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Abstract
Bayesian inference requires the specification of prior distributions that quantify the pre-data uncertainty about parameter
values. One way to specify prior distributions is through prior elicitation, an interview method guiding field experts through
the process of expressing their knowledge in the form of a probability distribution. However, prior distributions elicited from
experts can be subject to idiosyncrasies of experts and elicitation procedures, raising the spectre of subjectivity and prejudice.
Here, we investigate the effect of interpersonal variation in elicited prior distributions on the Bayes factor hypothesis test.
We elicited prior distributions from six academic experts with a background in different fields of psychology and applied
the elicited prior distributions as well as commonly used default priors in a re-analysis of 1710 studies in psychology. The
degree to which the Bayes factors vary as a function of the different prior distributions is quantified by three measures of
concordance of evidence: We assess whether the prior distributions change the Bayes factor direction, whether they cause
a switch in the category of evidence strength, and how much influence they have on the value of the Bayes factor. Our
results show that although the Bayes factor is sensitive to changes in the prior distribution, these changes do not necessarily
affect the qualitative conclusions of a hypothesis test. We hope that these results help researchers gauge the influence of
interpersonal variation in elicited prior distributions in future psychological studies. Additionally, our sensitivity analyses
can be used as a template for Bayesian robustness analyses that involve prior elicitation from multiple experts.
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The past two decades have seen a rise in the popularity
of Bayesian methods for data analysis (Andrews &
Baguley, 2013). Pragmatic benefits of a Bayesian analysis
include the ability to quantify evidence for both the
null and the alternative hypothesis, and the ability to
monitor the evidence continually as data accumulate (e.g.,
Wagenmakers et al., 2016, 2018). Bayesian methods also
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allow researchers to analyze data irrespective of the
intention with which these were collected, and yield
results that have an intuitive interpretation (Smith, 1965;
Gigerenzer, 2004; Ly et al., 2020). By reducing or
eliminating the computational and mathematical barriers,
software programs such as JASP (JASP Team, 2020) and
Stan (Carpenter et al., 2017; Gelman et al., 2014) have
further supported the broad adoption of Bayesian methods.

A core component of the Bayesian statistical framework
are prior distributions, that is, probability distributions
placed on parameters in Bayesian models. The shape
of a prior distribution represents the knowledge about
a parameter before data collection. Specifically, peaked
distributions that concentrate most mass on a small range
of parameter values indicate a high amount of prior
certainty, whereas wide distributions that spread their mass
across a large range of parameter values indicate a low
amount of prior certainty (Dienes, 2008). Information to be
incorporated in the prior distribution can be obtained from
practical or theoretical considerations, can be derived from
earlier studies (e.g., in the case of replication studies), or
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can be elicited from domain experts (Dienes, 2019; Ly et al.,
2019; O’Hagan et al., 2006). It has been shown repeatedly
that the results of Bayesian analyses, and especially
Bayes factor hypothesis testing, can be sensitive to the
specification of the prior distribution. Researchers should
therefore dedicate special attention to the specification of
prior distributions in the model development process (e.g.,
Berger, 1990; Sinharay & Stern, 2002).

A frequently voiced concern is that the shape of
informed prior distributions is to some extent arbitrary
because it relies on the subjective opinions of single
researchers or field experts, poorly justified decisions in
the prior elicitation procedure, or on the idiosyncrasies
of previous studies (Depaoli & van de Schoot, 2017;
Stefan et al., 2020). Practitioners who do not wish to
jeopardize the objectivity of their statistical analyses are
therefore often reluctant to incorporate a high level of
prior information into the prior distribution. Instead, they
may prefer default prior distributions that satisfy certain
mathematical desiderata and display a high amount of
uncertainty about parameter values (Jaynes, 1968; Kass &
Raftery, 1995; Lee & Vanpaemel, 2017; Consonni et al.,
2018; Bayarri et al., 2012a). However, as they are not
designed for any particular application domain, default
prior distributions ignore relevant theoretical, practical,
and empirical information. For example, default prior
distributions do not incorporate theoretically motivated
constraints on parameter values (Vanpaemel & Lee, 2012),
knowledge about common empirical parameter values from
earlier studies (Matzke & Wagenmakers, 2009; Tran et al.,
2020), or knowledge about practical constraints arising from
a specific study design (Dienes, 2019). Therefore, they
run the risk of leading to unrealistic model predictions,
and may decrease the diagnosticity of Bayesian model
comparisons (Lee & Vanpaemel, 2017; Stefan et al.,
2019). Thus, despite being potentially more susceptible
to interpersonal variation, informed prior distributions
have important theoretical advantages over default prior
distributions.

One method to specify informed prior distributions is
through prior elicitation from experts (O’Hagan et al.,
2006; Dias et al., 2018; Mikkola et al., 2021). Prior
elicitation can be described as an interview procedure
where a researcher guides one or more field experts
through the process of expressing their domain knowledge
in a probabilistic form (Winkler, 1967; Garthwaite et al.,
2005). The participating field experts can be researchers
themselves or practitioners who possess relevant empirical
insights, such as psychotherapists, doctors, or teachers
(Thall & Cook, 2004; Bolsinova et al., 2017; Mossman
et al., 2015; Gronau et al., 2020). Within the past
50 years, a multitude of prior elicitation methods have
been proposed that range from highly model-specific to

broadly applicable standard methods (for overviews, sees
Garthwaite et al., 2005; Johnson et al., 2010; Grigore
et al., 2013). A key objective of prior elicitation methods
is to minimize the cognitive biases that can emerge
in probability assessments (O’Hagan, 2019; Kahneman,
2011). Therefore, several popular elicitation methods apply
an indirect approach where experts are not asked to provide
probability statements directly, but are instead asked to bet
on parameter values (Johnson et al., 2010) or to assess the
plausibility of future data (Winkler, 1967; Kadane, 1980).

Prior distributions obtained from an elicitation effort are
particularly open to concerns of subjectivity. The results
of a prior elicitation procedure crucially depend on the
participating experts and their views of the research problem
at hand. Therefore, a common recommendation is to elicit
priors from multiple experts with different backgrounds to
explore the interpersonal variability of elicitation results
(Aspinall, 2010; Grigore et al., 2013; Chaloner, 1996).
However, this advice is rarely heeded in practice. Often
enough, priors in psychological research are elicited from
single experts (e.g., Gronau et al., 2020) or directly
combined into a single aggregated prior distribution that
incorporates information from all experts (e.g., Bolsinova
et al., 2017; Mossman et al., 2015). The variability of
elicited prior distributions and its effect on the results
of Bayesian inference are rarely studied explicitly (but
see, e.g., Veen et al., 2018). We argue that this makes it
difficult for substantive researchers to gauge the effect of the
interpersonal variability of elicitation results on Bayesian
inference, which in turn may increase the discomfort that
researchers feel concerning the use of prior elicitation
methods in their own research.

In this article, we demonstrate the effects of interpersonal
variability in prior distributions using elicited priors from
six experts with a background in different fields of
psychology. Specifically, we investigate how the differences
between the elicited prior distributions affect Bayes factor
null hypothesis testing. We focus on Bayes factors because,
unlike for posterior distributions (Wrinch & Jeffreys, 1921),
the influence of the prior on the Bayes factor does not
become negligible with large amounts of data. To analyze
the influence of the prior distributions, we calculate Bayes
factors for 855 t-tests and 855 correlation tests extracted
from psychological literature (Wetzels et al., 2011; Bosco
et al., 2015), and provide measures for the sensitivity of
the Bayes factor to the choice of the prior distributions for
these tests. We believe that making the variability of results
explicit for a large number of independent psychological
data sets will help researchers gauge the influence of expert
selection in future psychological studies. Additionally, our
sensitivity analyses can be used as a template for prior
sensitivity analyses in the future, where prior distributions
are elicited from several experts.
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Our article is structured as follows. First, we describe
the method we used to elicit the prior distributions. Then,
we present the prior distributions that resulted from our
elicitation effort, and discuss their interpersonal differences.
Next, we reanalyze correlation tests and t-tests obtained
from two large meta-analytical databases spanning multiple
psychological disciplines (Wetzels et al., 2011; Bosco et al.,
2015). In the Bayes factor hypothesis tests, we use the
different elicited prior distributions as well as default priors
that are common standards for the respective hypothesis
tests. Our sensitivity analysis focuses on three questions:
(1) “How often do the priors change the direction of the
Bayes factor?”, targeting the issue that different priors can
lead to support for different hypotheses, (2) “How often
do the priors change the evidence category?”, targeting
the issue that different priors can lead to support that
falls into different categories of evidence strength, and
(3) “How much do the priors change the value of the
Bayes factor?”, targeting the issue that different priors
lead to quantitative differences between Bayes factors.
We believe these three questions cover the central aspects
that determine the conclusions that researchers draw about
hypotheses based on a Bayes factor hypothesis test, which
makes these questions an important target for sensitivity
analyses.

Elicitationmethod

Six post-doctoral researchers and professors from the
University of Amsterdam participated in the study: Two
social psychologists, two cognitive neuroscientists, and
two developmental psychologists. The participants were
contacted a few days before the interview and agreed to
participate in the study on the basis of a brief description
of the procedure. They did not receive any monetary
compensation for their participation.

The elicitation setup emulated a typical situation in
psychological research where a directional alternative
hypothesis is tested and small-to-medium sized effect sizes
can be expected. The elicitation procedure took place in the
form of a semi-structured face-to-face interview.

At the beginning of the interview, participants were
informed that the goal of the elicitation task was to assess
their expectations for small-to-medium effect sizes in their
respective field of study. This deviates from a standard prior
elicitation procedure insofar as that typically, experts would
be queried about their expectations for specific effects in
their field of study (e.g., the Facial Feedback effect in
social psychology, see Gronau et al. 2020), and potentially
even about a specific experimental design (Dienes, 2019).
Here, we decided for a more general elicitation target as
this allowed us to uncouple our elicitation procedure from

an idiosyncratic research context and establish a minimum
level of consent between experts (i.e., experts agree on
the existence and direction of the effect, and would use
the same label to describe its size). A minimum level of
consent between experts can be regarded as desirable, as it is
unclear whether experts are capable of formulating unbiased
predictions for a theoretical scenario that disagrees with
their convictions (Stefan et al., 2020).

Subsequently, Cohen’s δ and the Pearson correlation
coefficient ρ (Cohen, 1988, 1992) were introduced as
examples for effect size measures in the context of the
comparison of means and correlation tests, respectively.
Participants were further informed that the purpose of the
elicitation procedure was to assess their expectations for the
case that a one-sided alternative hypothesis is true, that is, a
scenario where the effect size is larger than zero. They were
told that they would be able to change their assessments at
any time during the course of the interview.

The prior elicitation followed the Histogram Method,
where experts communicate their subjective prior distri-
bution by using the bars of a histogram (van Noortwijk
et al., 1992). The Histogram Method is one of the most
frequently used elicitation approaches and is claimed to be
accessible to experts regardless of their level of statistical
knowledge (Grigore et al., 2013; Bolger, 2018). We used the
MATCH software (Morris et al., 2014) in combination with
a custom-made Shiny app to support the elicitation proce-
dure. A screenshot of the MATCH tool and of the Shiny app
can be found in Figs. 1 and 2, respectively. At the begin-
ning of the Histogram Method, the participants were asked
two questions: (1) “Imagine how general small-to-medium
effect sizes in your field would look like. Which effect size
would you expect as the most probable one to be found?”,
(2) “Which range of values would you consider possible?”.
Subsequently, the expert was asked to place virtual chips
on the MATCH elicitation grid in a way that reflects their
assessment of the plausibility of the values in the grid. The
more plausible an expert regards a certain range of values,
the more chips they place on that range. The grid consisted
of ten bins of effect size values ranging from 0 to 1, and a
maximum of ten chips could be placed in each bin. Partici-
pants were given as much time as they needed to place the
chips, and could at any time turn to the interviewer in case
of questions.

After participants had placed their chips, the fitting
procedure in the MATCH tool was used to fit a probability
distribution to the results of the elicitation. Following
this step, the fitted parameters of the distribution were
transferred to a Shiny app (see Fig. 2) where participants
were able to adjust the parameters of the distribution,
if they felt that the fitted distribution did not perfectly
represent their prior beliefs. At participants’ request, a brief
explanation of the meaning of each parameter was provided
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Fig. 1 Example for eliciting a prior distribution using the Roulette method in the MATCH tool (Morris et al., 2014)

(e.g., that the standard deviation specifies the spread of the
distribution).

The process was repeated separately for Cohen’s δ

and the Pearson correlation coefficient. For the correlation
coefficient, the elicited prior distribution took the form of
a beta-distribution with parameters α and β. For Cohen’s δ,

participants were asked to adjust a fitted normal distribution
as well as a fitted scaled and shifted t-distribution because
we expected them to be more familiar with the parameters of
the normal distribution, but wanted to provide them with the
added flexibility of the flatter tails of a t-distribution. Since
the elicited normal and t-priors differed only marginally, we

Fig. 2 Example for adjusting an elicited distribution using the custom-made Shiny app
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will only report our results for the t-priors in the following.
Results for the elicited normal priors can be found in the
Online Appendix (https://osf.io/vqszj/).

Elicited prior distributions

The elicited prior distributions are shown in Fig. 3 and 4,
respectively, and the parameters of the elicited distributions
can be found in Table 1.

For the Pearson correlation coefficient, all experts placed
most prior distribution mass on values smaller than ρ =
0.5. Expert 1 differs markedly from the other experts by
assigning a high probability to correlation coefficients close
to zero. Expert 6 made the most optimistic claims about
the correlation coefficient by placing the peak of their
distribution on values around a correlation coefficient of
ρ = 0.4. The elicited priors of all other experts are relatively
similar with peaks around values between 0.2 and 0.3.
Compared to the other experts, Expert 5 has a somewhat
wider prior distribution that signifies more uncertainty about
the size of a small-to-medium effect size in their field.
Note that the assessments of Experts 2–5 are roughly
in agreement with Cohen’s (1988, pp. 79f.) classification
scheme, according to which Pearson correlation coefficients
between ρ = 0.1 and ρ = 0.3 reflect small-to-medium-
sized effects.

For Cohen’s δ, experts differed to a similar degree
in their elicited prior distributions. The peaks of the
prior distributions ranged from δ = 0.1 (Expert 1)
to δ = 0.6 (Expert 3). Consistent with the elicited
priors for the correlation coefficient, Expert 1 expected
substantially lower effect sizes than the other experts.
Expert 6 showed the least uncertainty about the parameter
(i.e., the most peaked prior distribution), with 95% of the
distribution between δ = 0.14 and δ = 0.48. There was,
again, considerable consistency between the elicited prior
distributions of Experts 2–5. For Cohen’s δ, several experts’
prior distributions did not match Cohen’s classification of
a small-to-medium effect size. Cohen classified δ = 0.2
as a small, and δ = 0.5 as a medium effect size (Cohen,
1988, pp. 25f.), whereas several experts placed considerable
weight on effect sizes larger than δ = 0.5. For example,
Experts 2, 3, and 4 all placed more than 70% of their prior
distribution on values larger than δ = 0.5. Therefore, most
experts considered small-to-medium effects to be larger
than their normative definition.

As can be expected, all elicited prior distributions differ
substantially from the default prior distributions commonly
used for Bayesian t-tests and correlation tests (see Fig. 5).
The elicited prior distributions reflect less uncertainty about
parameter values and—apart from Expert 1—none of the
experts assigned considerable prior mass to parameter

values close to zero. Therefore, with the possible exception
of Expert 1, the elicited prior distributions can be said to
be more similar to one another than to the default prior
distribution.

Reanalyzing hypothesis tests from the
psychological literature

In the following sections, we will reanalyze hypothesis
tests extracted from the psychological literature using
the elicited prior distributions. The goal is to showcase
the extent to which the differences between elicited
prior distributions can influence the results of Bayesian
hypothesis testing. We will apply the elicited beta-
distribution priors and t-distribution priors to correlation
tests and t-tests, respectively. We will compare the results
among the elicited prior distributions as well as with the
results of hypothesis tests using default prior distributions.
The code to reproduce the results can be found in the online
supplementary materials (https://osf.io/vqszj/).

The Bayesian hypothesis testing procedure

In our comparisons, we will focus on Bayes factors as
the central outcome of the Bayesian hypothesis test. The
Bayes factor is a measure of relative evidence provided
by the data for one model over another (Kass & Raftery,
1995). For example, a Bayes factor of BF10 = 6 means
that the data are six times more likely under the alternative
hypothesis (H1) than under the null hypothesis (H0). Bayes
factors larger than 1 can be interpreted as evidence in favor
of the alternative hypothesis, while Bayes factors smaller
than 1 can be interpreted as evidence in favor of the null.
Mathematically, the Bayes factor is defined as a ratio of two
prior-weighted averaged likelihoods,

BF10 = p(D | H1)

p(D | H0)
=

∫
p(D | θ1,H1) p(θ1 | H1)dθ1∫
p(D | θ0,H0) p(θ0 | H0)dθ0

,

(1)

where p(θ1 | H1) and p(θ0 | H0) are the prior distributions
under the alternative and null model, and p(D | θ1,H1)

and p(D | θ0,H0) are the likelihood functions under the
alternative and null model, respectively. In Bayesian null
hypothesis testing, under H0, the parameter of interest (e.g.,
effect size) is typically assigned a point prior that puts all
mass on a null value (ρ = 0 and δ = 0 in our case);
for the nuisance parameters (e.g., the variance) wide default
prior distributions are specified (Ly et al., 2016).1 The null

1But note that the Bayes factor allows you to compare any models
you can specify (Etz et al., 2018; Evans & Servant, 2020). If there
is no analytic solution for solving the integrals, Bayes factors can
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Fig. 3 Elicited prior distributions for the Pearson correlation coefficient ρ for all six experts. The colors of the experts’ distributions match the
colors used in later figures

hypothesis therefore represents the idealized position of a
sceptic.

In contrast, under H1, the parameter of interest is
assumed to be different from zero, and the uncertainty
about its true value is reflected in a prior distribution.
These prior distributions can either be elicited, as presented
above, or they can be specified as defaults designed to
meet particular desiderata (e.g., Bayarri et al. 2012b). As
a default prior distribution for the correlation test, we
use a uniform distribution on the correlation coefficient
ρ, as recommended by Jeffreys (1961, pp. 174–179 and
289–292, see also Ly et al. 2018). For the t-test, our

be approximated using numerical methods (e.g., Gronau et al., 2017;
Evans & Annis, 2019).

default distribution is a central Cauchy distribution with
a scale parameter of

√
2/2 on effect size Cohen’s δ, as

recommended by Morey and Rouder (2018). Both default
prior settings are also implemented in JASP (JASP Team,
2020). Figure 5 displays the default prior distributions.
For consistency with our elicitation procedure, the default
prior on δ is positive-only, that is, we assume that the
hypothesized direction for the effect is known.

Meta-analytic databases

We reanalyze hypothesis tests from two large psychological
databases. For the t-test, we compute Bayes factors for the
meta-analytic database assembled by Wetzels et al. (2011).
The database contains a total of 855 t-tests reported in
252 articles from the 2007 issues of Psychonomic Bulletin
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Fig. 4 Elicited t-distribution priors for Cohen’s δ for all six experts. The colors of the experts’ distributions match the colors used in later figures

& Review and the Journal of Experimental Psychology:
Learning, Memory, and Cognition. The t-tests include 85

one-sample t-tests, 604 paired samples t-tests, and 166
independent samples t-tests, with sample sizes ranging from

Table 1 Elicited parameters of the beta and t-distribution priors

Elicitated priors

Beta prior t-prior

Expert Field α β μ σ ν

1 Social Psychology 0.62 22.44 0.10 0.12 3

2 Social Psychology 5.32 18.58 0.55 0.08 3

3 Cognitive Neuroscience 5.35 15.69 0.60 0.11 13

4 Cognitive Neuroscience 10.70 22.98 0.59 0.11 3

5 Developmental Psychology 3.83 8.76 0.41 0.12 13

6 Developmental Psychology 8.65 12.39 0.31 0.08 9

The Greek letters stand for each parameter: α and β for the alpha and beta parameters of the beta-distribution; μ for the mean, σ for the scale
parameter, and ν for the degrees of freedom of the t-distribution
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(mass greater than δ = 1 not shown here)

2 to 212 (per group), and a median sample size of 24. The
sample effect sizes for δ range from d = −4.23 to d = 6.44,
with a median of d = 0.57. The distribution of effect sizes
in the Wetzels et al. database can be seen in the right panel
of Fig. 6.

For the correlation tests, we reanalyze data from a
database assembled by Bosco et al. (2015). The latest
version of the database (version 2.08, see http://www.
frankbosco.com/data/CorrelationalEffectSizeBenchmarks.
html) contains a total of 172,492 correlation coefficients
extracted from journal articles in Personnel Psychology and
the Journal of Applied Psychology between the years 1980
and 2010. For practical reasons, we use a random subset of

855 correlation coefficients from this database. These coef-
ficients were extracted based on the following rules: First,
we removed all perfect correlations (r ∈ {−1, 1}) since
these do not typically represent psychologically meaningful
relationships. Then, we removed all correlation coefficients
for which the database indicated unequal sample sizes or
non-integer sample sizes for the two measured variables.
In a third step, we removed correlations based on sample
sizes smaller than ten and larger than 500 for computational
purposes. From the remaining data, we sampled 855 cor-
relation coefficients, matching the number of coefficients
reported in the Wetzels et al. (2011) database. Correlation
coefficients were sampled from different studies to ensure
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Fig. 6 Distribution of effect sizes and sample sizes in the two meta-analytic databases used in this paper (Bosco et al., 2015; Wetzels et al., 2011)
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independence between the correlation coefficients. The
final set of correlation coefficients ranges from r = −0.94
to r = 0.96, with a median correlation of r = 0.15. The
distribution of correlation coefficients in the Bosco et al.
database can be seen in the left panel of Fig. 6.

Question 1: How often do the priors change the
direction of the Bayes factor?

For many researchers, a key outcome of a Bayesian
hypothesis test is the direction of the Bayes factor: Do the
data support the null hypothesis or do they support the
alternative hypothesis? Even though the mere direction of
the Bayes factor should be interpreted with care, especially
if the evidence is only weak, the direction of the Bayes
factor is generally of great importance when interpreting
the results of an experiment (Jeffreys, 1938, pp. 377–
378). Therefore, our first sensitivity analysis concerns the
direction of the Bayes factor. If the direction of the Bayes
factor remains the same, regardless of the prior distribution
used, the main conclusion of the hypothesis test is robust
against the choice of the prior.

Figure 7 shows how often the Bayes factors computed
for the different elicited prior distributions point in the same
direction. We defined the agreement rate as the proportion
of tests where both Bayes factors are either larger or smaller
than BF10 = 1. Generally, there is a high agreement
between the Bayes factors for our elicited priors. For most
combinations of prior distributions, the Bayes factor points
towards the same hypothesis in over 90% of the conducted
tests. The largest influence of the prior distribution can

be observed for the prior distribution of Expert 1. Here,
agreement with the other Bayes factors goes down to a
minimum of 77.5% for the Bosco et al. (2015) data and
87.7% for the Wetzels et al. (2011) data. As is evident from
Figs. 3 and 5, the elicited prior distributions for Expert 1
differ substantially from those of the other experts, primarily
because Expert 1 assigned a relatively large proportion of
prior mass to values near zero.

Notably, for our sample of expert-elicited prior distribu-
tions, most of the time, Bayes factors using the default prior
distribution pointed to the same direction as Bayes factors
based on our elicited priors. Even Expert 1 reached agree-
ment rates of 79.4% or higher with the default prior. This
indicates that for psychological data, elicited prior distribu-
tions need to differ substantially from the default prior to
change the direction of the result of the hypothesis test.

Question 2: How often do the priors change the
evidence category?

An important goal of a Bayesian hypothesis test is to
measure the strength of evidence in favor of the null
hypothesis versus the alternative hypothesis. The Bayes
factor allows for a continuous quantification of the strength
of evidence in favor of either hypothesis. However, in
interpreting the Bayes factor, researchers often rely on
rough heuristic classifications of evidence strength. For
example, according to Jeffreys’ (1961) classification, Bayes
factors between 1 and 3 can be categorized as anecdotal
evidence, Bayes factors between 3 and 10 indicate moderate
evidence, and Bayes factors above 10 are labeled as strong
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Fig. 7 Agreement rates of Bayes factors with regard to the direction of evidence for all combinations of prior distributions. Agreement criterion:
Both Bayes factors are either larger than 1 or smaller than 1
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evidence. Even though all evidence classification systems
are arbitrary to a certain extent, “jumping” across the
thresholds in a particular classification system is often
perceived as a qualitative change in the amount of evidence
(Tendeiro & Kiers, 2019). In fact, Robinson (2019) pointed
out that it is a strength of Bayesian hypothesis tests that their
results can fall into either of three categories: Evidence for
the null hypothesis, evidence for the alternative hypothesis,
or inconclusive evidence. What degree of evidence can
be interpreted as convincing evidence depends on the
research field (Schönbrodt & Wagenmakers, 2018). For
example, a Bayes factor larger than 10 or smaller than 1/10

could be interpreted as convincing evidence in favor of
H1 or H0, respectively, whereas a Bayes factor between
these upper and lower bounds might be interpreted as
inconclusive evidence. When investigating the sensitivity
of the Bayes factor to the prior distribution, it is therefore
interesting to evaluate how often a certain evidence
threshold has been crossed due to the choice of the prior
distribution.

In Fig. 8, we depict how often Bayes factors crossed an
evidence threshold if we applied a different elicited prior
distribution or the default prior distribution. As delineated
above, we used evidence thresholds of BF10 = 10 and
BF10 = 1/10 to identify strong evidence in favor of H1

and H0, respectively (for results with other thresholds see
our Online Appendix https://osf.io/vqszj/). We recorded a
change in the strength of evidence if one of the Bayes factors
would be classified as strong evidence while the other
Bayes factor would be classified as inconclusive evidence or

evidence in favor of the other hypothesis according to these
evidence thresholds.

Overall, we can see that the agreement of Bayes factors
with regard to the evidence category is lower than the
agreement with regard to the direction. Although many
Bayes factors agree on the strength of evidence in 90% of
the tests or more, several combinations of our elicited prior
distributions only yield agreement rates of 80% or less. The
agreement rates for Expert 1 are even lower, with rates as
low as 47%. This divergence can again be explained by
the large difference between Expert 1’s prior distribution
and the prior distributions of the other experts. However,
with the given data and evidence thresholds, it never occurs
that one Bayes factor shows strong evidence in favor of
the alternative hypothesis while the matching Bayes factor
shows strong evidence in favor of the null hypothesis.

In general, evaluating agreement across two cut-points
will result in lower agreement than evaluating agreement
across a single cut-point. This provides an intuitive
explanation for the lower agreement rates for the strength of
evidence compared to the direction of Bayes factors.

Question 3: Howmuch do the priors change the
value of the Bayes factor?

Both the direction and the classification of the Bayes
factor are based on a discrete interpretation of the available
evidence. Although useful as a rough heuristic, many
proponents of Bayesian methods prefer to report the
exact value of the Bayes factor, as every discretization
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Fig. 8 Agreement rates of Bayes factors with regard to the evidence
category for all combinations of prior distributions. Here, strong evi-
dence is defined as BF10 > 10 or BF10 < 1/10. Bayes factors are

considered to possess the same strength of evidence if both Bayes fac-
tors show strong evidence for the same hypothesis or if both Bayes
factors show inconclusive evidence
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Fig. 9 Correspondence between log Bayes factors for all prior distributions in the Bosco et al. (2015) database. The diagonal line marks equal
values

leads to a loss of information (e.g., Jeffreys, 1938; van
Ravenzwaaij and Wagenmakers, 2019). Below we examine
the degree to which the exact values of the Bayes
factor change as a result of adopting a different prior
distribution.

Figures 9 and 10 display the correspondence of log
Bayes factors for all experts in the two meta-analytic
databases. Points falling on the diagonal line signal perfect
correspondence, while points falling below or above the
line signal higher Bayes factors for the expert plotted on
the x- or y-axis, respectively. We chose to show log Bayes
factors because they make it possible to display very large
Bayes factors without losing information about smaller
Bayes factors. However, it is necessary to keep in mind that
due to the logarithmization even small deviations from the
diagonal signal large absolute differences in Bayes factors
if the Bayes factors are large.2 From the figures, it becomes
clear that Bayes factors are not always larger or smaller
for one prior distribution compared to another, but that the
relation differs per study. For example, for some studies,
elicited distributions yield larger Bayes factors than the
default prior distributions, and for others vice versa.

2For corresponding figures of raw Bayes factor values, see our Online
Appendix https://osf.io/vqszj/.

Figure 11 shows that the effect size in the sample
determines which prior distribution yields the highest Bayes
factor for a study. The sample size has an additional
effect, with larger sample sizes leading to more pronounced
differences between the Bayes factors for different prior
distributions.

Panel A of Fig. 11 shows log Bayes factors in the Bosco
et al. (2015) database for studies with a sample effect
size of r = −0.2.3 Since a negative sample effect size
is inconsistent with the directional alternative hypothesis
postulated by the experts, the evidence should point towards
the null hypothesis, that is, the log Bayes factors should be
negative.4 It is easy to see that Expert 1’s prior distribution
led to weaker evidence for the null hypothesis than all other
prior distributions. This can be explained by the shape of the
prior distribution: By placing much weight on effect sizes

3Correlation coefficients in the Bosco et al. (2015) database are
reported with three decimal places. For Fig. 11, we used correlation
coefficients with one significant decimal place (e.g., r = −0.200).
4In the original study context, a negative effect size may in fact be
consistent with the pertinent alternative model. However, for the sake
of demonstration we assume that the alternative model is defined by
the elicited positive-directional prior distributions: this allows us to
examine a broad range of outcomes, both consistent and inconsistent
with the direction of the hypothesis.
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Fig. 10 Correspondence between log Bayes factors for all prior distributions in the Wetzels et al. (2011) database. The diagonal line marks equal
values

close to zero, the alternative model of Expert 1 becomes
very similar to the null model. Therefore, large sample sizes
are necessary to discriminate between the two models. The
strongest evidence for the null model is obtained by Expert
6. Expert 6’s prior distribution has a higher mode than all
other prior distributions. Negative effect sizes are therefore
highly inconsistent with their alternative model and lead to
strong support for the null model.

Panels B and C of Fig. 11 show the log Bayes factors
for studies in the Bosco et al. (2015) database with sample
effect sizes of r = 0.2 and r = 0.4, respectively.
These correlation coefficients were deemed most likely by
Expert 2 and Expert 6, respectively, thus yielding a higher
predictive accuracy for these experts compared to the other
experts and the default prior. The Bayes factor rewards the
experts’ predictive accuracy, showing the highest support
for the expert’s model who made the best predictions.

Panel D of Fig. 11 shows the log Bayes factors for studies
with a sample correlation coefficient of r = 0.6 in the Bosco
et al. (2015) database. This effect size is larger than the 95th
percentile of all elicited prior distributions, which means
that none of the experts made accurate predictions. In this
case, the default prior distribution gains advantage over the
elicited distributions, since it assigned considerable mass to

very large effect sizes. However, it is important to note that
the prior mass in the default prior distribution is distributed
across a wide range of effect sizes. This means that even
though the default Bayes factors outscore the informed
Bayes factors in our case, an informed prior distribution
that predicts large effect sizes instead of small-to-medium
effect sizes would lead to even higher Bayes factors than the
default distribution. Generally, for large effect sizes, most
Bayes factors are highly compelling regardless of the prior
that was used because, all else being equal, Bayes factors
increase monotonically with increasing effect size.

Our results show that absolute differences between
the Bayes factors can be substantial. For instance, for a
correlation of r = 0.3 and a sample size of 260, Expert
4 has a Bayes factor of 110,157 in favor of the alternative
model, while Expert 6 shows evidence of 60,436 in favor
of the alternative model. Thus, even for moderate sample
sizes, differences in Bayes factors can easily range in the
thousands. However, for practical purposes the difference
is irrelevant: both Bayes factors display overwhelming
evidence in favor of the alternative model. This also
becomes clear from the posterior model probability, which
is p(H1 | D) = 0.999991 for Expert 4 and p(H1 |
D) = 0.999984 for Expert 6 (assuming equal prior model
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probabilities). It is arguably difficult to picture a scenario
in which these differences in posterior model probability
would lead to different conclusions or instigate different
actions in practice. As stated by Jeffreys,

“We do not need K [i.e., BF01] with much accuracy.
Its importance is that if K > 1 the null hypothesis is
supported by the observations, while if K is very small
the null hypothesis may be rejected. But it makes little
difference to the null hypothesis whether the odds are
10 to 1 or 100 to 1 against it, and no difference at
all whether they are 104 or 104000 to 1; in any case,
whatever alternative is most strongly supported will be
set up as the hypothesis for use until further notice.”
(Jeffreys, 1939, Appendix I, p. 357)

For our sample of elicited priors, it rarely happens
that one Bayes factor shows barely any evidence while
another Bayes factor shows overwhelming evidence in
one direction. Our analyses indicate that, typically, when
differences between Bayes factors are large, all Bayes
factors are large. This also explains our results in the
previous section where we observed a high agreement

between the Bayes factors with regard to the evidence
category, despite of the large differences between the
absolute Bayes factor values.

On a more general account, it should be noted that
differences in Bayes factors do not lend themselves to an
intuitive interpretation because the Bayes factor lacks a unit
of measurement. For example, an absolute difference of
49,721 between the Bayes factor of Expert 4 and Expert
6 might seem large, but cannot be put in perspective
unless the values of the Bayes factors involved in the
difference are known. In contrast to differences, ratios of
Bayes factors can be meaningfully interpreted. Due to the
principle of transitivity, the ratio between two Bayes factors,
BF10/BF20, is, again, a Bayes factor (BF12; Etz et al.,
2018). For example, the ratio between the Bayes factors
of Expert 4 and Expert 6 for a correlation of r = 0.3
and a sample size of 260 is 110, 157/60, 436 = 1.82,
meaning that the data are roughly twice as likely under
Expert 4’s model than under Expert 6’s model. Thus, even
if there is a large absolute difference in Bayes factors, the
difference in the quality of prediction for the rival expert
models can be small. When interpreting the sensitivity
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of the Bayes factor to the specification of the prior, it
is therefore recommended to analyze the ratios of Bayes
factors rather than the absolute value of the Bayes factor
difference.

Figure 12 shows the distribution of Bayes factor ratios for
different experts in the Wetzels et al. (2011) dataset.5 From
the y-axis in each panel, it becomes clear that Bayes factor
ratios mostly range between 1/3 and 3, and are rarely smaller
than 1/3 or larger than 50, so the predictive accuracy of two
expert models is often similar. Note that the information
about absolute size of the focal Bayes factor BF10 in a
hypothesis gets lost when computing the ratio of two Bayes
factors, as the marginal likelihood of the null hypothesis
cancels out. For sensitivity of hypothesis testing results,
Bayes factor ratios for different experts should therefore
always be presented alongside the raw Bayes factor values,
such as in Fig. 10.

5A corresponding figure for the Bosco et al. (2015) dataset can be
found in our Online Appendix on https://osf.io/vqszj/

Discussion

As the saying goes, “there are as many opinions as there
are experts” (Roosevelt, 1942). In Bayesian inference, these
differences in opinion can become particularly important
in the context of prior elicitation from experts. Here, we
investigated how the interpersonal variability of elicited
prior distributions influences the results of Bayesian
null hypothesis testing on the basis of a large database
of psychological studies. We introduced three different
sensitivity analyses and concluded that the qualitative
conclusions of Bayesian hypothesis tests are rarely affected
by the prior distributions, but that the quantitative results can
differ substantially.

The sensitivity of the Bayes factor has often been a
subject of discussion in previous research (e.g., Berger,
1990; Sinharay & Stern, 2002). However, to our knowledge,
our paper is the first one to provide a structured analysis
of the sensitivity of the Bayes factor in the light of
prior distributions that were elicited from psychology
experts. Our results give an impression of the extent of
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interpersonal variability between elicited prior distributions
that can be expected in psychological research, and we
show that the Bayes factor is sensitive to this variability.
However, our results also demonstrate that the use of
different elicited prior distributions does not necessarily
change the direction of the Bayes factor or the category
of evidence strength. In fact, for our elicited priors, the
majority of qualitative test conclusions remained unaffected
by the priors. This insight may increase the support for
informed Bayesian inference among researchers who were
worried that incidental fluctuations in expert opinions
might determine the qualitative outcomes of their Bayesian
hypothesis tests. However, as we argue below, it should
not be taken as evidence that informed prior distributions
will generally not affect test decisions. This depends on the
models being compared, the available data, and the degree
of information of elicited priors.

Beyond displaying the consequences of interpersonal
variability in prior elicitation, our analyses can also be
used as a guidance for future Bayes factor sensitivity
analyses. Our paper demonstrates how prior elicitation
can be used to identify relevant prior distributions,
and provides a structured approach for the succeeding
sensitivity analyses. By analyzing the direction and
evidence category of the Bayes factor, researchers can
investigate whether their candidate prior distributions affect
the qualitative conclusions of their Bayesian hypothesis test.
Additionally, researchers can investigate the quantitative
differences between the Bayes factors using the different
prior distributions. As we demonstrated in this paper,
the proposed approach allows researchers to infer from
sensitivity analyses that the Bayes factor is at the same time
robust and sensitive to the choice of the prior distribution.
Specifically, qualitative conclusions based on the Bayes
factors can be highly robust against the choice of the prior
distribution, while the absolute value of the Bayes factor is
sensitive to the prior distribution.

It is interesting to note that elicited prior distributions
do not always lead to higher Bayes factors than default
prior distributions, even though they display less uncertainty
about parameters. Our results show that there are two keys
to understanding the relationship between informed prior
distributions and Bayes factors. First, to yield higher Bayes
factors, informed prior distributions need to increase the
discriminability between the models. If the informed prior
distribution mimics the point prior under the null model (as
was the case for Expert 1), the discriminability between the
models is low, which leads to a relatively low strength of
evidence. Second, the predictive accuracy of informed prior
distributions is rewarded. Specifically, Bayes factors are
highest if the effect size in the sample falls within the range

of parameter values that were predicted by the informed
prior. We argue that understanding these relationships is not
only crucial for the interpretation of sensitivity analyses,
but can also be important for Bayesian design planning,
where researchers determine the sample size of studies
based on the prospective strength of evidence (Stefan
et al., 2019). Typically, larger sample sizes are needed to
obtain strong evidence if the compared models are less
discriminable, and smaller sample sizes are required with
informed models where one of the models makes accurate
predictions. Of course, this should not lead researchers to
aim solely for design efficiency. It remains important that
the statistical models reflect theoretical beliefs and make
realistic predictions. Therefore, prior specification should
always precede sample size planning in practice.

The variability of prior distributions and their impact on
the results of Bayesian hypothesis tests immediately raise
the question whether one prior distribution can be consid-
ered superior to another. Following de Finetti’s subjective
notion of probability (de Finetti, 1974), prior distributions
can neither be discussed nor critiqued as they represent
the idiosyncratic belief of an individual. An independent
researcher who elicited prior distributions from multiple
experts would therefore have no reason to prefer any elicited
prior over another. However, even though a single prior dis-
tribution cannot be evaluated from a normative standpoint,
it can be evaluated regarding its concordance with other
elicited prior distributions. For example, in our study, Expert
1’s priors deviated substantially from all other experts. This
does not necessarily mean that Expert 1’s prior distribution
is any less valid than the other experts’ priors. However,
the divergence can instigate further investigations into rea-
sons for the apparent disagreement. Possible reasons include
that the expert holds minority beliefs or possesses differ-
ent information from the other experts, but also that the
expert misunderstood the elicitation procedure or did not
participate faithfully. In practice, it might be necessary to
contact the expert again after the elicitation to obtain this
information. Another way to compare prior distributions is
by means of their predictive accuracy in the light of data.
This can be achieved by computing Bayes factors between
models using different elicited priors, as was done in the
previous section of this paper in the context of a sensitiv-
ity analysis (cf. Fig. 12). As we argue below, this approach
should never be used to cherry-pick priors after the results
are known. It can, however, be used to select experts for
future elicitations, or to compute knowledge-based weights
for the aggregation of future elicited priors from the same
group of experts (Wilson & Farrow, 2018).

Even though prior distributions can exert considerable
influence on the Bayes factor value, it is important to
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note that priors should not be chosen solely because of
their influence on the Bayes factor. Researchers might be
tempted to choose a convenient informed prior after the
data are known to increase the evidence obtained from the
data. For example, a devious researcher might choose a
prior distribution that peaks on unrealistically high effect
sizes or a prior that is exceedingly wide to obtain spurious
evidence in favor of the null model, or define “oracle
priors” (Dienes, 2008), that is, point priors on the maximum
likelihood estimate in the data, that distort evidence in
favor of the alternative model. These prior specifications no
longer represent valid pre-data theoretical assumptions, and
thus prohibit severe tests of theory (Mayo, 1991). We wish
to stress that prior distributions are subject to public critique;
researchers who cherry-pick prior distributions with the
sole purpose of skewing the results in their favor will
struggle to defend these prior distributions in the (post)peer-
review process. Ultimately, prior distributions are part of
the model specification and subject to the same scrutiny
as, say, the selection of a likelihood function. To avoid the
suspicion of post-hoc theorizing, it is recommendable that
researchers specify the prior distributions before the data
collection, and record their decisions in a preregistration
(Crüwell & Evans, 2019; Stefan et al., 2020; Chambers,
2013). A prior sensitivity analysis, as presented in this
paper, can go hand in hand with the preregistration and
further increase the transparency of a study. Similar to
a multiverse analysis (Steegen et al., 2016), computing
analysis results for different elicited prior distributions
can bring subjective decisions in the statistical analysis to
light and make researcher degrees of freedom transparent.
Thus, prior sensitivity analyses can provide researchers with
interesting information about the robustness of their results
and can increase their confidence in their conclusions. It is
important to note though that the prior distributions included
in a sensitivity analysis should all be justifiable for the
specific research context at hand. Prior distributions elicited
from field experts for a well-defined research question
typically fulfill this criterion.

Like all other measurement methods, prior elicitation is
subject to measurement error (O’Hagan, 2019; Stefan et al.,
2020). Therefore, differences between experts can both be a
result of their different theoretical convictions of the experts
and measurement fluctuations. To date, little research has
been conducted to assess the amount of measurement error
in prior elicitation. In our study, we decided to use one of
the most common prior elicitation methods (Morris et al.,
2014), and gave experts the opportunity to adjust the elicited
prior distributions. It is important to be aware that these
methodological decisions in the prior elicitation procedure
might have influenced the elicited prior distributions (Stefan
et al., 2020). However, our results indicate that small

differences in elicited prior distributions barely play a role
in Bayesian inference. Therefore, Bayes factors can be
considered robust against small measurement inaccuracies
in the prior elicitation process. However, they are not robust
to large, potentially systematic biases. This emphasizes
the importance of well-validated prior elicitation methods
that minimize potential cognitive biases (O’Hagan, 2019;
Kahneman, 2011; Tversky & Kahneman, 1983). It is beyond
the scope of the current study to investigate the validity of
different prior elicitation methods, but we believe that this
can be a valuable avenue for further research.

The prior elicitation effort reported in this paper is
special in several ways. Rather than conducting a prior
elicitation for a specific effect or research design, we asked
experts to provide their assessments for generic small-
to-medium effect sizes in their field that are larger than
zero. This allowed us to include experts from different
research fields and establish a minimum level of consent
between the participating experts. However, it also means
that the elicited prior distributions are influenced less by
substantive theory than they may be in a typical prior
elicitation context. Moreover, the lack of experimental
context means that experts’ beliefs were unrestricted by
any particular operationalization. It is possible that experts
would display more certainty and less disagreement if prior
distributions were elicited for a specific psychological effect
or for a particular research design. Another noteworthy
aspect of our elicitation effort is that we elicited beliefs
for standardized effect size coefficients, rather than, for
example, raw differences in group means. Of course, this
is partly due to the fact that we did not refer to a
specific experimental context. However, we believe that
eliciting beliefs about standardized parameters generally
has several advantages. Since individual studies and meta-
analyses mostly report standardized effect sizes, it will
arguably be easier for experts to include this knowledge
into their priors. Additionally, standardized parameters
might steer the experts’ focus towards general theory and
scientific evidence, rather than intuitions about a particular
experimental context. Thus, prior distributions elicited for
standardized parameters might be more connected with
theory and less influenced by measurement tools. However,
the influence of standardization on prior elicitation results
is still an open empirical question.

The results in this paper are subject to several limitations.
First, all results of the sensitivity analyses are dependent
on the databases and statistical tests that were used. We
carefully selected the databases to be representative for
psychological research and the two hypothesis tests we
investigated are among the most frequently used tests in
psychology (Wetzels et al., 2011; Bosco et al., 2015).
However, different dataset compendia or hypothesis tests
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might yield different levels of Bayes factor sensitivity.
Therefore, the effects of interpersonal variability in prior
distributions demonstrated in this article should always be
interpreted in the context of the current application scenario.
Second, we only elicited prior distributions from six experts.
Although this number of experts is within the recommended
range for domain-specific prior elicitation efforts (O’Hagan,
2019; Grigore et al., 2013)6 and can be considered a realistic
sample size for practical applications, it is possible that
more variability would have been observed if more experts
had participated in the elicitation effort. Future studies could
therefore extend our analyses to more experts, different
research questions, and statistical models. In this context,
it should also be stressed that despite the generality of
our elicitation question, the idiosyncratic prior distributions
of six experts from a single university should not be
mechanically applied as universal “informed default” priors
for psychological science. In our opinion, establishing such
“informed default” priors for a well-defined research field
is possible, but requires a broader empirical base (for an
example, see McKinney et al., 2021). Third, our paper
focuses solely on Bayes factors. Although Bayes factors are
frequently used in practice (van Doorn et al., 2019), some
experts prefer other Bayesian model evaluation methods or
focus on posterior inference (Vehtari et al., 2017; Kruschke,
2011; Evans, 2019; Gelman et al., 1996). These alternative
methods are also influenced by the prior distributions on
parameters. It would therefore be interesting to investigate
the influence of differences in elicited prior distributions on
these methods as well.

The fact that the results of a statistical analyses depend
on the statistical models, has long been known as ‘Jeffreys’s
platitude’ (Jeffreys, 1961). By including different knowl-
edge about prior parameters in Bayesian model compar-
isons, researchers change the involved models, and therefore
pose different statistical questions that prompt different sta-
tistical answers. It is therefore not a weakness, but a strength
of Bayes factors to be sensitive to the specification of the
prior distribution. Here we demonstrated that the extent to
which the statistical answer differs, depends on the differ-
ences in the questions asked. Modest differences in elicited
expert knowledge are still visible in the statistical results,
but rarely change the qualitative conclusions of the model
comparison. Concerns that idiosyncrasies between experts
might jeopardize the objectivity of their statistical analy-
ses are easily overstated. We hope that this insight will lead
more researchers to embrace informed Bayesian inference
with elicited prior distributions in the future.

6Note that these recommendations are based on experiences of
individuals with lots of experience as facilitators of prior elicitation
efforts, but lack a broader empirical basis.
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