-
ated with precision benefit, but this effect only held for the 
first recall. According to their interpretations inspired by 
Oberauer’s interference model of WM (Oberauer & Lin, 
2017), when an item in the preferred location (thus presum-
ably in FoA) is not forcedly chosen for the first recall, the 
other chosen item must take place in FoA while the origi-
nal FoA item is switched and underwent irreversible loss 
of precision.

Although we generally agree with their conclusions, their 
mouse trajectory dataset can be better utilized to provide 
a more direct examination of whether and how interitem 
dynamics can be explained by variable mnemonic quality 
across items. The rich mouse trajectory dataset from Hao 
et al. (2021) provides an additional opportunity to test the 
interference-based account of the free-recall benefit. For 
instance, between-item interference was inferred from 
between-trial estimates of circular variance in mouse cur-
sor positions. Although it can be a straightforward index 
of between-item interference, the measure of between-trial 
variance fails to take advantage of within-trial dynamics of 
recall process in whole-report task. Alternatively, the source 
of between-trial variance can be reduced into directional 
biases in mouse position on each trial (e.g., clockwise or 
counterclockwise from target). As such, the patterns of trial-
by-trial trajectory deviations could provide a more sensitive 
way to examine variable VWM precision given the substan-
tial literature on memory-guided attention demonstrating 
that the contents of active WM can guide selective attention 

toward an item location that matches WM (Olivers et al., 
2011; Soto et al., 2008).

The present study has thus reanalyzed the dataset from 
Hao et al. (2021) with different analytic approaches. We first 
addressed the potential artifacts in mouse trajectory analy-
ses in the original study. More importantly, we developed 
a trial-level mouse trajectory categorization method and 
tested the interference account of the free-recall benefit and 
its relationship with inhomogeneous WM precision based 
on within-trial trajectory deviations.

Method

Data reanalysis and rationales

The original data from Hao et al. (2021) were retrieved from 
the authors’ deposit of the data at Open Science Framework 
(https:// osf. io/ 67upz/). Figure 2 illustrates the differences in 
the analytic method for mouse trajectories from the original 
study and the present study. Specifically, the two methods 
are different in three aspects; normalization, mapping car-
tesian on polar coordinates, and inclusion of endpoint bias.

First, the original study normalized the mouse trajectories 
based on the distance from starting point at the center of the 
screen to its ending point to the circle (x2 + y2 = 1). This 
distance-based normalization can be useful in estimating 
variance at the same points along with starting-to-ending 
movements across trials. However, it ignores velocity which 
is likely variable across trials. We therefore normalized 

Fig. 2  Differences in the analytic method for the mouse trajectory 
data from the original and the present study. The green curve is an 
example trajectory from the mouse movement onset at the display 
center to the mouse click endpoint, depicted in a reconstructed set-
ting of the item-selection stage. During this stage, three placeholders 
appeared at the locations of the three memory items and the partici-

pants selected one for the next memory retrieval. Four key differences 
are summarized: (1) data normalization, (2) mapping between interim 
mouse positions to the reference line, (3) inclusion of endpoint bias 
(i.e., the distance between the target center and the endpoint), and (4) 
between-item interference measure
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trajectories based on two time points, from when a move-
ment initiated (i.e., onset latency) to when the ending point 
is selected with a mouse click (i.e., reaction time). The onset 
latency is defined on each trial as the time the mouse cur-
sor deviates from its original location by three pixels in a 
horizontal or vertical direction (21.8 ± 11.2%, 3.4 ± 1.4%, 
and 3.3 ± 1.2% normalized time from display onset to click, 
for the first, second, and third item selection, respectively).

Second, to map the raw mouse cursor positions in Car-
tesian coordinates (x, y) to polar coordinate (−π to π), Hao 
et al. (2021) computed intersection angles at different radii 
ranging from 0.02 to 0.98 in steps of 0.02. The intersec-
tion angle was calculated as the angular distance from each 
intercept point along the radii (origin-to-intersection vector) 
to the target (origin-to-target vector), not to the endpoint. 
The intersection angles rely on, maybe unnecessarily, an 
assumption that the interim mouse positions (and espe-
cially its angular distance from target) are psychologically 
meaningful such that they reflect the moment-by-moment 
movement goals. Hao et al. (2021) attempted to examine 
the source of trajectory deviation with a formal model com-
parison between two competing hypotheses, the Alterna-
tion and the Integration models. The two models attribute 
trajectory bias either to a probabilistic swap tendency (Bays 
et al., 2009) or to an attraction toward a vector sum over the 
target and distractor positions (e.g., response vector model; 
Tipper et al., 1997), respectively (see Hao and colleague’s 
Supplemental Methods for details). Nonetheless, there has 
been an ongoing debate regarding underlying mechanisms 
of mid-flight deviations and what it truly means (Spivey 
et al., 2005; van der Wel et al., 2009). Moreover, intersection 
angles only assign polar distance from the target, regardless 
of the actual amount of deviation at different radii on the raw 
coordinate system. Consequently, this measure is likely to 
overestimate the circular variance at those intersection radii 
corresponding to early movements, since initial movements 
often tend to deviate drastically in direction due to motor 
noise but typically not in actual distance. For a concrete 
example, the two mouse cursor positions at 20% and 40% 
radii in Fig. 2 would be converted to similar intersection 
angles (i.e., angular deviation from the target) despite that 
fact that they are double-sized in perpendicular distance to 
the references line. For these reasons, the present study ana-
lyzes mouse trajectories in their raw coordinate system (e.g., 
pixels) which is more precise to characterize how trajectory 
tracks interdependency of multiple VWM representations.

Lastly, any biases in the endpoint (i.e., the distance from 
a mouse click location to the designated target probe loca-
tion) would affect the measure of intersection angles in Hao 
et al. (2021), which could further contribute to the estimated 
circular variance postulated to measure between-item inter-
ference. There are several different methods quantifying 
curvature in trajectories (Ludwig & Gilchrist, 2002; Van 

der Stigchel et al., 2006). Although all of them are with 
valid reasons to focus on different aspects of trajectories, 
a choice of reference straight line (either to a target or to 
the endpoint from the mouse onset position) may create 
considerable differences in the resulting measure. As one 
can infer from Fig. 2, the endpoint bias affects not only the 
variability at the very last radius but also every radius back 
to the starting point. Moreover, trajectory curvature is math-
ematically and conceptually independent from the endpoint 
bias. That is, a greater trajectory curvature is not necessarily 
accompanied by a greater amount of endpoint bias, and their 
directions may differ as well (e.g., curved clockwise from 
the target, but with a counterclockwise ending point, vice 
versa). Therefore, endpoint bias could be a serious artifact 
especially when the primary measure of interest is a variance 
of intersection angles. As shown in Fig. 1b, the variance esti-
mates of the intersection angle at the last radius (0.98) were 
well above zero and considerably different between free and 
forced recall in the first two item selections. If such endpoint 
bias is controlled, the difference in the total variance of tra-
jectory between free and forced recall might be diminished.

To overcome these artifacts of intersection angle measure, 
our reanalysis used the area under trajectory curve (AUC) to 
characterize the extent of trajectory deviation.1 AUC is the 
geometric area between the observed trajectory and a refer-
ence straight-line from the onset to the endpoint. A higher 
AUC value indicates a greater deviation toward alternative 
locations. Also, the sign of AUC can represent the direction 
of deviation either toward clockwise (+) or counterclock-
wise (−) from the reference line.

Another critical hypothesis tested in the present study 
was that the between-item interference manifested as the 
between-trial variability of item-selection mouse trajec-
tories, identified in Hao et al. (2021), could be directly 
accounted for by the within-trial dynamics of variable pre-
cision of multiple VWM representation (see Results for 
detail). For this novel hypothesis testing, we selected trials 
where the first recall item was placed within four displace-
ments from the other two items on the opposite side among 
eight possible locations (i.e., first target placed somewhere 
in the middle of second and third items). For example, 
from Fig. 3a, when the first recall item was placed at the 
location marked as “1,” only those trials where the second 
and third items were placed at the opposite side between 
location “1” and “5” were included for data analysis. In 
other words, all other types of trials where second and 
third recall items were placed on the same side relative 

1 We also calculated another popular measure of trajectory deviation, 
the maximal deviation (MD) at the point where the curvature is maxi-
mum for sanity check. Participants’ MDs were highly correlated with 
their AUCs, r(14) = .95, 95% CI [.87, .98], p < .001. The results were 
comparable between measures using AUC and MD.
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to the first recall item were excluded. We allowed une-
ven clockwise and counterclockwise displacements from 
the first item to maximize the trial number (e.g., second 
and third item placed three steps clockwise and two steps 
counterclockwise to first item, respectively) This resulted 
in 1,917 trials remained for data analysis out of the total 
of 3,840 trials (49.9%).

For the analyses of recall errors, we applied the hierar-
chical Bayesian approach for the extended mixture model 
(Zhang & Luck, 2008). The three free parameters, μ, SD, 
and guessing, of the model represent the location (μ, mne-
monic appearance) and the width (SD; inversely related to 
mnemonic precision) of the central peak distribution of the 
recall errors (i.e., noisy mnemonic representation), and the 
probability of random guessing that is not driven by mne-
monic evidence, respectively. The hierarchical Bayesian 
estimation samples plausible posterior parameter values at 
the population level, while simultaneously accounting for 
different sources of variabilities from individuals, condi-
tions, and trials using Markov Chain Monte Carlo simula-
tions (16,000 MCMC samplings after 16,000 warming-ups). 
The main effects of each population-level parameter were 
estimated in a general linear model, sampling from the nor-
mal distribution where the mean is a sum of the fixed (con-
dition) and random effect (individual), and the variability 

term describes the individual-by-condition interaction effect 
(Rouder et al., 2014).

We chose reasonable to non-informative priors for all 
parameters to minimize biases due to the choice of priors. 
The mean and the 95% credible interval (highest density 
interval, HDI) of the posterior distribution were treated as a 
point estimate and an analogue of a frequentist confidence 
interval (CI), respectively. Statistical inferences were made 
based on the range of HDIs (e.g., whether the positive or 
negative side of 95% HDIs for the condition effect crosses 
over zero), as the strength of evidence (Kruschke, 2014).

Results

Endpoint bias and its impact on between‑item 
interference

In Hao et al. (2021), three memory item locations were 
randomly selected from eight possible placeholders. We 
sorted every trial based on those eight recall target loca-
tions across participants and recalls and reconstructed the 
original mouse trajectories. We then estimated the amount 
of endpoint bias at each location, separately for forced and 
free recall (Fig. 3a). The extent of endpoint variability was 

Fig. 3  a Reconstructed item-selection mouse trajectories over eight 
possible target locations for forced and free recall, collapsed across 
participants and selections for the three items. Colored curves and 
shades represent group mean trajectory and 95% CI, whereas grey 
curves are individual participant mean trajectories (top panel). The 
bottom panel illustrates the extent of variability at the mouse-click 
endpoints across trials (indicated by error bars representing 95% CI 

of total trials), which was similar across eight target locations (M 
and SD of  CI95% upper – lower bound range = 18.36 ± 0.99°). b The 
mean and standard error of the endpoint variability measured by cir-
cular standard deviation (SD) as a function of recall order (first, sec-
ond, and third item selection) and recall type (forced vs. free recall). 
The endpoint variability was systemically larger under free recall than 
forced recall
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estimated for individual participants by calculating circular 
SD as a function of recall order (first, second, vs. third) and 
recall type (forced vs. free), separately (Fig. 3b). A two-way 
repeated-measures analysis of variances (ANOVA) revealed 
significant main effects of recall order, F(2, 30) = 15.36, p < 
.001, ηp

2 = .51, and recall type, F(1, 15) = 10.24, p = .006, 
ηp

2 = .41, without significant interaction effect, F(2, 30) = 
0.06, p = .943, ηp

2 = .00. Surprisingly, endpoint bias was 
greater in free recall than in forced recall, which is opposite 
to what can be inferred from Hao et al. (2021). This dis-
crepancy is likely due to different analytic approaches for 
mouse trajectories.

Our next aim is to replicate the primary finding of greater 
between-item interference under forced recall while evalu-
ating the impact of endpoint bias by comparing two sets 
of results with and without endpoint bias. Figure 4 illus-
trates the mean absolute horizontal deviations along time 
normalized to movement onset-to-endpoint. All trajectories 
were rotated such that a reference point of endpoint (end-
point corrected) or target (endpoint included) to be placed 

perpendicular from the starting point. Consequently, any 
interim deviations can be represented as deviation on the 
horizontal dimension. We calculated AUCs then took [forced 
− free] difference as a measure for the relative amount of 
between-item interference.

For the endpoint-corrected set, planned one-sample t 
tests comparing AUC differences from zero at each recall 
revealed significant positive differences in first selection 
(+2,129.1px×t  [CI95% hereafter: +1164.5, +3093.6]), t(15) 
= 4.33, p = .001, Cohen’s d = 1.12, and second selection 
(+1,709.7px×t [+1138.5, +2280.9]), t(15) = 5.87, p < .001, 
d = 1.51, whereas a significant negative difference in third 
selection (−419.2 px×t [−758.3, -80.2]), t(15) = −2.42, p = 
.028, d = −0.63). These results replicate the original finding 
of greater between-item interference under forced recall in 
selection of first two items. We observed similar patterns for 
the endpoint-included set (Fig. 4b), with AUC differences 
[forced − free] in the first, second, and third item selec-
tions were +2004.3 [+1047.6, +2961.0], +1523.5 [+954.0, 
+2093.1], and −497.7 [−831.6, −163.8], respectively, all ps 

Fig. 4  Mean absolute horizontal deviations as a function of time nor-
malized from the mouse movement onset to click endpoint, separately 
for recall type (forced vs. free recall) and recall order (first, second, 
and third item selection), respectively. Either trial-specific endpoint 
(a) or target probe center (b) was set to be placed at the top of the 
mouse onset at the display center as a reference point. The rightmost 

panels illustrate the differences in trajectory area under curve (AUC) 
between forced and free item-selections, as a measure for the rela-
tive amount of between-item interference between recall type. Posi-
tive values indicate greater between-item interference. All error bars 
including the shaded curves represent the standard error of mean
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< .011, ds > 0.75. Additional two-way repeated-measures 
ANOVA for AUC differences as a function of recall order 
and endpoint (corrected vs. included) revealed significant 
main effects of recall order, F(2, 30) = 15.71, p < .001, ηp

2 
= .51, and endpoint, F(1, 15) = 26.69, p < .001, ηp

2 = .64. 
However, there was no significant interaction between them, 
F(2, 30) = 1.04, p = .361, ηp

2 = .07.
To summarize, we identified substantial amount of end-

point bias varied between forced and free recall. The end-
point bias nonetheless played a minimal role in between-item 
interference. These findings reaffirm the original conclu-
sion that under forced recall, participants suffered greater 
between-item interference during the item-selection stage.

Within‑trial trajectory predicts relative precision 
of VWM items

Hao et al. (2021) discussed potential connection between 
between-item interference and VWM inhomogeneity. Spe-
cifically, the greater between-item interference under forced 
recall was attributed to increased swap tendency toward the 
alternatives (i.e., misdirecting mouse cursor toward the other 
non-probe items), whereas VWM inhomogeneity was sup-
ported by asymmetric consequences of the location prefer-
ence effect in free and forced recall. These interpretations, 
however, are drawn from less concrete evidence by combin-
ing two separate empirical results supporting each concept. 
Further, it relies on particular assumptions for the nature 
of FoA such as irreversible mnemonic degradation due to 
switch of items for a single, fixed capacity of FoA state (see 
for other accounts of FoA capacity; Beck & Hollingworth, 
2017; Beck et al., 2012; Cowan, 2001; Williams et al., 2022).

Alternatively, here, we hypothesize that inhomogeneous 
VWM precision may directly give a rise to inhomogeneous 
between-item interference between forced and free recall. It 
is expected that trial-by-trial dynamics of mouse trajectory 
during the first item selection are related to subsequent item 
recall performance. We predict that mouse trajectory to the 
first forced target would be attracted toward one of the two 
nontargets, where its direction may depend on the relative 
precision of those items. Specifically, on two-thirds prob-
ability, the first forcedly chosen target would not be of the 
best precision and mouse movement to this nonbest item 
would be deviated toward the other best item, reflecting the 
relative attractive force driven by variable precision among 
three memory items.

To test this idea, we created a two-by-two trial-catego-
rization matrix, where one dimension categorizes whether 
the first item-selection trajectory deviated toward second or 
third recall item (by the sign of trajectory AUC), whereas 
the other dimension categorizes the relative recall perfor-
mance (second − third absolute recall errors; a negative 
value indicates better recall for the second item than the 

third item). Note, for the first dimension of the sign of tra-
jectory AUC, AUCs from trials with the third item pre-
sented counterclockwise (−) to the first item were reversed. 
Hence, negative and positive AUCs represent first item-
selection trajectory deviated toward the second item (−) and 
the third item (+), respectively. For the second dimension 
of the absolute (second − third) recall error differences, 
the overall main effect of recall order (i.e., second recall 
more precise than third recall in general) was corrected by 
weighting a half-size of the main effect (i.e., the difference 
between the bottom row sum and the top row cell sum) to 
the top row cells (i.e., when third recall more precise) while 
subtracting it from the bottom row cells (i.e., when second 
recall more precise). This was to equate the null probability 
of top and bottom cells at 50% each. Trials with the abso-
lute relative (second − third) error smaller than 2° were 
excluded to prevent ambiguity in categorization.

Each trial was categorized into one of quadrant categories 
based on the sign of the measures. Critically, according to 
our hypothesis, trial-categorization accuracy defined by the 
summed probability of the first (+/+) and the third quadrants 
(−/−) should be greater than the chance-level at 50%. In 
other words, there will be a greater proportion of trials in 
which the direction of the first item-selection trajectory bias 
was predictive of the relative recall precision of the second 
and third items. Moreover, this asymmetric diagonal pattern 
in the two-by-two matrix should only be present for forced 
recall, but not for free recall where the first recalled item had 
the best precision.

The results were consistent with these predictions (Fig. 5). 
We found trial-categorization accuracies to be significantly 
above chance for forced recall (54.7% [51.0%, 58.3%], one-
tailed one-sample) t(15) = 2.69, p = .008, d = 0.70, BF10 = 
3.60, but stayed around chance for free recall (50.6% [46.1%, 
55.0%]), t(15) = 0.27, p = .396, d = 0.07, BF10 = 0.26. The 
same one-tailed paired-samples t test between forced and 
free recall yielded only marginally significant difference but 
with reliable effect size measures, t(15) = 1.74, p = .051, d = 
0.43, BF10 = 1.63. This suggests that the direction of trajec-
tory bias during the first item selection was to some extent 
predictive of the relative precision of the two subsequently 
recalled items. This provides supporting evidence for our 
hypothesis that between-item interference may be directly 
related to variable precision among VWM representations.

To further identify how the first item-selection trajec-
tory predicts representational quality of the subsequently 
recalled items, we fitted second and third recall errors with 
the extended mixture model (Zhang & Luck, 2008) using 
hierarchical Bayesian method, separately for different first 
item-selection trajectory bias direction (toward second or 
third item; left and right cells in Fig. 5). Figure 6 summa-
rizes the resulting population-level posteriors of μ, SD, and 
guessing parameters, showing their difference between two 
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recalls (second − third). Further analyses based on posterior 
mean with 95% HDI for the difference between two cases 
when the first item-selection trajectory deviated toward the 
second or third recalled item revealed only credible differ-
ence from the SD parameter for forced recall (+6.84,  HDI95% 
[+1.09, +13.42]), whereas no other parameters from both 
recall type were credibly different. These results indicate that 
the variability in precision, but not the representational shift 
(μ) or guessing, among VWM representations on a given 
trial manifested in the trial-specific directional mouse trajec-
tory bias during the first item selection under forced recall. 

Discussion

The present study reanalyzed the behavioral and mouse 
trajectory data from Hao et al. (2021), with a different 
analytic approach that controls for substantial and asym-
metric variance in mouse endpoints between free and 
forced recall. We first replicated the original findings of 
the greater between-item interference under forced recall. 
More importantly, we examined the trial-level mouse tra-
jectories to investigate how they are inherently associated 
with inhomogeneous VWM precision. The results from 
our novel trial-categorization method revealed that the 
direction of trajectory bias during the first item selection 
was predictive of the relative recall performance of the 
remaining items. Specifically, a memory item producing 
stronger attraction of the item-selection mouse movement 
was recalled more accurately than the other item. This 
was only valid for forced recall but not for free recall. 
Furthermore, using hierarchical Bayesian modeling of the 
recall errors, the categorization pattern was solely driven 

by WM precision, not by other factors of recall such as 
bias in feature appearance or failure of remembering. 
These findings provide strong support for our hypothesis 
that variable precision of concurrent VWM representa-
tions directly gives a rise to the asymmetric trajectory 
bias resulting from nontarget items at the moment, a 
novel manifestation of between-item interference. Taken 
together, the present reanalysis provided direct mouse 
trajectory evidence for the link between between-item 
interference and variable precision.

These results are in general consistent with the operations 
of active-state WM contents. Accumulating evidence sug-
gests that new sensory inputs that match active WM contents 
can capture attention, even when such guidance is irrelevant 
to the current task goal (Pan et al., 2016; van Moorselaar 
et al., 2014). WM guidance not only occurs to the internal 
shift of attention but also manifests in preparation and execu-
tion of motor actions such as eye movements or reaching 
behavior (Hollingworth et al., 2013; Theeuwes et al., 2009). 
Our findings thus provide an important extension of these 
previously observed interactions between WM and attention.

Although the present results are in support of the inho-
mogeneity in VWM precision, it does not directly speak to 
the ongoing debate on the capacity of FoA or the number of 
active templates that can guide attention and action (Cowan, 
2001; Oberauer, 2002; Olivers et al., 2011; McElree, 2001; 
Zhou et al., 2020). It is also possible that not necessarily one 
or more discrete items have to enter the qualitatively privi-
leged state to guide behavior. Instead, all the representations 
in mind at the moment may compete for selection and result 
in a gradient interaction with attention, depending on their 
relative precision. Mouse movement trajectory could be an 
effective measure to address this question in future research.
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Fig. 5  Proportion of trials as a result of trial-categorization consist-
ing of a 2-by-2 matrix, where the horizontal dimension categorizes 
whether the first item-selection mouse trajectory deviated toward 
the second or third recalled item (by the sign of area under curve; 
AUC), whereas the vertical dimension categorizes by the sign of the 
relative absolute recall errors (second – third; negative sign indicates 
the second recall being more precise than the third recall). The first 

(+, +) and the third quadrants (–, –) are consistent with the predic-
tion that the direction of first item-selection mouse trajectory under 
forced recall will be predictive of the relative precision of the second 
and third recall items. (Right-panel): Consistent with this prediction, 
trial-categorization accuracy (proportion of trials in the first and third 
quadrants) was significantly above chance under forced recall but 
stayed at around the chance level under free recall
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There are some caveats in the current findings. First, 
we found that the item selections were more erroneous 
(i.e., greater endpoint variance) in free recall than forced 

recall, which is opposite to Hao and colleagues’ results. 
This discrepancy may originate from different trajec-
tory analysis methods. In addition, participants were not 
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Fig. 6  Hierarchical Bayesian posterior distributions of the three 
parameters (μ, SD, and guessing) from the extended Zhang and Luck 
(2008) mixture model, representing the difference between second 
and third recall errors. For each recall type (forced and free recall), 
the top row shows the mean and the 95% highest density inter-
val (HDI) of the posterior parameter values (second − third recall) 
as a function of the first item-selection trajectory bias direction 
(toward second or third item). The bottom row illustrates the differ-
ence between these two conditions (trajectory biased toward second 
− third recall item), depicted in the nonparametric kernel density fits 

of the resulting posteriors (solid black curves) with shaded grey area 
representing the lower and upper bound of  HDI95%. These resulting 
posteriors, in other words, represent the interaction effect between 
recall order (second and third) and trajectory bias (toward second and 
third). Only the precision parameter (SD) under forced recall reveals 
its  HDI95% not crossing over zero, thus indicating a credible interac-
tion effect. In other words, it is the variability in precision, but not 
representational shift (μ) or guessing, across VWM representations 
on a given trial that gave rise to the trial-specific directional mouse 
trajectory bias during the first item selection under forced recall
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instructed to click at the center of the item placeholder, 
thus the amount of endpoint bias could arise from motor 
execution. That is, under free recall, the participants 
might try to proceed to the recall quicker with faster but 
less careful mouse clicking. Consistent with this specula-
tion, item-selection time was faster for free recall than 
forced recall (Hao et al., 2021).

Second, although we obtained the above-chance trial-cat-
egorization accuracy for forced recall, the effect was weak 
(54.7%) though exhibited reliable effect sizes (Cohen’s d = 
0.70, BF10 = 3.60). This could be largely due to the absence 
of the trajectory effect on one-third of forced-recall trials 
where the first forced target would be by chance of the best 
precision, yielding no apparent trajectory bias to the other 
items. Consequently, this one-third of forced-recall trials 
was nothing different from those free-recall trials, attenu-
ating the predictive power of trajectory bias direction for 
the relative precision of the other items. Also, the relative 
distance of the second and third item locations to the first 
item was not controlled to be symmetrical in the original 
experiment, adding additional noise to the measure of the 
AUC sign. Nonetheless, our hierarchical Bayesian modeling 
of the second and third recall errors identified which of the 
mixture model parameters was the source of asymmetric tra-
jectory bias, suggesting its robustness to small experimental 
effects (Park et al., 2021).

The present study further extended the literature on 
investigating the continuous nature of internal cognitive 
processing using response trajectory data across the vari-
ous domains such as eye movement (Kowler et al., 1995; 
Van der Stigchel et al., 2006), hand movement (Abrams & 
Balota, 1991; Song & Nakayama, 2008; Welsh & Elliott, 
2004), and moue trajectory (Spivey et al., 2005; van der 
Wel et al., 2009). However, most previous studies relied 
on trial-average effects and draw conclusions from the 
comparison between experimental conditions. The pre-
sent study assesses the within-trial trajectory in response 
to ongoing WM-based decisions, which provides a more 
effective investigation of the dynamic interactions among 
multiple memory representations. Taken together, the 
present findings have demonstrated that mouse trajec-
tory during the selection of recall item not only tracks 
the total amount of between-item interference but rather 
directly reflects the variation in representational precision 
of VWM items. Our findings further highlight the meth-
odological importance of mouse trajectory analysis for 
hypothesis testing.
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