
https://doi.org/10.3758/s13423-022-02122-z

BRIEF REPORT

Eye movements dissociate between perceiving, sensing, 
and unconscious change detection in scenes

Michelle M. Ramey1,2,3 · John M. Henderson1,3 · Andrew P. Yonelinas1,2

Accepted: 8 May 2022 
© The Psychonomic Society, Inc. 2022

Abstract
Detecting visual changes can be based on perceiving, whereby one can identify a specific detail that has changed, on sens-
ing, whereby one knows that there is a change but is unable to identify what changed, or on unconscious change detection, 
whereby one is unaware of any change even though the change influences one’s behavior. Prior work has indicated that the 
processes underlying these different types of change detection are functionally and neurally distinct, but the attentional 
mechanisms that are related to these different types of change detection remain largely unknown. In the current experiment, 
we examined eye movements during a change detection task in globally manipulated scenes, and participants indicated their 
change detection confidence on a scale that allowed us to isolate perceiving, sensing, and unconscious change detection. For 
perceiving-based change detection, but not sensing-based or unconscious change detection, participants were more likely 
to preferentially revisit highly changed scene regions across the first and second presentation of the scene (i.e., resampling). 
This increase in resampling started within 250 ms of the test scene onset, suggesting that the effect began within the first two 
fixations. In addition, changed scenes were related to more clustered (i.e., less dispersed) eye movements than unchanged 
scenes, particularly when the subjects were highly confident that no change had occurred – providing evidence for change 
detection outside of conscious awareness. The results indicate that perceiving, sensing, and unconscious change detection 
responses are related to partially distinct patterns of eye movements.
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Introduction

Noticing that something has changed can be the result of 
different types of thought processes. For example, when 
deleting redundant photos from your phone, you may real-
ize that two similar family photos are slightly different. Per-
haps you notice that your uncle has a particularly artificial 
smile in one photo and not the other. On the other hand, you 
may have a vague sense that something is different between 
the two photos, but even after careful inspection you cannot 
identify exactly what is different. Alternatively, you may 

think the photos look exactly the same, but your behavior 
may be altered in subtle ways that you are not aware of, such 
as differences in your pattern of eye movements while view-
ing each photo. These distinct routes to change detection not 
only involve different subjective experiences, but they can 
have very different behavioral consequences. Despite this, 
the perceptual and attentional mechanisms that are related 
to these different types of change detection have not been 
directly contrasted. In the present study, we test the hypoth-
esis that these different types of change detection may be 
related to differences in how attention is deployed, and we 
do this by examining eye movements during a change detec-
tion task in scenes.

Research examining conscious visual change detection 
indicates that these perceptual discriminations can be char-
acterized by at least two separable underlying processes: 
being able to identify the specific change (i.e., perceiving), 
and having a vague sense that something changed but fail-
ing to specifically identify the change (i.e., sensing; Aly & 
Yonelinas, 2012; Rensink, 2000). Behavioral studies have 
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indicated that perceiving responses are thresholded in that 
they involve high levels of response confidence and occur 
abruptly during viewing, whereas sensing responses are 
strength-based in that they vary from weak to confident and 
gradually increase as changes are repeatedly viewed over 
multiple presentations (Aly & Yonelinas, 2012). In addition, 
perceiving responses occur most often when changes involve 
local, discrete alterations such as an object in a scene disap-
pearing, whereas sensing responses occur most often when 
changes involve global alterations such as subtle spatial dis-
tortions to scenes (Aly & Yonelinas, 2012). Moreover, sens-
ing-based responses are associated with activity throughout 
the ventral stream including the lateral occipital complex, 
fusiform gyrus, parahippocampal gyrus, and hippocampus, 
whereas perceiving-based responses most strongly relate to 
lateral parietal activity (Aly et al., 2013; Aly, Ranganath 
et al., 2014a; Aly, Wansard, et al., 2014b).

Despite the clear differences between perceiving and 
sensing, it is not yet known how they relate to attention. 
Prior work has indicated that when subjects detect a change, 
they are more likely to have looked at the changed regions 
within the scene (Hollingworth et al., 2001), and to have 
sampled fewer regions overall (Ryan & Cohen, 2004). In 
addition, when changes occur during saccadic eye move-
ments, subjects are more likely to report those changes if 
they had previously fixated on the changed region (Hen-
derson & Hollingworth, 1999; Hollingworth & Henderson, 
2002). These results suggest that successful change detection 
is related to differences in visual attention as measured by 
eye movements (i.e., a less dispersed viewing pattern that is 
focused on the changed regions within the scenes). However, 
these studies only examined overall change detection accu-
racy, and so it is not known whether these eye movements 
reflect perceiving or sensing-based change detection.

In addition to the open question of the role of attention 
in perceiving and sensing, there is debate surrounding the 
role of unconscious processes in eye movements related to 
change detection. That is, whereas conscious change detec-
tion is related to increased viewing of changed regions, 
changes in overall viewing (e.g., fewer regions sampled 
and longer fixation durations) have been found even when 
subjects report that no change has occurred (Henderson & 
Hollingworth, 2003; Ryan & Cohen, 2004), suggesting that 
these eye movements may reflect a form of unconscious 
change detection. However, others contend that differences 
in eye movement patterns only occur when change detection 
is conscious (e.g., Smith et al., 2006; Smith & Squire, 2008). 
One potential concern – acknowledged by those authors – is 
that when measuring only a dichotomous (i.e., change/same) 
response, it is difficult to know whether participants were 
truly unaware of the change or whether they were just not 
sufficiently confident to make a “change” response. Thus, 
it is not known whether the eye movements that have been 

linked to unconscious change detection reflect truly uncon-
scious effects or just low levels of sensing-based change 
detection.

Current research

To address these questions, we used a confidence-based 
change detection scale to isolate perceiving, sensing, and 
unconscious change detection, and examined how these pro-
cesses relate to the deployment of visual attention. In the 
present experiment, participants viewed pairs of scenes pre-
sented sequentially while their eye movements were tracked. 
Every scene had a global distortion applied to it that subtly 
altered the relationship between scene elements (Fig. 1B and 
C). Global changes, rather than local changes, were used 
because prior work has established that global changes elicit 
high levels of both perceiving and sensing, whereas local 
changes elicit relatively little sensing-based change detec-
tion (Aly & Yonelinas, 2012). Each trial consisted of an 
initial scene presentation (i.e., study), a brief blank delay, 
and a second scene presentation (i.e., test), during which it 
either changed (i.e., changed trials) or remained the same 
(i.e., identical trials). On each trial, participants were asked 
to indicate whether they detected a change using a sub-
jective report procedure (Aly & Yonelinas, 2012; Ramey 
et al., 2019), which allowed us to tease apart change detec-
tion based on perceiving, sensing, and unconscious mem-
ory. Participants responded “perceive” if they detected a 
change and could identify some aspect of the scene that had 
changed; otherwise, they rated their confidence on a scale 
from 1 (“sure the scene is the same”) to 5 (“sure the scene 
changed”). The “perceive” and 5 responses indicated that 
subjects were highly confident there was a change, and they 
were used to assess perceiving and sensing-based change 
detection, respectively. To index unconscious change detec-
tion, trials in which subjects were highly confident that there 
had been no change (i.e., the 1 responses) were examined.

To assess visual attention, we examined participants’ 
tendency to revisit regions between study and test (i.e., 
resampling) that were highly changed (i.e., high in change 
magnitude), as well as the overall spatial distribution of eye 
movements across scene regions (i.e., dispersion).

Although the role of eye movements in perceiving 
and sensing-based change detection has not yet been 
examined, prior findings led us to assess several general 
predictions. Namely, the link between perceiving and 
detecting local feature changes (Aly & Yonelinas, 2012) 
suggests that eye movements may be especially impor-
tant for perceiving-based change detection: In particular, 
perceiving may rely on fixating the same highly changed 
regions before and after the change (Hollingworth & 
Henderson, 2002). Sensing, on the other hand, has been 
proposed to involve assessments of the strength of global 
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match between two stimuli (Aly & Yonelinas, 2012), and 
therefore may be more dependent on gist or parafoveal 
vision than direct fixation. As a contrasting possibility, 
however, prior work has shown that the hippocampus 

is more involved in sensing than perceiving (Aly et al., 
2013), and eye movements during scene perception are 
strongly related to hippocampal activity (Henderson & 
Choi, 2015; Liu et al., 2017,  2020; also see Ryan et al., 

Fig. 1  Experimental procedures and an illustration of the resampling 
measure. (A) Trial events. Participants saw a scene at study, fol-
lowed by a blank delay, followed by either the identical scene or a 
globally distorted version of the scene. Participants were then asked 
to rate their change detection confidence. (B and C) An example of 
a changed scene. A portion of the scene (white ring) has been mag-
nified for the sake of illustration (this was not a part of the experi-
ment). The magnified portion of the scene is in the same location 
in both versions, but note that the visual content of the region has 

changed slightly as a result of the manipulation. (D) The change map 
for (B) and (C), with brighter regions indicating areas in which pix-
els changed more dramatically between the two versions of the scene. 
(E) A smoothed map of a subject’s fixation locations during study of 
a scene. (F) A smoothed map of the same subject’s fixation locations 
on the same scene at test. (G) The resampling map, resulting from 
(E) and (F), which is the overlap of regions that were fixated at both 
study and test. The resampling correlation value for this sample trial 
pair is .37
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2000) – indirectly suggesting that sensing may be more 
tightly linked with eye movement behavior. Lastly, if 
prior unconscious change detection effects (e.g., partici-
pants viewing fewer regions in changed scenes; Ryan & 
Cohen, 2004) were truly due to change detection outside 
of awareness, then we would expect to observe change-
related eye movement effects even when participants are 
highly confident there is no change – that is, eye move-
ments that differ between changed and unchanged scenes 
even when participants confidently report that there is 
no change.

Method

Participants

Thirty undergraduates from the University of California, 
Davis completed the experiment for course credit. A sample 
size of 26 participants was needed to provide 95% power to 
detect the smallest analogous effect in a prior eye tracking 
study (i.e., the effect of recollection on first saccade accuracy; 
Ramey et al., 2019), using dz=.75 in a two-tailed paired-sam-
ples t-test. The quality of each participant’s eye tracking data 
was assessed by computing the mean percent signal across all 
trials to determine whether there was excessive track loss due 
to blinks or calibration loss, with a preselected criterion of 
75% signal (Henderson & Hayes, 2017). All participants had 
greater than the signal criterion (M = 96.6%; range 88–99%), 
and thus all were retained for analysis.

Materials

Stimuli were 160 photographs of buildings. All scenes were 
presented in color at 1024 × 768 pixels subtending a visual 
angle of approximately 25° × 19° at presentation. For each 
scene, minor distortions were introduced using the “pinch” 
and “spherize” filters, at 5% strength, in Photoshop CS5. One 
pinched and one spherized version of each scene was created. 
To ensure that any effects were not due to the scenes appear-
ing distorted, all scenes presented to participants were either 
pinched or spherized; that is, all scenes that the participants 
saw were manipulated in Photoshop in one way or another.

Apparatus

Participants’ eye movements were recorded using an SR 
Research EyeLink 1000+ tower mount eye tracker, sampling 
at 1000 hz. Stimuli were displayed on a monitor 85 cm from 
the subject’s eyes.

Procedure

Participants completed a change detection task consisting of 
160 trials. Each trial began with a central fixation cross, fol-
lowed by a study scene presentation for 2 s, a 600-ms blank 
gray screen with central fixation cross, a test scene presen-
tation for 2 s, and a confidence scale that remained on the 
screen until the subject made a response (Fig. 1A). In half of 
the trials, the scene changed between study and test (i.e., the 
changed condition): the scene either changed from a pinched 
to spherized version of the same scene, or vice versa. In the 
other half of trials, the scene was unchanged between study 
and test (i.e., the identical condition). Half of the identical 
scenes were pinched and half were spherized. The scenes 
were counterbalanced such that each scene appeared in the 
changed condition for half the participants, and the identical 
condition for the other half.

For the confidence response, participants were asked to 
respond on a scale to indicate whether they thought the scene 
changed between study and test. Response options fell on a 
1–5 plus “perceive” scale consisting of “I’m sure they’re the 
same,” “Maybe they’re the same,” “I don’t know,” “Maybe 
they’re different,” “I’m sure they’re different,” and “I per-
ceive a difference” (i.e., a perceive response). A perceive 
response indicated that a participant not only was sure that 
there was a change, but they could also point to a specific 
region of the scene that changed. A response of “I’m sure 
they’re different” indicated high confidence comparable to 
that of a perceive response, but without the ability to point 
to a specific change. Participants were explicitly instructed 
that both “I’m sure they’re different” and perceive responses 
indicated equally high confidence, and differed only in the 
ability to specifically identify a changed region. In a previous 
study (Aly & Yonelinas, 2012), these self-report measures 
of perceiving were validated by requiring subjects to also 
verbally identify the specific feature that had changed. Sub-
jective reports of perceiving, but not sensing, were directly 
related to objective measures of change identity.

Data reduction and analysis

Resampling

We computed resampling as the extent to which participants 
revisited the same regions between the study and test pres-
entations of a scene (see Fig. 1E–G; for specific method, see 
Ramey, Henderson, et al., 2020a). We correlated the spatial 
locations of the fixations made during the study phase pres-
entation of the scene with the spatial locations of the fixa-
tions made during the test phase presentation of the scene. 
To do this, we applied a Gaussian kernel with a cutoff fre-
quency of -6 dB (to account for the fall-off in visual acuity 
from the fovea) to the matrix of fixation locations for each 
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scene for each subject. This yielded two smoothed heatmaps 
of fixation locations for each trial: one at study and one at 
test (Fig. 1E and F). The two maps were then correlated to 
yield a single resampling value for each trial, with higher 
correlations indicating more resampling for that trial.

Change magnitude of resampled regions

To determine how change detection was related to resa-
mpling scene regions that were more highly changed as a 
result of the pinching and spherizing manipulations, we 
created a change map for each scene. To do this, we used 
MATLAB to compare the two versions of each scene pixel 
by pixel, in terms of the RGB values of each pixel. That is, 
a pixel was considered highly changed if the pixel at that 
coordinate in the other version of the scene was very differ-
ent in terms of its RGB value. For example, if the pixel at a 
given (x,y) coordinate was green in both versions of a scene, 
it would have a very low change value; but if it was green 
in the pinched scene and purple in the spherized version, 
it would have a high change value. Note that this change 
measure not only accounted for differences in color, but in 
brightness as well. For each scene, this yielded a heatmap 
of the degree to which pixels were changed between the 
two versions of the scene, such that higher values indicate 
more change (Fig. 1B–D). We applied a Gaussian kernel 
with a cutoff frequency of -6 dB to the change maps, again 
to account for the fall-off in visual acuity from the fovea. 
The change map for a given scene was used to compute the 
average change magnitude (i.e., intensity of the change as 
computed by MATLAB’s imfuse function using the “diff” 
method) within the regions that were resampled between 
study and test. Specifically, the average change magnitude 
was computed for the regions that were overlapping between 
the study and test fixation heatmaps isolated in the trial-level 
resampling measure described above (Fig. 1G).

Dispersion

To quantify attentional dispersion, we calculated the number 
of regions that were fixated in a scene, as well as the distance 
between those regions. Specifically, we created a clustering 
algorithm (using silhouette with k-means) to group fixations 
into the mathematically optimal number of clusters based on 
their spatial relation to each other (for specific method, see 

Ramey, Henderson, et al., 2020a). To compute dispersion 
scores, we multiplied the number of clusters by the aver-
age distance between the medoids of those clusters (i.e., the 
most representative fixation in the cluster), to capture the 
extent to which fixations were distributed across the display. 
Higher values indicate that eye movements were more dis-
tributed across a scene. A prior study found that participants 
visited fewer regions when a scene was changed (Ryan & 
Cohen, 2004), and the present measure of dispersion takes 
the number of regions into account as well as how spatially 
distributed those regions are.

Statistical models

Statistical analyses were conducted using linear mixed 
effects models, which allowed us to harness trial-by-trial 
(i.e., within-subjects) data while controlling for individual 
differences and stimulus effects (for equations, see Appen-
dix). To do this, we used crossed random intercepts of sub-
ject and image for all analyses. This allowed us to control for 
subject-related differences (e.g., some subjects may be more 
likely to perceive changes than others) and image-related 
differences (e.g., some images may be inherently more likely 
to elicit dispersed eye movements). The dependent variable 
in each model was the eye movement measure of interest. 
The fixed factors were response and trial type (i.e., changed 
vs. identical); see the Results section for the specific factors 
used in each analysis. The models were estimated using the 
lmerTest package in R (Kuznetsova et al., 2017). The model 
summaries provided degrees of freedom and t values, which 
are reported in the Results. The degrees of freedom were 
computed using the Satterthwaite approximation, and were 
rounded to the nearest integer in the Results. Effect sizes 
were calculated as classical Cohen’s d, as 2t/√df (Rosenthal 
& Rosnow, 1991).

Results

The behavioral response counts for the changed and identi-
cal scenes (Table 1) were similar to previous reports (Aly 
& Yonelinas, 2012) and showed that subjects were more 
likely to identify changed scenes as “different” and identical 
scenes as “same.”

Table 1  Change detection response counts for each scene type

"Sure same" "Maybe same" "Don’t know" "Maybe different" "Sure different" "Perceive 
different"

Changed scenes 339 476 205 442 389 549
Identical scenes 633 802 269 401 205 90

2126 Psychonomic Bulletin & Review  (2022) 29:2122–2132

1 3



2127Psychonomic Bulletin & Review  (2022) 29:2122–2132

1 3



Resampling of changed regions

To determine whether perceiving, sensing, and unconscious 
change detection were related to different patterns of eye 
movements, we first examined the extent to which subjects 
resampled regions between study and test that were highly 
changed as a result of the global manipulation in changed 
scenes. To do this, we examined whether the combination 
of increased resampling and increased viewing of changed 
regions differentiated between perceiving, confidence-
matched sensing (i.e., “sure different” responses), and “sure 
same” responses. Note that for illustrative purposes we 
dichotomized change magnitude in Fig. 2A, but all continu-
ous variables were treated as continuous in analysis.

Figure 2A illustrates that when participants perceived 
a change, they were more likely to resample more highly 
changed scene regions, suggesting that revisiting a changed 
region between study and test may be important for per-
ceiving-based change detection. In contrast, when subjects 
accurately sensed a change, they were equally likely to resa-
mple high- and low-change regions in the scene. This dif-
ference between sensing and perceiving was reflected in a 
significant interaction between response type (i.e., sensing 
vs. perceiving) and change magnitude in predicting resam-
pling, t(903) = 2.28, p = .023, d = .15 (Eq. A1). This also 
held when controlling for the number of fixations made at 
both study and test (included as two separate variables), p 
= .025. The results were also similar when the probabil-
ity of making a perceive over a high-confidence sensing 
response was predicted from the eye movements using a 
mixed-effects logistic regression model, B = .20, p = .014 
(Eq. A2, Appendix), which confirms that the specific com-
bination of high resampling and high viewing of changed 
regions uniquely predicted perceiving. There were no main 

effects of resampling nor change magnitude on their own, 
ps > .12, indicating that there were no overall differences in 
the amount of resampling nor change magnitude between 
the perceiving and sensing responses.

Figure 2A also shows that when changes were not con-
sciously detected (i.e., “sure same” trials), performance was 
similar to the sensing responses in that subjects were equally 
likely to resample high- and low-change regions. Support-
ing these observations, there was no significant interaction 
between change magnitude and response type (i.e., uncon-
scious vs. sensing) in predicting resampling, p = .80. The 
results held when logistic regression was used with response 
type as the outcome, and there were no main effects of resa-
mpling nor change magnitude, ps > .18. Thus, sensing and 
unconscious change detection were not related to increased 
resampling of changed regions.

As an example of the resampling behavior that was 
observed for perceiving and sensing responses, Fig. 2C 
shows an individual resampling map for a perceiving 
response and a sensing response overlaid on the change 
map of that scene. These examples illustrate that for per-
ceiving trials, resampling occurred more often at regions of 
high change (lighter regions) than at regions of low change, 
whereas for sensing trials, resampling occurred equally at 
regions of high and low change.

To determine how early in the test trial the preferential 
resampling of high-change regions occurred, we computed 
the change magnitude at each fixation location for trials with 
different levels of resampling. Figure 2B shows that for per-
ceiving trials, change magnitude was greater for high than 
for low resampling trials for fixations that occurred between 
approximately 250 and 1,200 ms after stimulus onset, 
whereas no such effect was apparent for sensing responses. 
To identify the onset of the perceiving effect, we examined 
the relationship between resampling and change magnitude 
in 50-ms windows. We found that resampling was correlated 
with change magnitude in perceiving trials beginning in the 
250- to 300-ms time window, r = .27, p < .0001, indicating 
that the tendency for perceiving trials to have preferential 
resampling of high-change regions occurred within the first 
one or two fixations of the test trial (the average fixation 
duration in the current study was 254 ms).

Dispersion

To determine whether perceiving, sensing, and unconscious 
change detection were related to different spatial distribu-
tions of eye movements, we examined the dispersion of eye 
movements during study and test for both changed and iden-
tical scenes. During study, there were no significant differ-
ences in dispersion between perceiving and high-confidence 
sensing trials, high-confidence sensing and “sure same” tri-
als, changed and identical trials, nor an interaction between 

Fig. 2  Resampling of highly changed regions within change trials. 
(A) Trial-level resampling of high- and low-change regions for per-
ceiving, sensing, and “sure same” responses for trials in which there 
was a change. Resampling is computed as a correlation, and change 
magnitude is derived from the change maps computed in MATLAB 
(see Fig.  1). Perceiving was uniquely related to more resampling 
of scene regions with high  change magnitude. Estimated marginal 
means controlling for participant and image are plotted, and the error 
bars represent the standard error of these estimated means from the 
model. The data were dichotomized to facilitate visualization, but 
continuous data were used in statistical analysis. (B) Change magni-
tude of fixated regions over the course of the trial, separated by high 
and low resampling trials and by perceiving and sensing. The lines 
were generated using a locally weighted smoothing function, which 
plots local regressions to aid the eye in seeing trends that may not 
be best captured by a standard linear regression. The shading repre-
sents the standard errors of the mean. (C) Example of a perceiving 
trial and a sensing trial for the same scene. The green patches repre-
sent resampled regions, and the background is the change map for the 
scene. Brighter regions indicate higher change magnitudes for those 
regions. The trials were selected to have resampling scores similar to 
the group averages

◂
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these factors, indicating that dispersion during presentation 
of the first image in the trial did not significantly impact 
performance, ps > .10.

However, during the presentation of the test image, eye 
movements did differ across the different change detection 
conditions. As illustrated in Fig. 3, eye movements were less 
dispersed for changed compared to identical scenes for the 
sensing and unconscious trials, and this effect was particu-
larly apparent for the unconscious trials (i.e., when partici-
pants were sure there had been no change). A comparison 
of perceiving and high-confidence sensing indicates that eye 
movements were generally less dispersed for perceiving than 
sensing responses, t(1144) = -3.64, p < .001, d = -.22, but 
there was no difference in dispersion between changed and 
identical trials overall, nor an interaction between trial type 
(changed vs. identical) and response (perceive vs. sensing; 
Eq. A3, Appendix), ps > .20. This indicates that dispersion 
differences between perceiving and sensing were related to 
confidence but not veridical change detection. In contrast, 
in a model examining dispersion in high-confidence sensing 
trials and unconscious (“sure same”) trials, we found that 
dispersion was significantly lower for the changed than iden-
tical trials, t(269) = -4.59, p < .001, d = -.56. In addition, 
dispersion was higher in unconscious than sensing trials, 
t(1486) = -7.71, p < .0001, d = -.40. Although the difference 
in dispersion between changed and identical trials was larger 
for the unconscious than the sensing trials, the interaction 
between trial type and response type was not significant, p 
= .12 (Eq. A3, Appendix).

To further examine this difference in dispersion between 
changed and identical trials, we examined each of the six 
change detection confidence responses individually (i.e., the 
1, 2, 3, 4, 5, and perceive response conditions). Interestingly, 
it was only for the “sure same” responses (i.e., “1”) that 
dispersion was significantly lower for changed than identi-
cal trials, t(272) = -2.95, p = .004, d = -.36 (other response 
ps > .31). However, when all response types were exam-
ined together (i.e., all of the data was used), dispersion was 
significantly lower for changed than identical trials overall, 
t(316) = -5.59, p < .0001, d = -.63. This suggests that the 
effect of trial type (i.e., changed vs. identical) on dispersion 
was strongest for the scenes that participants were sure had 
not changed – such that they had no conscious awareness 
of a change.

Discussion

In the present study, we examined how eye movements dur-
ing change detection in scenes are related to perceiving, 
sensing, and unconscious detection of changes. We found 
that in changed scenes, when participants revisited the same 
highly changed scene regions before and after the change, 
they were more likely to perceive rather than sense a change. 
This effect emerged as early as 250 ms after the onset of the 
test phase scene, such that it began within the first one or 
two fixations. Moreover, we also found evidence for uncon-
scious change detection in the form of less dispersed viewing 

Fig. 3  Dispersion during the test phase for changed and identical tri-
als. Dispersion is calculated as the number of fixation clusters multi-
plied by the average distance between those clusters. Estimated mar-

ginal means controlling for participant and image are plotted, and the 
error bars represent the standard error of these estimated means from 
the model
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for changed than unchanged scenes, even when participants 
indicated that they were sure there was no change.

The presently identified eye movement correlates of 
change detection processes provide a window through which 
we can begin to understand how these processes relate to 
attention. These results indicate that visiting the same, 
highly changed scene regions before and after the change 
uniquely predicts perceiving-based change detection. This 
effect may in part account for findings that perceiving-based 
responding is increased when changes are made to specific, 
local scene features compared to subtle global distortions 
of scenes (Aly & Yonelinas, 2012), such that local attention 
may be critical for perceiving. The finding that the perceiv-
ing-related increase in resampling of changed regions began 
as early as 250 ms indicates that the effect begins early in 
viewing. In fact, this early, relatively temporally constrained 
effect may be a possible mechanism underlying prior find-
ings that perceiving tends to happen rather abruptly in a 
trial, whereas sensing involves a more gradual increase in 
the strength of global mismatch (Aly & Yonelinas, 2012). 
That is, perhaps change detection confidence remains low 
until a highly changed region is resampled (around 250 ms 
in the present study), at which point the participant suddenly 
perceives a change.

These results further indicate that successful sensing-
based change detection is not as strongly related to precise 
resampling of highly changed regions across the two images. 
This result is consistent with earlier work suggesting that 
sensing is more gist-based, and involves a gradual build-
up of a global scene representation for making judgments 
of global match rather than identifying specific changed 
regions (Aly et al., 2013). It is also consistent with the find-
ing that sensing-based responding is increased when stimu-
lus changes involve subtle distortions rather than specific 
local changes (Aly & Yonelinas, 2012). However, we did 
find that dispersion of viewing decreased as sensing con-
fidence increased for both changed and unchanged scenes, 
which suggests that stronger sensing may relate to less active 
search irrespective of whether a change occurred. Thus, the 
present findings of differences in overt attentional patterns 
suggest that sensing and perceiving may be underpinned by 
distinct underlying attentional mechanisms.

The present study is the first to our knowledge to exam-
ine the possibility of unconscious change detection using 
confidence-based measurements. The fact that participants 
exhibited less dispersed patterns of viewing in changed than 
identical scenes, even when they were highly confident that 
there was no change, is generally in agreement with findings 
of change-related differences in global viewing patterns in 
the absence of awareness (Ryan & Cohen, 2004). Interest-
ingly, when responses were examined separately, the dif-
ference in dispersion between changed and identical trials 
only remained significant when participants were sure there 

was no change; similarly, Ryan et al. (2000) reported that 
preferential viewing occurred primarily when participants 
reported no change. This suggests that unconscious change 
detection may be expressed primarily when conscious 
change detection is absent, in contrast to analogous work 
in long-term memory in which unconscious and conscious 
memory effects on eye movements are present simultane-
ously and appear to function in parallel (Ramey et al., 2019). 
Nonetheless, even for the sensing responses, changed scenes 
were related to numerically less dispersed viewing than 
unchanged scenes, and this difference in dispersion was not 
significantly greater in unconscious than sensing responses. 
Thus, we cannot rule out the possibility that both uncon-
scious and sensing-based veridical change detection may be 
related to dispersion.

The present study extends a recently developed method 
for isolating the different processes underlying recognition 
memory, namely recollection, familiarity, and unconscious 
memory (Ramey et al., 2019; Ramey, Henderson, et al., 
2020a). The fact that the analogous processes underlying 
change detection (i.e., perceiving, sensing, and unconscious 
change detection) were also able to be isolated in this way, 
such that they dissociated along the lines of eye movement 
behavior, highlights the versatility of this trial-level con-
fidence-based scale. Other studies using this method have 
found that memory processes isolated in this way also (1) 
relate to different patterns of eye movements – including 
dispersion and resampling – during search, encoding, and 
retrieval (Ramey et al., 2019; Ramey, Henderson, et al., 
2020a), (2) show differential interactions with schema 
knowledge (Ramey et al., 2022; Ramey, Yonelinas, et al., 
2020b), and (3) predict real-world outcomes such as creative 
ability (Ramey & Zabelina, 2021). Thus, the present findings 
add to a growing body of work showing that this recently 
developed method can be fruitfully applied to isolate dis-
sociable cognitive processes in a variety of settings.

The current results show that change detection processes dif-
ferentially relate to the deployment of attention via eye move-
ments. It should be noted, however, that because the present 
results are correlational, it is not yet established whether eye 
movements causally influence how changes will be detected, or 
whether an early experience of change detection could instead 
influence subsequent eye movements. For example, it could be 
that when participants happen to resample a changed region 
in a pair of scenes, this facilitates successful comparison of 
the two scenes and causes participants to perceive that change 
(i.e., they become consciously aware of the change and can 
report on it). Thus, different eye movements could be causing 
different types of change detection. Alternatively, however, it 
could be that different types of change detection cause different 
types of eye movements. For example, participants may begin 
to perceive a change in their peripheral vision, and that could 
drive their attention to resample that changed region to verify 
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whether it changed. However, given prior findings that fixat-
ing changes causally produces change detection (Henderson & 
Hollingworth, 2003; Hollingworth et al., 2001; Hollingworth 
& Henderson, 2002), it seems likely that the present effects are 
at least in part driven by eye movements leading to perceiving 
and sensing. It is also possible that the effects are bidirectional, 
such that both of the above directions of causality are true; this 
would be consistent with findings of bidirectional resampling 
effects in long-term memory (Foulsham & Kingstone, 2013; 
Holm & Mantyla, 2007). Future work that causally manipulates 
eye movements with respect to perceiving and sensing will be 
critical in addressing this question.

Finally, there are limitations to the generalizability of the 
present results that should be noted. First, our stimuli consisted 
of global changes rather than local changes, so it is not clear 
whether these same patterns of eye movements would relate to 
change detection processes in the same way for local changes. 
Second, it is possible that the perceiving-specific viewing pat-
tern of resampling changed regions was driven by differences 
in overall change detection strength rather than the distinction 
between perceiving and sensing per se. However, this pos-
sibility seems unlikely given that we controlled for strength, 
and given prior work finding both behavioral and neural dis-
sociations between perceiving and sensing that are not sim-
ply driven by strength (Aly et al., 2013; Aly, Ranganath, & 
Yonelinas, 2014a; Aly, Wansard, et al., 2014b; Aly & Yoneli-
nas, 2012). Third, while the present results indicate that overt 
attentional deployment patterns dissociate between perceiving 
and sensing-based change detection, the question remains of 
whether there may also be distinct covert or underlying atten-
tional mechanisms that relate to perceiving and sensing.

Paralleling the growing body of literature showing that eye 
movements can uniquely index different processes underlying 
recognition memory (Holm & Mantyla, 2007; Kafkas & Mont-
aldi, 2011; Ramey et al., 2019; Ramey, Henderson, et al., 2020a; 
Schwedes & Wentura, 2019), the present findings indicate that 
processes underlying perceptual judgments, too, exhibit unique 
relationships with patterns of attentional deployment. Not 
only do these findings open up a variety of avenues for future 
research – which may allow for manipulations that alter the ten-
dency to perceive changes – but they also highlight the utility of 
eye movements for tapping into different cognitive processes.

Appendix

Model equations
The model specifications for the main analyses are reported 

below. Linear mixed-effects models with random intercepts 
of subject and image were used; random effects are italicized. 
Asterisks denote interactions. Main effects were also examined 
and reported individually.

Eq. A1: Resampling highly changed regions (perceiving 
vs. sensing)

Eq. A2: Alternate formulation of resampling highly 
changed regions using a logistic GLME model (perceiving 
vs. sensing)

Eq. A3: Dispersion
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