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Abstract
Two-choice reaction tasks for which stimuli differ on irrelevant and relevant dimensions (e.g., Simon, flanker, and Stroop 
tasks) show congruency effects. The diffusion model for conflict tasks (DMC) has provided a quantitative account of the 
mechanisms underlying decisions in such conflict tasks, but it has not been applied to the congruency sequence effect (CSE) 
for which the congruency on the prior trial influences performance on the current trial. The present study expands analysis 
of the reaction time (RT) distributions reflected by delta plots to the CSE, and then extends the DMC to simulate the results. 
With increasing RT: (1) the spatial Simon effect was almost unchanged following congruent trials but initially became smaller 
and finally reversed following incongruent trials; (2) the arrow-based Simon effects increased following both congruent and 
incongruent trials, but more so for the former than the latter; (3) the flanker congruency effect varied quadratically following 
congruent trials but increased linearly following incongruent trials. These results were modeled by the CSE-DMC, extended 
from the DMC with two additional assumptions: (1) feature integration influences only the controlled processes; (2) follow-
ing incongruent trials, the automatic process is weakened. The results fit better with the CSE-DMC than with two variants 
that separately had only one of the two additional assumptions. These findings indicate that the CSEs for different conflict 
tasks have disparate RT distributions and that these disparities are likely due to the controlled and automatic processes being 
influenced differently for each trial sequence.
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Introduction

Revealing the mechanisms underlying decision-making has 
an enduring interest for researchers in psychology, neuro-
science, and economics (O’Connell et al., 2018; Ratcliff 
& McKoon, 2020; Ratcliff et al., 2016). Decision-making 
research is now endeavoring to extend models of simple 
decisions to more complex and ecological choice situations 
(Ratcliff & McKoon, 2020; Servant et al., 2015, 2016). As 
decision making is usually based on multiple dimensions 
of sensory information, decision-making models for sim-
ple choice situations have been extended to conflict tasks 
(e.g., Evans & Servant, 2020; Hübner et al., 2010; Janczyk 

& Lerche, 2019; Ulrich et al., 2015; White et al., 2011). One 
such model is the diffusion model for conflict tasks (DMC; 
Ulrich et  al., 2015), which has uncovered mechanisms 
underlying decisions in conflict tasks such as the Simon task 
(Simon, 1969), flanker task (Eriksen & Eriksen, 1974), and 
Stroop task (Stroop, 1935/1992). The current study extends 
the DMC to model the congruency sequence effect (CSE) in 
the Simon and flanker tasks to understand the way in which 
the preceding trial influences the decision-making on the 
current trial, which is related to tradeoff between response 
speed and accuracy.

Reaction time (RT) distributions of Simon 
and flanker effects

The typical spatial Simon effect refers to an influence of 
the location occupied by an object on performance when 
people are to respond to the object or its task-relevant attrib-
utes. Simon-like effects also are obtained when people indi-
cate the color of centered location words or single-headed 
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arrows, as their spatial meanings can be processed automati-
cally and influence responses. The various Simon effects are 
manifested as better performance when the task-irrelevant 
spatial attributes (e.g., physical locations, location words, 
or single-headed arrows) and correct response-positions are 
congruent than when they are incongruent, although left and 
right keypresses are arbitrarily mapped to the task-relevant 
non-spatial attribute (e.g., shape or color; Luo & Proctor, 
2017, 2019, 2020a, 2021). The flanker effect refers to an 
influence on responses to a centered target of adjacent flank-
ing distractors. Performance is better when the target and 
flankers signal the same response (congruent condition) than 
when they signal different responses (incongruent condition, 
Bausenhart et al., 2021; Eriksen & Eriksen, 1974; Luo & 
Proctor, 2016).

As reaction times (RTs) are not a normal distribution but 
are positively skewed, using only means to infer cognitive 
processes has some limitations (Ratcliff, 1979). Conse-
quently, the RT distribution of the Simon effects is often 
reported along with the means in recent literature (Proctor 
et al., 2011; Yamaguchi & Proctor, 2012). The initial and 
usual method of RT distribution analysis is delta functions, 
also called delta plots, which present the difference of RT 
(or error rate or accuracy) between the incongruent and con-
gruent conditions on the y-axis and increasing quantile bins 
of the RT on the x-axis (De Jong et al., 1994). The spatial 
Simon effect usually declines and sometimes even reverses 
with the increase in RT, indicating a negative or decreas-
ing delta plot. The analysis of RT distributions also is used 
in studies of other conflict effects – such as the word- and 
arrow-based Simon effects and the flanker effect – which 
often increase in size as RT increases (e.g., Luo & Proctor, 
2017, 2018, 2021; Ulrich et al., 2015).

The most widely accepted explanation of the various 
Simon effects assumes two activation processes that engage 
in a race. According to the race model with a dual-route 
concept, the Simon effects arise from activation within a 
direct route due to overlap of the stimuli and responses 
(the pre-existing associations of stimulus locations, loca-
tion words or directions of arrows with response positions). 
The second route is an indirect one in which the activation 
is from the task-defined mapping of the relevant stimulus 
dimension to responses (the associations of relevant stimulus 
attribute and response position). The decreasing delta plot of 
the spatial Simon effect is due to the activation of the direct 
route occurring rapidly but then quickly dissipating, which 
reduces its influence the longer that responding is delayed 
(De Jong et al., 1994; Hommel, 1994; Luo & Proctor, 2020a; 
Ulrich et al., 2015). In some cases, the spatial Simon effect 
for slow responses even becomes negative, which is assumed 
to be associated with other mechanisms that suppress irrel-
evant response activation to prevent unwanted responses 
(De Jong et al., 1994; Hübner & Töbel, 2019; Ridderinkhof, 

2002). For the word- or arrow-based Simon effect, the acti-
vation of the direct route intensifies gradually over time, 
which increases the activation’s influence, generating the 
word- and arrow-based Simon effects as an increasing func-
tion of RT (Lu & Proctor, 2001; Luo & Proctor, 2017, 2019; 
Ulrich et al., 2015). The dual-route concept also has been 
used to explain the flanker effect and its increasing delta plot 
(Ulrich et al., 2015).

Diffusion model for conflict tasks (DMC)

The standard drift diffusion model for decision-making in 
simple two-choice tasks (Ratcliff, 1979; Ratcliff & Smith, 
2004) assumes that total RT equals the duration of the deci-
sion process plus the duration of residual processes (Ter 
spent for sensory encoding and motor execution). The stim-
uli do not influence the residual process but the decision 
process X(t), for which the change (dX(t)) in accumulated 
evidence for a short interval dt is determined by drift rate 
(μ) and a Gaussian distributed white noise (σdW(t)). This 
process is formulated by the function (1):

for which σdW(t) is a Wiener process with mean 0 and vari-
ance σ2dt. The drift rate (μ) reflects the average speed with 
which the decision process approaches the response bounda-
ries or threshold levels (b and -b). High drift rates result in 
faster and more accurate decisions (Pedersen et al., 2017).

The DMC (Ulrich et al., 2015) instantiated the aforemen-
tioned dual-route concepts and extended the standard drift 
diffusion model (Ratcliff, 1979; Ratcliff & Smith, 2004), 
because the standard diffusion model cannot simulate the 
location-based Simon effect with decreasing delta plot 
(Mackenzie & Dudschig, 2021; Schwarz & Miller, 2012). 
Different from the standard drift diffusion model where 
the decision process X(t) is a single or unitary process, the 
DCM assumes that X(t) is superimposed by Xc(t) and Xa(t), 
separately reflecting a controlled process and an automatic 
process. A correct or incorrect response is made when the 
superimposed process accumulates continuously over time 
toward one positive threshold level b (indicating selection of 
one response) or one negative threshold level -b (indicating 
selection of the other response). The expected mean of Xa(t) 
is given by function (2):

where a, τ and A are shape parameter, characteristic time and 
peak amplitude, respectively. τ determines the time-course 
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of automatic activation. μa(t), the first derivative of E[Xa(t)] 
with respect to t, represents the drift rate for Xa(t).

Let μc denote the drift rate of the controlled process, 
which is assumed to be constant. For the congruent con- 
dition, the overall drift rate is μ(t) = μc + μa(t), whereas for 
the incongruent condition, μ(t) = μc - μa(t). The DMC also 
includes a parameter z, reflecting the starting point of the 
accumulation process that determines whether responses are 
biased toward the nearest threshold.

Different from the aforementioned explanations for the 
shape of the delta function, the DMC posits that the shape 
of the delta function largely depends on how the automatic 
activation unfolds in time. An increasing (decreasing) delta 
plot means that the automatic process peaks later (earlier) 
in time and influences the decision for a longer (shorter) 
period of time. Based on this assumption, the DMC can 
capture conflict effects with increasing or decreasing delta 
plot obtained from various Simon and flanker tasks by just 
changing τ (Evans & Servant, 2020; Luo & Proctor, 2020a; 
Ulrich et al., 2015; White et al., 2018). According to the 
DMC, the reversal of the Simon effect occurring on slow 
responses could be the sign of a slight undershoot of Xa(t) 
when it swings back to zero (Ulrich et al. 2015, p. 165). 
Recent electrophysiological work provided some neural data 
that support the proposed dynamics of the model (Servant 
et al., 2016).

Congruency sequence effect (CSE)

The Simon, flanker, or Stroop effect on the current trial is 
influenced by the preceding trial type (Egner & Hirsch, 
2005; Funes et al., 2010; Gratton et al., 1992). This sequen-
tial-effect pattern is termed the conflict adaptation effect, 
Gratton effect, or congruency sequence effect (CSE). In 
those studies of CSE, a prior congruent or incongruent trial 
followed by the current congruent or incongruent trial form 
four trial sequences (cC, iC, cI, and iI, the lower-case let-
ter indexing the preceding trial and the upper-case letter 
indexing the current trial). Consequently, a main and reli-
able finding is that the congruency effect is larger following 
congruent trials than following incongruent trials (e.g., Lim 
& Cho, 2021; Stürmer et al., 2002; Wühr & Ansorge, 2005).

The CSE was initially explained with a conflict adaptation 
account (Botvinick et al., 2001; Gratton et al., 1992), accord-
ing to which, following an incongruent trial, attention to the 
distractor is decreased, resulting in a reduced congruency 
effect on the current trial. In contrast, following a congru-
ent trial, attention to the distractor is sustained or increased, 
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generating more interference from the irrelevant dimension 
on an incongruent current trial. Allocation of attention is 
assumed to result from an expectancy generated by the con-
gruency on the preceding trial (Gratton et al., 1992) or an 
enhanced level of control induced by the conflict of the pre-
ceding trial (Botvinick et al., 2001; Verguts & Notebaert, 
2008, 2009).

Feature integration also has been used to explain the 
CSE (Hommel et al., 2004; Mayr et al., 2003), based on 
the fact that different trial sequences have distinct feature 
repetitions, which may cause the differences in performance. 
This account is based on the theory of event coding (TEC; 
Hommel, 2004), which assumes that stimulus and response 
features are integrated within the same representational 
system, resulting in a binding of the stimulus and response 
features on a trial in an event file. This binding allows a 
complete match of both stimulus features from the prior trial 
to signal that the same response is to be made on the current 
trial and a complete mismatch to signal that the alternative 
response should be made. In contrast, partial matches of 
one stimulus feature but not the other do not signal whether 
the response should be repeated or changed and may also 
yield stimulus-response binding conflict (Erb et al., 2016; 
Hommel, 2004), slowing responses on those trials. Because 
complete matches/mismatches are possible only on cC and 
iI trial sequences, responses on those trials should be facili-
tated relative to those for the iC and cI trial sequences, both 
of which involve partial matches. Therefore, according to the 
feature-integration account, in a Simon or flanker task, the 
cC and iI trial sequences (complete match/mismatch) gen-
erate better performance than the iC and cI trial sequences 
(partial match), respectively, namely cC < iC and iI < cI on 
mean RT. When the two inequalities are summed (cC + iI < 
iC + cI) and cI and cC are moved left and right, respectively, 
the outcome is iI - iC < cI - cC, showing smaller Simon or 
flanker effects following incongruent trials than following 
congruent trials.

Both the conflict adaptation account and the feature 
integration account are partially supported by existing 
studies (for a review, see Cespón et al., 2020). The CSE 
was obtained in several studies with manipulations aimed 
to minimize integration of stimulus-response features or 
associative learning (Kim & Cho, 2014; Weissman et al., 
2014). The CSE was also obtained, however, in studies with 
manipulations intended to reduce or eliminate conflict adap-
tation (Hommel et al., 2004; Mayr et al., 2003; Schmidt, 
2013, 2019). Therefore, existing results suggest that con-
flict adaptation and feature integration may make separable 
contributions to the CSE (Spapé et al., 2011) and that both 
mechanisms may operate at different levels simultaneously 
(Abrahamse et al., 2016).

The standard diffusion model has also been used to 
explain the CSE. Schuch and Pütz (2021) fit the standard 
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diffusion model with data from parity (odd/even) and magni-
tude (smaller/larger than five) tasks. Results showed that the 
congruency effect on drift rates and on thresholds following 
congruent trials was larger than that following incongru-
ent trials, indicating that differences in thresholds and drift 
rates between congruent and incongruent trials are reduced 
after experiencing response conflict. These findings agree 
with the idea that the experience of conflict can trigger an 
increase in response caution and processing selectivity, 
thereby attenuating the influence of task-irrelevant attributes 
(e.g., Erb et al., 2019; Frank, 2006; Shenhav et al., 2013).

This idea is assumed to be related to two processes under-
lying decision behavior: a threshold-adjustment process 
that increases the threshold when conflicting information 
is detected, and a controlled-selection process that recruits 
top-down resources to support goal-relevant or contextually 
appropriate responses (Frank, 2006; Shenhav et al., 2013). 
One problem for the standard diffusion model is that it can-
not fit the RT distribution of the spatial Simon effect with 
decreasing delta plot (Schwarz & Miller, 2012; Ulrich et al., 
2015), although the effect is influenced by congruency on 
the preceding trials. Moreover, the idea of threshold adjust-
ment is in contrast with the assumptions by some connec-
tionist models and diffusion models for conflict tasks, which 
assume that controlled and automatic processes are involved 
in the response decision and that threshold adjustment is not 
the main factor (e.g., De Pisapia & Braver, 2006; Hübner 
et al., 2010; Kalanthroff et al., 2018; Ulrich et al., 2015).

DMC for congruency sequence effect 
(CSE‑DMC)

Given that the DMC can capture congruency effects with 
increasing or decreasing delta plots obtained from various 
Simon and flanker tasks by changing τ (Luo & Proctor, 
2020a; Mackenzie & Dudschig, 2021; Ulrich et al., 2015), 
the current study examined whether a diffusion model 
extended from the DMC can fit the RT distributions of the 
CSE as reflected by delta plots. A positive conclusion would 
be consistent with Bausenhart et al.’s (2021) suggestion that 
behavioral adaptation in conflict tasks may be modeled by 
the DMC. In Study 1, we explored the RT distribution of the 
CSE using Vincentile analyses, which are reliable for the 
prototypical spatial Simon effect (Luo & Proctor, 2020b). 
Secondly, we extended the DMC to fit the cumulative dis-
tribution of CSE (we refer to this model as the CSE-DMC) 
and then examined whether the CSE-DMC can fit better with 
the data than other variants.

According to the DMC, for the congruent condition, μ(t) 
= μc + μa(t), and for the incongruent condition, μ(t) = μc - 
μa(t). For the CSE, let μcC(t), μcI(t), μiC(t), and μiI(t) denote 
separately the drift rates for trial sequences cC, cI, iC and 

iI, then μcC(t) and μiC(t) will equal μc plus μa(t), and μcI (t), 
and μiI(t) will equal μc minus μa(t), if there are no effects of 
preceding trials on the current trials. Given that the CSE is 
reliable, the DMC might not fit well with the data for the 
CSE and need some extensions. Therefore, besides following 
the assumptions of the DMC that the controlled and auto-
matic processes accumulate differently and independently, 
the CSE-DMC added two other assumptions inspired by 
the conflict adaptation and feature integration accounts and 
the findings with the standard diffusion model. These two 
assumptions were added because, as noted, existing results 
suggest that conflict adaptation and feature integration may 
make separable contributions to the CSE (Spapé et al., 2011) 
and that both mechanisms may operate at different levels 
simultaneously (Abrahamse et  al., 2016; Cespón et  al., 
2020).

First, we assumed that feature integration influences only 
the controlled processes. Although the feature integration 
account does not explicitly distinguish controlled and auto-
matic processes, it is reasonable to attribute that component 
to controlled processes because (1) the integrated event file 
is a short-term memory code (Hommel & Frings, 2020) 
and (2) “same response if complete match and alternative 
response if complete mismatch” is a strategic rule consist-
ent with the instructed goal of responding as fast as possible 
(Hommel, 2022). As complete repetition or switch of trial 
type speeds up the responses for cC and iI trial sequences, 
although in different degrees, we used only one parameter 
μcL for the controlled processes for cC and iI trial sequences. 
Because partial repetition may slow down the responses for 
cI and iC trial sequences due to stimulus-response bind-
ing conflict, we used one parameter μc for iC and cI trial 
sequences. μc is smaller than μcL. This assumption is consist-
ent with the idea that a controlled selection process likely 
recruits top-down resources to support goal-relevant or con-
textually appropriate responses (De Pisapia & Braver, 2006; 
Erb et al., 2016; Hübner et al., 2010; Frank, 2006; Kalan-
throff et al., 2018; Shenhav et al., 2013 Ulrich et al., 2015). 
In connectionist models, a similar mechanism is called pro-
active control (De Pisapia & Braver, 2006; Kalanthroff et al., 
2018).

Second, we assumed that following incongruent trials the 
automatic processes are influenced, resulting in more atten-
tion being paid to the task-relevant attribute (or target) and 
less to the task-irrelevant attribute (or distractor), reducing 
its influence. This assumption is inspired by the conflict-
adaptation account, but it does not consider that this influ-
ence is exerted by way of the controlled process. As Hommel 
et al. (2004) noted, “that the magnitude of the Simon effect 
varies as a function of the correspondence relation of the 
previous trial does not necessarily indicate that the uncon-
ditional, or automatic, route is under voluntary control” (pp. 
2–3). Our assumption is compatible with some connectionist 
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and diffusion models for conflict tasks, which assume that 
automatic activation by irrelevant stimulus information is 
involved in the response decision (e.g., Bausenhart et al., 
2021; De Pisapia & Braver, 2006; Hübner et  al., 2010; 
Kalanthroff et al., 2018; Ulrich et al., 2015). In connectionist 
models, a similar mechanism is called reactive control (De 
Pisapia & Braver, 2006; Kalanthroff et al., 2018).

According to this automatic-process assumption, for 
iC and iI trial sequences, μa(t) for the automatic processes 
becomes smaller, and we used μaS(t) to specify the pro-
cesses, as shown in function (4). As μa(t) is represented by 
function (3), it includes a usually fixed parameter a = 2 and 
two possible changing parameters A and τ, for which we 
used AS and τs to represent the latter two parameters for iC 
and iI trial sequences.

Thus, as shown in Table 1, for cC trials, μcC(t) = μcL + 
μa(t), and for iI trials, μiI(t) = μcL - μaS(t), whereas for cI 
and iC trial conditions, μcI (t) = μc - μa(t) and μiC (t) = μc + 
μaS(t). For the CSE-DMC, except for the drift rates, b and 
the other parameters are identical across trial sequences, so 
the RT and accuracy for each trial sequence are determined 
by their corresponding drift rate. Consequently, the Simon 
effect following congruent trials is determined by the dif-
ference between μcC(t) and μcI (t), whereas the Simon effect 
following incongruent trials is determined by the difference 
between μiC(t) and μiI (t). Because μcC(t) - μcI (t) equals μcL - 
μc + 2μa(t), which is larger than μiC(t) - μiI (t) that equals μc 
- μcL + 2μaS(t), the CSE-DMC model predicts a larger Simon 
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effect following congruent trials than following incongruent 
trials. Moreover, for the CSE-DMC, we can get μcI (t) <  
μiC (t) < μcC(t) and μcI (t) < μiI(t) < μcC(t), but μiI(t) minus 
μiC (t) equals μcL - μc - 2μaS(t), which determines the differ-
ence between μiI(t) and μiC (t). According to function (1), 
when the threshold and other parameters are constant across 
trial sequences, the size of drift rate for each trial sequence 
determines the decisions related to the tradeoff between 
response speed and accuracy, with high drift rates resulting 
in faster and more accurate decisions (Pedersen et al., 2017).

In addition to the CSE-DMC model, we also fit the data 
to an alternative model that only has the aforementioned first 
assumption and another alternative model that only has the 
second assumption. We refer to the alternative models as 
FI-DMC and CA-DMC, respectively. In the FI-DMC, for cC 
trials, μcC(t) = μcL + μa(t), and for iI trials, μiI(t) = μcL - μa(t), 
whereas for cI and iC trial conditions, μcI (t) = μc - μa(t) and 
μiC (t) = μc + μa(t). In the CA-DMC, for cC trials, μcC(t) = 
μc + μa(t), and for iI trials, μiI(t) = μc - μaS(t), whereas for 
cI and iC trial conditions, μcI (t) = μc - μa(t) and μiC (t) = 
μc + μaS(t).

In Studies 2 and 3, we evaluated whether the CSE-DMC 
also can fit the cumulative distributions of the CSE for the 
arrow-based Simon effect and flanker effect with increasing 
delta plots. The purpose of doing so was to examine whether 
the CSE-DMC can be extended to simulate other conflict 
effects with increasing delta plots. To our knowledge, few 
studies have addressed the issue of whether and how the 
preceding trials influence decision-making in the current 
trials with a model-based approach. Addressing this issue 
can further understanding about how complex task contexts 
influence decisions.

Study 1: RT distributions of CSE and model 
comparison for spatial Simon task

We analyzed and modeled the data from Experiment 1A 
in Luo and Proctor (2019), where 20 participants indicated 
the color of a square that was presented 4.8° to the left or 
right of the center of a display screen. Each participant per-
formed two blocks of 128 trials. Luo and Proctor (2019) 
focused on the Simon effect that served as a baseline, but 
they did not investigate the effects of preceding trials on the 
Simon effects obtained on the upcoming trials. RT distribu-
tion analysis showed that the location-based Simon effect 
decreased linearly from bin 1 to bin 5 (39, 31, 24, 18, and 
7 ms, respectively), indicating a negative-going delta plot.

In the current Study 1, we first analyzed the CSE by using 
Vincentile analysis, as in Luo and Proctor (2019), to analyze 
the RT distributions for CSE. Then, based on the RT distri-
butions, we fit them with the CSE-DMC to examine whether 

Table 1  Mean accuracy (%) and reaction time (RT, in ms) with stand-
ard deviations in parentheses and number of trials (NT), for cC, cI, 
iC and iI Trial sequences in Studys 1 to 3. μa(t) and μc for the auto-
matic and the controlled processes, and μcL for the automatic pro-
cesses enhanced by trial repetition, and μaS(t) for controlled processes 
reduced by previous trial

Trial sequence Drift rate (μ) NT Accuracy RT

Study 1 cC μcL + μa(t) 62 99.0(1.4) 443(85)
cI μc - μa(t) 61 95.3(4.9) 487(91)
iC μc + μaS(t) 61 96.2(3.7) 472(85)
iI μcL - μaS(t) 61 96.4(2.6) 477(86)

Study 2 cC μcL + μa(t) 61 98.8(1.7) 404(47)
cI μc - μa(t) 61 95.4(4.6) 442(55)
iC μc + μaS(t) 60 98.8(1.3) 410(49)
iI μcL - μaS(t) 60 97.8(2.4) 424(55)

Study 3 cC μcL + μa(t) 60 94.2(3.8) 441(21)
cI μc - μa(t) 61 93.1(3.8) 468(24)
iC μc + μaS(t) 62 94.2(3.8) 446(22)
iI μcL - μaS(t) 61 92.9(3.7) 465(24)
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it can fit the data well and better than that of the two variants, 
the FI-DMC and CA-DMC models.

Method

We coded the trial sequences: a congruent trial followed 
by another congruent one (cC) and by an incongruent trial 
(cI); an incongruent trial followed by a congruent (iC) trial 
and by an incongruent trial (iI). The first trial in each block 
and the trial following a trial with an error response or non-
response, were excluded in the accuracy analysis. The data 
for accuracy analysis were then analyzed as follows. RTs 
for responses (including error and correct responses) for 
each block were rank ordered from shortest to longest for 
each trial sequence for each participant, and divided into 
five equally sized bins. Then, mean accuracy of each bin per 
trial sequence for each participant across blocks was calcu-
lated, generating the conditional accuracy function (CAF). 
Lastly, a repeated-measures analysis of variance (ANOVA) 
was performed on accuracy, with bin, preceding congruency, 
and current congruency as within-subject variables.

In the RT data analysis, we excluded test trials wherein 
participants responded incorrectly to the target and test trials 
with RTs beyond 3 standard deviations (SDs) of the mean 
for each trial sequence for each participant. The means for 
the remaining RTs for each trial sequence are presented in 
Table 1. Those remaining RTs were rank ordered from short-
est to longest for each trial sequence for each participant; 
percentiles (10, 30, 50, 70, 90%) of correct RTs were esti-
mated for each participant and each trial sequence, gener-
ating the conditional duration function (CDF). The mean 
RTs for each trial sequence and the Simon effects were then 
calculated for each percentile. A repeated-measures ANOVA 
was performed on RT, with percentile, preceding congru-
ency, and current congruency as within-subject variables. 
Considering the way in which the RT data were grouped, 
the percentile main effect on RT was invariably significant, 
so it is not reported and discussed.

The model fitting procedure was similar to the method 
described by Hübner (2014), Servant et al. (2016), and 
Mahani et al. (2019). Each Model was fitted separately to 
the CAFs and the CDFs for each of the four conditions (cC, 
cI, iC, iI). There were five CAF bins (0–20%, 20%–40%, 
40%–60%, 60%–80%, and 80%–100%), and five CDF quan-
tiles (0.10, 0.30, 0.50, 0.70, and 0.90) for each condition. 
Predictions of each model were generated using Monte Carlo 
simulations (Metropolis & Ulam, 1949) with a step size of 
Δt = 1 ms, and a diffusion constant of σ = 4 for the super-
imposed process and a (the shape parameter of the scaled 
gamma function of the automatic process for stimulus loca-
tion) equals 2. The following equation (5) was used to fit 
each model to the data:

where Pij and Qij denote the observed and the predicted propor-
tion of responses, respectively, and Ni is the number of trials 
per condition. The index i indicates the trial sequence, and the 
summation over the j includes both CAFs (five bins) and CDFs 
(five bins). 100,000 trials were simulated for each condition 
and minimization cycle. The G2 criterion was minimized with 
the MATLAB implementation of the Nelder–Mead SIMPLEX 
method (Lagarias et al., 1998). As SIMPLEX is sensitive to the 
initial parameter values, the fitting procedure was repeated with 
20 different sets of initial values, each set being a random draw 
from the uniform distributions defined in Table 2; the lower and 
upper bounds are from prior studies (Evans & Servant, 2020; 
Luo & Proctor, 2020a; White et al., 2018). Model selection for 
the CSE was made by computing a BIC statistic that penalizes 
models according to their number of free parameters f:

Results

Vincentile analysis on accuracy

The numbers of trials for each trial sequence across partici-
pants are shown in Table 1. The main effect of preceding 
congruency was not significant, but that of bin was, and the 
main effect of current congruency yielded probability < .10, 
F(1, 19) = 2.42, p = .136, MSE = .003, ηp

2 = .113; F(4, 76) 
= 7.50, p < .001, MSE = .004, ηp

2 = .283; F(1, 19) = 3.45, p 
= .079, MSE = .009, ηp

2 = .154. The preceding congruency 
× current congruency interaction was significant, F(1, 19) = 
11.80, p = .003, MSE = .003, ηp

2 = .383: The Simon effect 
was larger following congruent trials (3.68%) than following 
incongruent trials (-0.18%).

The two-way interactions between preceding congruency 
and bin, and between current congruency and bin, were sig-
nificant, F(4, 76) = 5.01, p < .001, MSE = .004, ηp

2 = .209; 
F(4, 76) = 10.90, p < .001, MSE = .004, ηp

2 = .364, as was 
the three-way interaction of preceding congruency × current 
congruency × bin, F(4, 76) = 2.98, p = .024, MSE = .003, 
ηp

2 = .136. Trend analysis showed that following a congru-
ent trial, the Simon effect (CI - CC) change from bin 1 to 
bin 5 had linear, quadratic, and cubic components, Fs(1, 19) 
= 12.32, 12.50, and 26,60, ps= .002, and < .001, MSEs = 
.014, .008, and .002, ηp

2 = .393, .397, and .583, respectively, 
indicating a negative-going delta plot (see Fig. 1). Following 
an incongruent trial, the Simon effect (II - IC) changed quad-
ratically from bin 1 to bin 5, F(1, 19) = 8.91, p = .008, MSE 
= .011, ηp

2 = .319, also indicating a negative-going delta 

(5)G2 = 2
∑4

i=1
Ni

∑10

j=1
∣ Pij log

Pij

Qij

∣

(6)BIC = G
2 + f log

∑4

i=1
N
i
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plot (see Fig. 1). These results show that the Simon effects 
on accuracy following congruent trials or incongruent trials 
became smaller across the RT distribution as RT increased.

Vincentile analysis on RT

Mean RT and standard deviation SD per trial sequence 
across participants are shown in Table 1. The main effects 
of preceding congruency, current congruency, and bin were 
significant, F(1, 19) = 5.96, p = .025, MSE = 1,292, ηp

2 = 
.239; F(1, 19) = 24.86, p < .001, MSE = 2,513, ηp

2 = .567; 
F(4, 76) = 154.47, p < .001, MSE = 4,812, ηp

2 = .890. There 
was also an interaction between preceding congruency and 
current congruency, F(1, 19) = 40.22, p < .001, MSE = 980, 
ηp

2 = .679, indicating that the Simon effect was larger fol-
lowing congruent trials (44 ms) than following incongruent 
trials (5 ms).

The two-way interactions of preceding congruency × bin 
and of current congruency × bin were not significant, F(4, 
76) = 1.03, p = .397, MSE = 440, ηp

2 = .051; F(4, 76) = 
2.22, p = .075, MSE = 821, ηp

2 = .104, but the three-way 
interaction of preceding congruency × current congruency 
× bin was, F(4, 76) = 2.85, p = .030, MSE = 269, ηp

2 = 
.130. When the preceding trial was congruent, trend analy-
sis showed that the Simon effect (CI - CC) did not change 
significantly from bin 1 to bin 5 (55, 45, 44, 46, and 39 ms, 
respectively), F < 1 (see Fig. 1). Following an incongruent 
trial, the Simon effect (II - IC) decreased linearly from bin 
1 to bin 5 (26, 15, 4, -5, and -13 ms, respectively), F(1, 19) 
= 10.56, p = .004, MSE = 1,812, ηp

2 = .357, indicating a 

negative-going delta plot (see Fig. 1). These results show 
that the Simon effects following congruent and incongru-
ent trials had different RT distributions, as the former did 
not change significantly as RT increased, whereas the latter 
decreased.

Model fitting and comparison

The fits of the FI-DMC, CA-DMC and CSE-DMC models 
were compared by using the paired-sample permutation test 
across 1,000 simulated G2 and BIC values with 100,000 per-
mutations. The FI-DMC and CA-DMC had larger G2 (68.7 
and 57.5) and BIC (112.7 and 107.0) values compared with 
the CSE-DMC (G2 = 47.6; BIC = 102.6), ps < .001. Results 
for the CSE together with predictions by the FI-DMC and 
CA-DMC and CSE-DMC models are shown in Fig. 1. The 
parameters of the FI-DMC, CA-DMC and CSE-DMC mod-
els are shown in Table 2. These results indicate that the CSE-
DMC could fit the data well and provided a better fit with 
the data than the other models.

Discussion

On mean RT, the Simon effect was larger following con-
gruent trials than following incongruent trials, replicating 
previous findings (Funes et al., 2010; Hommel et al., 2004; 
Kerns, 2006; Stürmer et al., 2002; Wühr & Ansorge, 2005). 
Somewhat different from most prior studies, which primar-
ily focused on the mean RT (but see Ridderinkhof, 2002; 

Table 2  Parameter estimates of the CSE-DMC, FI-DMC, and CA-DMC for the CSE in Studies 1, 2, and 3. LB (lower bound) and UB (upper 
bound) are used to constrain parameter space of the three models

The parameters are b (decision boundary), μc and μcL (drift rate of the controlled process), μR (duration of all non-decisional processes), σR (vari-
ability of the duration of non-decisional processes), A and As (amplitude of the automatic process), τ and τs (the time-course of automatic activa-
tion, and σz (starting point variability of the superimposed accumulation process)
DMC diffusion model for conflict tasks, CSE congruency sequence effect

Parameters

b μc μR σR A τ σz μcL As τs

LB 51 .20 240 26 5 20 5 .20 5 20
UB 70 .80 359 47 25 332 19 .80 25 332

Study 1 CSE-DMC 68 .45 334 47 21 35 18 .49 16 22
FI-DMC 70 .43 326 35 13 46 12 .50
CA-DMC 69 .45 324 35 15 66 11 6 32

Study 2 CSE-DMC 65 .53 303 37 18 331 11 .56 7 296
FI-DMC 63 .54 312 40 14 317 7 .61
CA-DMC 67 .53 299 33 16 331 10 6 320

Study 3 CSE-DMC 68 .52 351 34 10 77 13 .55 7 120
FI-DMC 67 .52 350 28 8 78 8 .54
CA-DMC 70 .53 345 30 10 90 16 10 324
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Töbel et al., 2014, for exceptions), we also analyzed the 
mean accuracy. The results of the accuracy analysis were 
parallel with the results for mean RT.

Notably, the Simon effect on accuracy decreased with the 
increase of RT, invariant of whether the prior trial was con-
gruent or incongruent, showing a negative-going delta plot. 

Fig. 1  Conditional duration functions, delta plots and conditional 
accuracy functions (circles, squares and crosses) for the CSE in Study 
1, together with predictions (solid, dashed and dotted lines) by the 
CSE-DMC, FI-DMC and CA-DMC. The first two rows for the CSE-
DMC, the third and fourth for the FI-DMC, and the fifth and sixth for 

the CA-DMC. The first, third, and fifth rows for congruent and con-
gruent trials following congruent trials, and the others for congruent 
and incongruent trials following incongruent trials. DMC = diffusion 
model for conflict tasks, CSE = congruency sequence effect
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On mean RT, following congruent trials, the Simon effect 
was almost unchanged with the increase of RT, whereas fol-
lowing incongruent trials, the Simon effect became smaller 
with increasing RT, showing a negative-going delta plot. 
These results are similar to those shown in Fig. 2 of Töbel 
et al. (2014), although they did not test separately the changes 
of Simon effect with increasing RT following congruent and 
incongruent trials. The current results, together with those of 
Töbel et al. (2014), showed that the spatial Simon effects on 
mean accuracy, RT, and RT distribution were influenced by 
the congruency of prior trial. Model fitting and comparison 
showed that the CSE-DMC could fit the CSE well, and it pro-
vided a better fit than the other variants.

Study 2: RT distributions of CSE and model 
comparison for arrow‑based Simon task

We analyzed and modeled the data from Experiment 1C 
in Luo and Proctor (2019), where 20 participants indicated 
the color of a left- or right-pointing arrow presented on the 
center of a display screen. Each participant performed two 
blocks of 128 trials. Luo and Proctor (2019) focused on 
the arrow-based Simon effect that served as a baseline, but 
they did not investigate the effects of preceding trials on 
the Simon effects obtained on the current trials. The results 
showed that the arrow-based Simon effect on RT increased 
linearly from bin 1 to bin 5 (6, 14, 26, 40, and 60 ms, respec-
tively), indicating a positive-going delta plot.

In the current study 2, we first used Vincentile analysis, 
as in Luo and Proctor (2019), to analyze the RT distribu-
tions for CSE. Then, based on the RT distributions, we fit 
them with the CSE-DMC to examine whether it can fit the 
data well and whether the fit is better than that of two other 
variants, the FI-DMC and the CA-DMC model. This study 
was to understand whether the CSE-DMC can summarize 
the results from arrow-based Simon task, which differ from 
those of the location-based task, and whether the fit is better 
than that of two other model variants.

Method

The trial sequences were coded as in Study 1: cC, cI, iC, and 
iI, with the letters standing for preceding congruency (c and 
i) and current congruency (C and I). CAFs and CDFs were 
calculated as in Study 1, and the ANOVAs on them and the 
model fitting procedure were identical to those in Study 1.

Results

Vincentile analysis on accuracy

The numbers of trials for each trial sequence across partici-
pants are shown in Table 1. The main effects of preceding 

congruency, current congruency, and bin were significant, 
F(1, 19) = 8.22, p = .010, MSE = .002, ηp

2 = .302; F(1, 
19) = 11.88, p = .003, MSE = .004, ηp

2 = .385; F(4, 76) 
= 2.98, p = .024, MSE = .003, ηp

2 = .135. The preceding 
congruency × current congruency interaction approached 
significance, F(1, 19) = 4.30, p = .052, MSE = .003, ηp

2 = 
.185, with the Simon effect tending to be larger following 
congruent trials (3.45%) than following incongruent trials 
(1.06%).

The two-way interactions between preceding congruency 
and bin, and between current congruency and bin, and the 
three-way interaction between preceding congruency, cur-
rent congruency and bin were not significant, F(4, 76) = 
1.26, p = .295, MSE = .002, ηp

2 = .062; F(4, 76) = 2.01, p 
= .10, MSE = .002, ηp

2 = .096; F < 1.

Vincentile analysis on RT

Mean RT and SD per trial sequence across participants are 
shown in Table 1. The main effects of preceding congruency, 
current congruency, and bin were significant, F(1, 19) = 
6.39, p = .020, MSE = 527, ηp

2 = .252; F(1, 19) = 47.18, 
p < .001, MSE = 1,401, ηp

2 = .713; F(4, 76) = 148.15, p < 
.001, MSE = 3,383, ηp

2 = .886. Preceding congruency inter-
acted with current congruency, F(1, 19) = 19.49, p < .001, 
MSE = 683, ηp

2 = .506, with the Simon effect being larger 
following congruent trials (37 ms) than following incongru-
ent trials (14 ms).

The two-way interactions of preceding congruency × bin 
and of current congruency × bin were significant, F(4, 76) 
= 3.57, p = .010, MSE = 182, ηp

2 = .158; F(4, 76) = 15.53, 
p < .001, MSE = 384, ηp

2 = .450, as well as the three-way 
interaction of preceding congruency × current congruency × 
bin, F(4, 76) = 2.64, p = .040, MSE = 187, ηp

2 = .122. When 
the preceding trial was congruent, trend analysis showed that 
the Simon effect (cI - cC) increased linearly from bin 1 to bin 
5 (12, 21, 36, 52 and 66 ms, respectively), F(1, 19) = 27.67, 
p < .001, MSE = 1,380, ηp

2 = .593 (see Figure 2), indicating 
a positive-going delta plot. Following an incongruent trial, 
the Simon effect (iI - iC) also increased linearly from bin 1 
to bin 5 (-4, 7, 17, 22 and 29 ms, respectively), F(1, 19) = 
13.42, p = .002, MSE = 956, ηp

2 = .414, also indicating a 
positive-going delta plot (see Fig. 2). These results show 
that the Simon effects following congruent and incongruent 
trials had somewhat different RT distributions: the former 
increased more rapidly than the latter as RT increased.

Model fitting and comparison

The fits of the FI-DMC, CA-DMC and CSE-DMC models 
were compared using the paired-sample permutation test 
across 1,000 simulated G2 and BIC values with 100,000 per-
mutations. The FI-DMC and CA-DMC had larger G2 (47.7 
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and 49.2) and BIC (103.8 and 99.1) values compared with 
the CSE-DMC (G2 = 39.9; BIC = 94.4), ps < .001. Results 
for the CSE together with predictions by the FI-DMC and 
CA-DMC and CSE-DMC models are shown in Fig. 2. The 

parameters of the FI-DMC, CA-DMC and CSE-DMC mod-
els are shown in Table 2. These results indicate that the CSE-
DMC could fit the data well and that it provided a better fit 
with the data than the other models.

Fig. 2  Conditional duration functions, delta plots and conditional 
accuracy functions (circles, squares, and crosses) for the CSE in 
Study 2, together with predictions (solid, dashed, and dotted lines) 
by the CSE-DMC, FI-DMC and CA-DMC. The first two rows for 
the CSE-DMC, the third and fourth for the CA-DMC, and the fifth 

and sixth for the FI-DMC. The first, third, and fifth rows for congru-
ent and congruent trials following congruent trials and the others for 
congruent and incongruent trials following incongruent trials. DMC 
=  diffusion model for conflict tasks, CSE =  congruency sequence 
effect
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Discussion

On mean RT and accuracy, the arrow-based Simon effect 
was larger following congruent trials than following incon-
gruent trials, indicating a CSE effect, which replicated previ-
ous findings obtained in other conflicting tasks (Funes et al., 
2010; Hommel et al., 2004; Kerns, 2006; Stürmer et al., 
2002; Yang et al., 2017). The Simon effect on accuracy did 
not vary with the increase of RT, regardless of whether the 
prior trial was congruent or incongruent, suggesting that the 
RT distribution of the Simon effect on accuracy was invari-
ant of the change in RT and not influenced by the preceding 
trials. Following either a congruent or incongruent trial, the 
Simon effects on RT increased linearly with the increase of 
RT. That increase following congruent trials was more rapid 
than that following incongruent trials, implying that the RT 
distribution of the Simon effect on the current trials is influ-
enced by the preceding trial. These results together provide 
evidence that the arrow-based Simon effects on mean RT 
and RT distribution were influenced by the congruency of 
the prior trial. Model fitting and comparison showed that 
the CSE-DMC could fit the CSE well, and the CSE-DMC 
provided a better fit than the CA-DMC and FI-DMC.

Study 3: RT distributions of CSE and model 
comparison for Flanker task

For a third evaluation of the CSE-DMC model, we analyzed 
and modeled the data from Experiment 3 in Luo and Proctor 
(2016), which used a flanker task in which 26 participants 
indicated the direction of an arrow presented on the center 
of a display screen by pressing the C key or M key. Unlike 
the experiment fit for Study 2, the target arrow was flanked 
by two other arrows that were of identical or opposite direc-
tion compared to the middle arrow. The three arrows were 
displayed in the same large object or separately in three iden-
tical small objects. There were two trial blocks, one for verti-
cal displays for which the arrows were up- or down-pointing 
and the other for horizontal displays for which the arrows 
were left- or right-pointing. Each participant performed two 
blocks of 128 trials.

Luo and Proctor’s (2016) Experiment 3 included three 
variables: display orientation (horizontal vs. vertical), object 
condition (same, different) and flanker congruency (congru-
ent vs. incongruent). Results showed a flanker congruency 
effect, but it was not modulated by the other variables and 
the influence of preceding trials on the flanker effect was not 
investigated. Other experiments have found that the flanker 
effect on RT with arrows as target and flankers shows a 
negative-going delta plot (Pratte, 2021; Ridderinkhof et al., 
2005).

In the present study, we first used Vincentile analysis, as 
in Studies 1 and 2, to analyze the RT distributions for CSE. 
Then, based on the RT distributions, we fit them with the 
CSE-DMC to examine whether it can fit the data well and 
whether the fit is better than that of two other variants, the 
FI-DMC and the CA-DMC model. This study thus provides 
evidence as to whether the CSE-DMC can also summarize 
the results from flanker task and provide a better fit than 
those of two other variants.

Method

The trial sequences were coded as in Studies 1 and 2 as cC, 
cI, iC, and iI for congruity or incongruity on prior and cur-
rent trials. CAFs and CDFs were calculated as in Study 1, 
and the ANOVAs on them and the model fitting procedure 
were identical to those in Study 1.

Results

Vincentile analysis on accuracy

The numbers of trials for each trial sequence across partici-
pants are shown in Table 1. The main effect of preceding 
congruency was not significant, F < 1, but that of bin was, 
F(4, 100) = 4.17, p = .004, MSE = .003, ηp

2 = .143. The 
main effect of current congruency approached significance, 
F(1, 25) = 3.68, p = .067, MSE = .005, ηp

2 = .128. The pre-
ceding congruency × current congruency interaction was not 
significant, F < 1, nor were the other interactions, ps > .365.

Vincentile analysis on RT

Mean RT and SD per trial sequence across participants are 
shown in Table 1. The main effect of preceding congruency 
was not significant, F < 1, but those of current congruency 
and bin were significant, F(1, 25) = 27.03, p < .001, MSE 
= 2,622, ηp

2 = .520; F(4, 100) = 192.32, p < .001, MSE = 
2,988, ηp

2 = .885. Preceding congruency interacted with 
current congruency, F(1, 25) = 4.75, p = .039, MSE = 555, 
ηp

2 = .160, with the flanker effect being larger following 
congruent trials (27 ms) than following incongruent trials 
(19 ms).

The two-way interactions of preceding congruency × 
bin and of current congruency × bin were not significant, 
F < 1; F(4, 100) = 1.87, p = .121, MSE = 153, ηp

2 = .121,  
but the three-way interaction of preceding congruency × 
current congruency × bin was significant, F(4, 100) = 3.88, 
p = .006, MSE = 199, ηp

2 = .134. As evident in Fig. 3, 
when the preceding trial was congruent, trend analysis 
showed that the flanker effect (cI - cC) did not increase  
linearly, F < 1, but varied quadratically from bin 1 to  

2044 Psychonomic Bulletin & Review  (2022) 29:2034–2051

1 3



bin 5 (23, 30, 32, 31, and 22 ms, respectively) F(1, 25) = 
5.40, p = .029, MSE = 647, ηp

2 = .178. However, following 
an incongruent trial, the flanker effect (iI - iC) increased 

linearly from bin 1 to bin 5 (13, 19, 15, 16 and 32 ms, 
respectively), F(1, 25) = 4.80, p = .038, MSE = 648, ηp

2 = 
.161, indicating a positive-going delta plot. These results 

Fig. 3  Conditional duration functions, delta plots and conditional 
accuracy functions (circles, squares and crosses) for the CSE in Study 
3, together with predictions (solid, dashed and dotted lines) by the 
CSE-DMC, FI-DMC and CA-DMC. The first two rows for the CSE-
DMC, the third and fourth for the FI-DMC, and the fifth and sixth for 

the CA-DMC. The first, third, and fifth rows for congruent and con-
gruent trials following congruent trials and the others for congruent 
and incongruent trials following incongruent trials. DMC = diffusion 
model for conflict tasks, CSE = congruency sequence effect
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show that the flanker effects following congruent and 
incongruent trials had somewhat different RT distributions: 
the former peaked at the middle bins (2–4), whereas the 
latter was largest at bin 5.

Model fitting and comparison

The fits of the FI-DMC, CA-DMC and CSE-DMC models 
were compared using the paired-sample permutation test 
across 1,000 simulated G2 and BIC values with 100,000 per-
mutations. The FI-DMC and CA-DMC had larger G2 (54.6 
and 51.1) and BIC (99.6 and 100.6) values compared with 
the CSE-DMC (G2 = 40.0; BIC = 95.0), ps < .001. Results 
for the CSE together with predictions by the FI-DMC and 
CA-DMC and CSE-DMC models are shown in Fig. 3. The 
parameters of the FI-DMC, CA-DMC and CSE-DMC mod-
els are shown in Table 2. These results indicate that the CSE-
DMC could fit the data well and that it provided a better fit 
with the data than the other models.

Discussion

On mean RT, the flanker effect was larger following congru-
ent trials than following incongruent trials, indicating a CSE 
effect, replicating previous findings obtained in flanker and 
other conflict tasks (Gratton et al., 1992; Wühr & Ansorge, 
2005). The flanker effect on accuracy did not vary with the 
increase of RT, regardless of whether the prior trial was con-
gruent or incongruent, suggesting that the RT distribution 
of the flanker effect on accuracy was invariant of the change 
in RT and is not influenced by the preceding trials. Fol-
lowing a congruent trial, the flanker effect on RT increased 
quadratically with the increase of RT, similar to previous 
results that delta plot shows an inverted-U shape when tar-
gets and flankers are arrows pointing to the left or right (e.g., 
Pratte, 2021; Ridderinkhof et al., 2005), whereas follow-
ing an incongruent trial, the flanker effect on RT increased 
linearly with increasing RT. These results together showed 
that the flanker effects on mean RT and RT distribution were 
influenced by the congruency of the prior trial. As with the 
spatial and arrow-based Simon effects, model fitting and 
comparison showed that the CSE-DMC could fit the CSE 
well, and the CSE-DMC provided a better fit than the CA-
DMC and FI-DMC.

General discussion

The present study examined the RT distribution of the 
CSE and extended the DMC to model the RT distribution 
reflected by delta plots in the spatial- and arrow-based 

Simon and flanker tasks to understand how the preced-
ing trials influence decision-making on the current trials. 
Results of Study 1 showed that the Simon effect on accu-
racy decreased with increasing RT, invariant of following 
congruent or incongruent trials, showing a negative-going 
delta plot. On mean RT, following congruent trials, the 
Simon effect was almost unchanged with the increasing 
RT, whereas following incongruent trials, the Simon effect 
became smaller and reversed with the increase of RT, 
showing a negative-going delta plot. The outcome sug-
gests that the spatial Simon effects following congruent 
and incongruent trials have different RT distributions, and 
the reduction of Simon effect on RT with the increasing 
RT, which usually occurs in the Simon task without inves-
tigating the effect of preceding trials, mainly arises from 
the Simon effect following incongruent trials.

Study 2 showed that, on accuracy, the arrow-based 
Simon effect following congruent and incongruent trials 
did not vary with the increasing RT, suggesting that the 
RT distribution of the effect on accuracy was uninfluenced 
by the preceding trial type. On RT, following congru-
ent or incongruent trials, the arrow-based Simon effects 
increased linearly with the increasing RT, with the former 
showing a more rapid change than the latter, implying that 
the RT distribution of the Simon effect on the current tri-
als varies with the change of RT and is influenced by the 
preceding trials.

Results of Study 3 showed that the flanker effect on 
accuracy did not vary with the increase of RT, regardless 
of congruency on the prior trial, suggesting the RT dis-
tribution of the flanker effect on accuracy invariant of the 
change in RT and is not influenced by the preceding trials. 
However, following a congruent trial, the flanker effects 
on RT increased quadratically with the increase of RT, 
whereas following an incongruent trial, the flanker effects 
on RT increased linearly with increasing RT. These results 
suggested that the RT distribution of the flanker effect on 
the current trials varies with the change of RT and is influ-
enced by the preceding trials. To our knowledge, few stud-
ies have explored the RT distributions of the spatial and 
arrow-based Simon effects and the flanker effect modu-
lated by preceding trials (CSE) reflected by delta plots, 
and hence few theories and models have been proposed to 
explain how CSEs vary with the increasing RT.

In Studies 1–3, we also found the CSE on mean RT 
with a larger spatial, arrow-based Simon, or flanker effect 
following congruent trials than that following incongruent 
trials; a similar pattern of results also emerged on mean 
accuracy in Studies 1 and 2. The disparities of Simon 
and flanker effects on mean RT following congruent and 
incongruent trials are most often explained with the con-
flict adaptation accounts (Botvinick et al., 2001; Gratton 
et al., 1992; see also Verguts & Notebaert, 2008, 2009), 
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for which there are at least two versions that make some-
what different assumptions. Their identical claims are that 
in conflict tasks, on incongruent trials, attention to the 
task-irrelevant attributes or flankers can be reduced, as it 
can impede responses, resulting in a smaller interference 
with performance on the upcoming trial. In contrast, on 
congruent trials, attention to the task-irrelevant attributes 
or flankers can be sustained or increased, as this can help 
the processing of stimulus, resulting in larger interference 
with performance on the upcoming trial.

The conflict adaptation account can explain the spatial 
and arrow-based Simon and flanker effects on mean RT and 
the former two effects on mean accuracy, but it does not 
seem to offer an explanation of the different RT distributions 
for the conflict effects following congruent and incongru-
ent trials. Specifically, according to this account, the con-
flict effect following congruent trials should increase with 
increasing RT, whereas that following incongruent trials 
should decrease. On congruent trials, attention to the task-
irrelevant attributes can be sustained or increased with the 
increasing RT, as it can help the processing of task-irrelevant 
attributes. When such allocation of attention transfers to the 
upcoming trials, it likely speeds up responses on congruent 
trials and slows responses on incongruent trials, resulting 
in the conflict effect increasing gradually on the upcom-
ing trial. By contrast, on incongruent trials, attention to the 
task-irrelevant attributes should be reduced with increasing 
RT, as it can interfere with the processing of task-relevant 
attributes. When such allocation of attention transfers to 
the next trial, it likely slows down the responses on con-
gruent trials and speeds up the responses on incongruent 
trials, resulting in the conflict effect decreasing gradually 
on that trial. Therefore, the conflict adaptation account can 
explain that the arrow-based Simon effect following congru-
ent trials increased with increasing RT but not that the spa-
tial Simon effect almost did not vary and the flanker effect 
changed quadratically. The conflict adaptation account also 
can explain the decrease of the spatial Simon effect across 
the RT distribution following incongruent trials, or even 
its reversal, but it cannot explain the increase of the arrow-
based Simon and flanker effects with the increase of RT.

The feature-integration account (Hommel et al., 2004; 
Mayr et al., 2003) assumes that stimulus and response fea-
tures are coded and integrated within a common, transient 
“event file.” Consequently, each trial likely leaves behind a 
binding of particular stimulus and response features from 
the preceding trial that can overlap partially or wholly with 
the stimulus and response features on the current trial. 
For cC or iI trial sequences, complete match or mismatch 
occurs as the stimulus location and response position on 
the preceding trial can both repeat or both change on the 
current trial, which speeds up responses. For cI and iC 
trial sequences, partial repetition occurs as the stimulus 

location and response position repeats on the current trial 
but not both, which likely results in a stimulus-response 
binding conflict and slows down the responses (Erb et al., 
2016; Hommel, 2004). This account could explain why 
the spatial and arrow-based Simon effects on mean RT 
and accuracy, and the larger flanker effect on mean RT, are 
larger following congruent trials than following incongru-
ent trials. As the event files are transient, their effect likely 
sustains for a short time (Hommel & Frings, 2020), so 
the feature integration account can explain that the spatial 
Simon effect following incongruent trials becomes smaller 
with increasing RT, but not that the effect reversed for 
those slower responses and that the effect following con-
gruent trials was almost unchanged with increasing RT. 
This account also cannot easily explain that the arrow-
based Simon effects following congruent and incongruent 
trials increased with the increasing RT, and the former 
changed more rapidly, or why the flanker effects on RT 
increased quadratically with the increase of RT following 
congruent trials but linearly following incongruent trials.

Overall, the conflict adaptation and feature integra-
tion accounts have seldom been used to explain the RT 
distributions of CSE, and more assumptions are needed 
to account for these results. Consequently, we extended 
the DMC to explain these results, given that the DMC 
has provided a complete account of the RT distributions 
of Simon effect including the congruent and incongruent 
conditions (Evans & Servant, 2020; Luo & Proctor, 2019; 
Ulrich et al., 2015; White et al., 2018).

The CSE-DMC we proposed inherits the assumptions 
of the DMC that the controlled processes accumulate lin-
early but the automatic processes vary with the increasing 
RT. Another two assumptions were added to the expanded 
model. The first is that feature integration influences only 
the controlled processes. As whole repetition/switch of 
trial type likely speeds up the responses for cC and iI trial 
sequences and partial repetition likely slows down the 
responses for cI and iC trial sequences, the drift rate for 
the controlled processes for cC and iI trial sequences is 
smaller than that for iC and cI trial sequences. The second 
assumption is that following incongruent trials, the auto-
matic processes are influenced, resulting in more attention 
paid to the target and reduction of influence of the distrac-
tor. Accordingly, for iC and iI trial sequences, the drift rate 
for the automatic processes becomes smaller. Therefore, 
the CSE-DMC is developed from the DMC and is inspired 
by the assumptions from the feature-integration account 
and the conflict adaption accounts.

According to the CSE-DMC, except for the drift rates, b 
and the other parameters are identical across trial sequences, 
so the RT and accuracy for each trial sequence are deter-
mined by their corresponding drift rate. Consequently, the 
Simon effect following congruent trials is determined by 
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the difference between μcC(t) and μcI (t), whereas the Simon 
effect following incongruent trials is determined by the dif-
ference between μiC(t) and μiI (t). As μcC(t) minus μcI (t) 
equals μcL - μc + 2μa(t), which is larger than μiC(t) minus μiI 
(t) that equals μc - μcL + 2μaS(t), it results in a larger Simon 
effect following congruent trials than following incongru-
ent trials. Moreover, for the CSE-DMC, μcI (t) < μiC (t) < 
μcC(t) and μcI (t) < μiI(t) < μcC(t), and μiI(t) minus μiC (t) 
equals μcL - μc - 2μaS(t), which determines the difference 
between μiI(t) and μiC (t). According to function (1), with 
the threshold and other parameters being constant across 
trial sequences, the size of drift rate for each trial sequence 
determines the speeds of decision-making related to tradeoff 
between response speed and accuracy, with high drift rates 
resulting in faster and more accurate decisions (Pedersen 
et al., 2017). Consequently, for cI and cC, the slowest and 
fastest decisions are made, respectively, and for iC and iI, the 
speeds of decisions are located at between cI and cC, and the 
differences between iC and iI are determined by task situa-
tions. Model fitting and comparison showed that the CSE-
DMC could fit better with the RT distributions reflected by 
delta plot than the other variants, the FI-DMC and the CA-
DMC models. This outcome provides evidence that preced-
ing trials can influence the decisions on the current trials by 
using different modes to modulate the automatic processing 
and controlled processes.

According to the DMC, the shape of the delta plot is 
determined by automatic processes by changing the param-
eter τ, as the drift rates for the controlled processes are 
identical for congruent and incongruent conditions. For the 
CSE-DMC, as the drift rates for the controlled processes are 
not identical across trial sequences, the shape of delta plot 
is influenced by both automatic and controlled processes. 
For trial sequences cC and cI, their drift rates for automatic 
processes are μa(t) and the drift rates for the controlled pro-
cesses are μcL and μc, respectively. For trial sequence cC, if 
the response on current trial is not influenced by that on pre-
ceding trial, μcC(t) is equal to μc plus μa(t). As μcC(t) is larger 
than μc plus μa(t), it speeds up equivalently the responses for 
trial sequence cC, which likely increases (decreases) tempo-
ral overlap of codes of color and stimulus location (direction 
of arrow), as stimulus location (direction of arrow) is pro-
cessed faster (slower) than color. Such changes of temporal 
overlap likely make the spatial Simon effect not reduced and 
arrow-based Simon effect increases rapidly with increasing 
RT, because temporal overlap manipulations of codes of 
task-relevant and task-irrelevant attributes can influence the 
magnitude and time course of the conflict effect (Hübner & 
Töbel., 2019; Miles & Proctor., 2009; Pratte, 2021).

For trial sequences iC and iI, the drift rates for the 
controlled processes are μc and μcL and the drift rates for 
automatic processes are reduced as μaS(t). This reduction 
likely makes the spatial Simon effect reduce slowly and 

arrow-based Simon effect increase slowly. Likewise, for 
trial sequence iI, if the response on current trial is not influ-
enced by that on preceding trial, μiI(t) is equal to μc minus 
μaS(t). As μiI(t) is larger than μc minus μaS(t), it speeds up 
equivalently the responses for trial sequence iI, which likely 
decreases temporal overlap of codes of target and flanking 
arrows. Such changes of temporal overlap likely make the 
flanker effect occurs lately, resulting in a positive going delta 
plot.

Recently, Schuch and Pütz (2021) used the standard 
diffusion model and task-switching paradigm with parity 
(odd/even) and magnitude (smaller/larger than five) tasks 
to explore the affective modulation of conflict adaptation 
(the difference between the congruency effects following 
congruent and incongruent trial). Results showed that the 
conflict adaptation on drift rates or of thresholds following 
congruent trials was larger than that following incongru-
ent trials, suggesting that response conflict on previous trial 
increases processing speed and response caution. The find-
ings of Schuch and Pütz are compatible with those of Erb 
and colleagues (Erb et al., 2016, 2019; Erb & Marcovitch, 
2018, 2019) with a reach-tracking technique to link the spa-
tial and temporal characteristics of hand movements to the 
dynamics of cognitive control. Across the Stroop (1935), 
Eriksen flanker (Eriksen & Eriksen, 1974), and spatial 
Simon tasks, Erb et al. found significant main effects of 
previous congruency and current congruency on initiation 
times, with the pattern of effects: cC < iC < cI < iI. This 
outcome was consistent with the claim by Erb et al. (2016, 
2019) that initiation times can be used to target the function-
ing of the threshold adjustment process, which indexes how 
long the “brake” is put on behavior. Conversely, a different 
pattern of results was obtained on reach curvatures, besides 
main effects of current congruency and previous congru-
ency, an interaction between them was obtained, with larger 
congruency effect following congruent trials than following 
incongruent trials. Erb et al. (2016, 2019) hence proposed 
that reach curvatures could be used to target the functioning 
of the controlled selection process, by indexing the degree of 
coactivation between competing responses over the course 
of a trial. However, these claims were made by speculations 
based on experimental results, and further research can test 
them directly by fitting the data with the standard diffusion 
model.

The disparities of the CSE-DMC and these findings are 
that the model assumes that trial sequence influences the 
drift rates including automatic and controlled processing 
components but not the threshold. However, Schuch and 
Pütz (2021) used the standard diffusion model and con-
cluded that the drift rate and threshold were influenced by 
trial sequence. Given that the standard diffusion model can-
not simulate the negative-going delta plot for the spatial 
Simon effect (Ulrich et al., 2015), further research needs to 
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test whether both the threshold and drift rate for controlled 
process in the CSE-DMC are influenced by trial sequence 
or whether only the latter is. Further research also needs 
to test another possibility that overall threshold for gating, 
controlled processes, and automatic processes are involved 
in the CSE, as neurocomputational model has suggested that 
the three routes might be involved in the conflict resolution 
of congruency effect (Wiecki & Frank, 2013).

A limitation of the present research is that it relied on 
existing data sets. For the assumption that feature integration 
only influences the controlled processes, we used only one 
parameter μcL for the controlled processes for cC and iI trial 
sequences. As indicated, this is because complete repetition 
or switch of trial type speeds up the responses for cC and 
iI trial sequences, although to different extents. Moreover, 
as our main aim was not to test the feature integration and 
conflict adaptation accounts, we have not evaluated whether 
excluding complete repetition trials from analysis impacts 
the results on mean RTs and accuracies. Because the data-
sets were not collected with that purpose in mind, excluding 
complete repetition trials from analysis in the current study 
does not provide enough cC and iI trial sequences to perform 
RT distribution analyses of CSE and model fitting. However, 
using only one parameter μcL for the controlled processes for 
cC and iI trial sequences includes an implicit assumption 
that there are similar RT distributions for complete repeti-
tion or switch of trial type within cC and iI trial sequences. 
Additional research is needed that is designed specifically 
to examine whether there are similar RT distributions for 
complete repetition and switch of trial type (mismatch tri-
als), and whether excluding complete repetition trials from 
analysis impacts the results on mean RTs, accuracies and 
RT distribution. Doing so can test the feature integration 
account (Hommel, 2004) and help understand how feature 
integration influences the controlled processes.

In Study 1, following incongruent trials, the predicted 
delta function undershot the x-axis, which apparently arises 
from a small numerical error due to use of the Euler method. 
The problem might be solved with high performance com-
puting if the step size converges toward zero. However, it 
should be noted that the present CSE-DMC cannot predict 
the reverse Simon effect occurring at long RTs, because on 
these trials the effect of automatic processes cannot become 
a facilitatory effect on the response. Therefore, to explain 
the reverse Simon effect occurring at long RTs, if it is not a 
numerical error, an executive control process is required to 
include in the dual-process concept model, which selectively 
suppresses the automatically activated processes (De Jong 
et al., 1994; Hübner & Töbel, 2019; Ridderinkhof, 2002). 
Future research needs to examine the conditions for which 
the CSE-DMC predicts an advantage for incongruent trials 
at long RTs, and whether inclusion of a specific inhibitory 
process is necessary to explain such results.

In conclusion, the spatial and arrow-based Simon, and 
flanker effects following congruent and incongruent trials 
are different on mean RT and on the level of RT distributions 
reflected by delta plots. These disparities of mean RTs and 
RT distributions for these trial sequences could be a conse-
quence of the automatic and controlled processes of conflict 
stimulus activation on the current trial being influenced dif-
ferently by the prior trial. We provided evidence for this 
supposition by showing that the hypothesized computational 
mechanisms underlying these processes can be instantiated 
within the CSE-DMC.
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