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Abstract
To characterize numerical representations, the number-line task asks participants to estimate the location of a given number 
on a line flanked with zero and an upper-bound number. An open question is whether estimates for symbolic numbers (e.g., 
Arabic numerals) and non-symbolic numbers (e.g., number of dots) rely on common processes with a common developmental 
pathway. To address this question, we explored whether well-established findings in symbolic number-line estimation gen-
eralize to non-symbolic number-line estimation. For exhaustive investigations without sacrificing data quality, we applied 
a novel Bayesian active learning algorithm, dubbed Gaussian process active learning (GPAL), that adaptively optimizes 
experimental designs. The results showed that the non-symbolic number estimation in participants of diverse ages (5–73 
years old, n = 238) exhibited three characteristic features of symbolic number estimation.

Keywords Numerical cognition · Cognitive development · Cognitive modeling · Gaussian process · Active learning · 
Hierarchical Bayesian modeling

Introduction

The number-line task is one of the most commonly used 
tasks to study numerical cognition. In a conventional task, 
participants estimate the location of a symbolic number 
(e.g., Arabic numeral of 8) along a line flanked by two num-
bers (e.g., 0 and 50). Performance on number-line tasks with 
symbolic numbers has been viewed as depicting the approx-
imate numerical representations that are also shared with 
non-symbolic numbers (e.g., number of dots; Dehaene et al., 
2008; Siegler & Opfer, 2003). In this view, the meanings of 
symbolic numbers are learned by mapping to their non-sym-
bolic referents (e.g., mapping numeral 8 to 8 dots), forming 
an association between symbolic and non-symbolic number 
representations (Dehaene, 2011). Therefore, performance on 
symbolic number-line tasks is thought to predict how non-
symbolic numbers would be estimated on number lines.

Against the shared-representation account, however, 
some suggest independent representations for symbolic 

and non-symbolic numbers (Carey, 2004; Carey & Barner, 
2019; Lyons et al., 2012; Rips et al., 2008). According to 
this perspective, symbolic-number learning does not require 
mapping to the cardinality of a set from early development 
(Carey & Barner, 2019; Rips et al., 2008). Alternatively, 
symbolic numbers may be mapped to their non-symbolic 
referents early but become “estranged” from them late in 
development (Lyons et al., 2012). These accounts would not 
predict major findings in symbolic number-line studies to 
be observed in number-line tasks with non-symbolic num-
bers. Despite its theoretical importance, whether the char-
acteristic features of symbolic number estimation are also 
evident in non-symbolic number estimation has not been 
fully investigated.

One of the characteristic features of symbolic number-
line estimation is the “log-to-linear shift” (Siegler et al., 
2009). This shift refers to the observation that younger and/
or less educated populations produce logarithmic estimates 
in situations where older and/or more educated populations 
produce more linear estimates (Berteletti et al., 2010; Opfer 
& Siegler, 2007; Siegler & Booth, 2004; Siegler & Opfer, 
2003; Thompson & Opfer, 2008). A prominent interpre-
tation of the log-to-linear shift is that it reflects adaptive 
changes in numerical representations. The default repre-
sentation, shared across human and non-human species, is 
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logarithmically scaled. Here, the difference between 1 and 
10 is subjectively larger than the difference between 101 and 
110. With age and schooling, however, the formal proper-
ties of the decimal system are gradually learned and can be 
applied to new situations where the difference between 1 and 
10 is equal to the difference between 101 and 110 (Dehaene, 
2011). In this account, non-symbolic estimation would also 
be expected to show log-to-linear shifts over development 
(Kim & Opfer, 2018; Yuan et al., 2020).

A second feature of symbolic number-line estimation is 
that log and linear representations coexist (Siegler & Opfer, 
2003; Thompson & Opfer, 2010). The coexistence of differ-
ent representations is typically explored by manipulating the 
number range in number-line tasks (e.g., estimating 20 on a 
0–100 vs. 200 on a 0–1,000 number line). A common find-
ing is that people are more likely to rely on a log representa-
tion for a larger number range (Opfer et al., 2019; Siegler & 
Booth, 2004; Siegler & Opfer, 2003). If the same represen-
tations were used for non-symbolic numbers, non-symbolic 
number estimates would also be more logarithmic when to-
be-estimated numbers are large (e.g., 200 dots) rather than 
small (e.g., 20 dots). This question, however, has not been 
systematically explored.

A third feature of symbolic number-line estimation is that 
the linearity of estimates predicts proficiency with numbers 
in other contexts (Booth & Siegler, 2008; Siegler & Booth, 
2004). The linearity of symbolic estimates predicts num-
ber memory (Opfer et al., 2019), counting (Östergren & 
Träff, 2013), math learning (Booth & Siegler, 2008; Siegler 
& Ramani, 2008), math scores (Fazio et al., 2014; Kim & 
Opfer, 2017), dyscalculia (Geary et al., 2008), and a genetic 
disorder, like Williams syndrome (Opfer & Martens, 2012). 
Whether the linearity of non-symbolic number estimates is 
associated with non-symbolic math is still an open question.

Despite previous attempts to address these questions 
using symbolic and non-symbolic number-line tasks, the 
findings in the literature are not consistent. For example, 
whereas symbolic and non-symbolic estimation appears to 
share the log-to-linear developmental trajectory in some 
studies (Kim & Opfer, 2018; Sasanguie et al., 2012; Sella 
et al., 2015), other studies report that non-symbolic estima-
tion develops differently from symbolic estimation (Kolk-
man et al., 2013; Sasanguie et al., 2016). Table 1 summarizes 
previous research examining the development of symbolic 
and non-symbolic number estimation. As shown in the table, 
research parameters, including participants’ ages, number 
scales, and applied models, were different across studies, 
which could have caused the discrepancy in the results. This 
state of affairs calls for a rigorous examination of the rela-
tions between the two types of number estimation.

The purpose of the present study, using a non-symbolic 
version of the number-line task, is to systematically inves-
tigate whether the preceding three features of symbolic 

number estimation also characterize non-symbolic num-
ber estimation. Exploring these features in number-line 
tasks is inherently challenging because of the potential 
range dependency of number-line estimates. If the number 
range tested is too small or too large, developmental dif-
ferences and the association between estimates and math 
skills may appear absent (Clarke et al., 2018). Determin-
ing appropriate number range can be more challenging in 
a non-symbolic number-line task. For symbolic number, 
there is a certain range of numbers that children more fre-
quently encounter in a particular grade in education (e.g., 
one-digit numbers in kindergarten, two- and three-digit 
numbers in third grade). Symbolic number-line tasks with 
familiar number ranges might show individual variations 
that correlate with symbolic math competence. However, 
it is difficult to specify the range of non-symbolic num-
bers children come across in everyday life. Non-symbolic 
numbers vary greatly for every individual in size, from a 
relatively small number (e.g., number of cookies in a jar) 
to a very large number (e.g., number of people in a large 
stadium).

The number-line range is determined by the upper-bound 
number, which is often determined by an educated guess of 
investigators. When it is unclear which upper-bound number 
should be used, a simple but costly approach would be to 
examine estimates on multiple number-line tasks with differ-
ent upper-bound numbers. The same approach has been used 
to explore the coexistence of log and linear representations, 
but with only a few different number ranges (e.g., 0–10 and 
0–100; Berteletti et al., 2010). To fully examine the changes 
in estimates across number ranges, it would be desirable to 
use as many upper-bound numbers as possible. However, 
this approach would require many more trials than the typi-
cal task with a single, fixed scale (total trials = number of 
trials in each range × number of upper bounds).

The present study aimed to address the design bottleneck 
in number-line tasks by applying a novel multi-scale non-
symbolic number-line task (Fig. 1) that can be as brief as 
a fixed-scale number-line task but without sacrificing data 
quality. This highly efficient task is developed based on an 
algorithm that combines optimal experimental design in 
statistics (Atkinson & Donev, 1992) with active learning 
in machine learning (Settles, 2012). It provides a compu-
tational means to characterize non-symbolic number esti-
mation over a much wider range of number scales for an 
individual, thereby quantifying developmental changes in 
estimates, as efficiently and accurately as possible. Spe-
cifically, in an experiment using a Bayesian active learn-
ing algorithm, dubbed Gaussian process active learning 
(GPAL), that our lab has developed (Chang et al., 2021), 
we delineate number-line estimation functions across four 
or more different number ranges, and compare the functions 
among individuals.
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We hypothesize that if non-symbolic numbers share rep-
resentations with symbolic numbers, non-symbolic number-
line estimation would exhibit the three features of symbolic 
number-line estimation described above: Non-symbolic esti-
mates would change from log to linear with age, become 
more logarithmic in the same individuals as upper bounds 
increase, and show associations with non-symbolic math 
proficiency measured in a non-estimation context (approxi-
mate addition).

Method

Experiment

The present study applied GPAL to the non-symbolic ver-
sion of the number-line task in Fig. 1 in order to infer psy-
chophysical functions underlying non-symbolic number 
estimates in the two-dimensional design space. That is, the 
given number (design variable 1) and the upper-bound num-
ber (design variable 2; scale) were varied from one trial to 
another in an adaptive and optimal manner prescribed by the 
GPAL algorithm. This is unlike typical number-line tasks 
that manipulate only the given number during the task.

Participants Seventy-three children aged between 5 and 
13 years (47 males, Mage: 8.69, SDage: 2.09) were tested at 
a local science museum. 165 adults were recruited from a 
local university (n = 31 (16 males), Mage: 19.44, SDage: 0.99) 
and from Amazon Mechanical Turk (MTurk; n = 134 (69 
males), Mage: 39.25, SDage: 12.91). All participants were 
recruited from the USA. Experiments in the current study 
were approved by the Institutional Review Board (IRB) in 
the local university.

Bayesian power analysis We determined the number of 
participants based on a Bayesian power analysis (Kruschke, 
2010). The effect of interest was whether the logarithmic-
ity component (λ) in a mixed log-linear model (MLLM; 
described in a later section) changes with the upper-bound 
number across age groups. Statistical power was calculated 
as the estimated probability that new data replicate the dif-
ference in the values of μλ (a hyperparameter that determines 
the prior mean of λ) in a 0–50 number line (μλ,50) and a 
0–100 number line (μλ,100), which was found in our pilot 
experiment (0.074 effect size). The effect was considered 
replicated if Bayesian 99% highest posterior density inter-
val (HPDI) of μλ,100–μλ,50 did not include zero. We set a 
desired level of statistical power at 0.8. Estimated power was 
0.8 for 73 participants (children) and 0.88 for 165 partici-
pants (adults). When 95% HPDIs were used instead of 99% 
HPDIs, the power level was 1 for both children and adults.

Stimuli and procedure Each participant completed a non-
symbolic number-line task (Fig. 1) and a non-symbolic math 
proficiency task – i.e., approximate addition. The number-
line task was always given first. In this task, a group of dots 
was presented above a line for 2,000 ms every trial. Partici-
pants were asked to decide the location of the given number 
of dots on a line. The response was made by mouse-clicking 
the assumed location of the number on the line. The number 
of dots to estimate was chosen by GPAL every trial, among 
the integers between 5 and an upper bound. Small num-
bers (0–4) that are subitizable (Feigenson et al., 2004) were 
excluded from the design.

Besides given numbers, upper-bound numbers also var-
ied trial by trial. The number of dots at the right end of a 
line (i.e., the upper bound) in Fig. 1 was chosen by GPAL 
every trial, whereas the number of dots at the left end (i.e., 
the lower bound) was always zero. The task for children 
had fewer total trials and fewer possible upper bounds than 
those for adults, to make the task suitable for children. The 
possible upper-bound values were 50, 100, 200, and 400 for 
children, and 50, 100, 150, 200, 250, 300, 350, 400, 450, and 
500 for adults. The task consisted of 50 trials for children, 
and 90 trials for adults. The GP posterior was reset after the 
first half (block) of the trials, in order to test the reliability of 
GPAL by comparing the function estimates in the first block 
(i.e., test) and the second block (i.e., retest), each with a half 
of the trials (25 trials for children, 45 trials for adults). After 
each trial, participants had to press the spacebar to proceed 
to the next trial. There were five practice trials before the 
test block. We controlled for the size and the cumulative 
area of the dots in the given-number box. On half of the 
trials, the size of the dots was held the same in both the 
given-number and the upper-bound boxes, with the cumu-
lative area increasing with the given number. On the other 
half, the cumulative area of the dots in the given-number 

Fig. 1  Non-symbolic number-line task. Note. A given number (in the 
red box) is estimated on a line with zero and an upper-bound number 
(in the blue box)

Psychonomic Bulletin & Review (2022) 29:971–984974
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box was equal to that in the upper-bound box, with the dot 
size decreasing with the given number. Also, the dots of 
given- and upper-bound numbers were randomly spread in 
the boxes, such that the convex hull of the dots would not 
vary with numbers. According to Yuan et al. (2020), estima-
tion of non-symbolic numbers is correlated with symbolic 
number estimation when perceptual cues, such as the convex 
hull, are not readily available. The random distribution of 
dots, therefore, was expected to elicit the use of representa-
tions and skills shared with symbolic numbers.

To test numerical performance outside estimation con-
texts, participants were also given a non-symbolic addition 
task upon completion of the number-line task. All adult par-
ticipants completed both tasks. For children, we asked if 
they were willing to do another task when they completed 
the number-line task, to prevent loss of data quality due to 
fatigue. Fifty-one children chose to complete the approxi-
mate addition task. In this task, participants viewed two 
arrays of dots going into a box, consecutively for 1,500 ms 
per array, on the left side of the screen. Then, there was 
another array of dots presented on the right side of the screen 
for 1,500 ms. Participants were instructed to choose which 
side had more dots using the f or j key press. Each array had 
from 5 to 50 dots, and the sum of two arrays of dots in the 
gray box was less than 51. The array size was drawn from 
five ratio bins (1.05, 1.14, 1.2, 1.5, 2.0). There were 30 trials 
for children (six trials for each ratio bin), and 50 trials (ten 
trials for each ratio bin) for adults. There were two practice 
trials without feedback.

In what follows, we provide a brief overview of GPAL 
with which the experiment was conducted.

Gaussian Process Active Learning (GPAL)

GPAL is an algorithm-based experimental method for adap-
tively optimizing experimental designs in order to infer an 
unknown function with the fewest possible number of obser-
vations (Chang et al., 2021). GPAL comprises the follow-
ing three iterative steps that are performed on each trial: 
(1) Design optimization step in which the optimal design is 
identified based on the current state of knowledge about the 
model being inferred; (2) Experiment step in which stimuli 
are presented with the optimized design configuration and a 
response is observed; and (3) Model inference step in which 
the observed response is used to infer an updated model, 
which in turn becomes a new model for the next iteration.

GPAL has been developed as a nonparametric extension 
of a parametric Bayesian active learning algorithm for opti-
mal experimental design, dubbed Adaptive Design Opti-
mization (ADO; Cavagnaro et al., 2010). A key difference 
between GPAL and ADO is in the model inference step. 
ADO requires the assumption of a parameterized model that 

specifies the functional form that generates responses in an 
experiment. For example, in the number-line task, the model 
might assume that number estimates follow log, linear, or 
cyclic power functions. In contrast, GPAL is “model-free” in 
that it does not make a priori assumptions about the possible 
model form, and instead, directly infers the form based on 
observed responses.

To infer the underlying functional form, GPAL utilizes 
a nonparametric Bayesian method known as a Gaussian 
process (GP) (e.g., Cox et al., 2012; Griffiths et al., 2009; 
Rasmussen & Williams, 2006; Schulz et al., 2018). Being 
nonparametric, GP is capable of modeling a virtually lim-
itless range of functional forms without being subject to 
the constraints imposed by a parametric model family as 
in ADO. Formally, a GP is defined as a stochastic random 
process that forms a Gaussian distribution of functions over 
the function space (Rasmussen & Williams, 2006):

where f (x) is the underlying function to be inferred from 
observed data, and x and x′ are two different points in the 
design space. In the above equation, the mean function m 
and the kernel function k, the latter of which governs the 
smoothness of the function f (x), are defined as statistical 
expectations with respect to the distribution of functions:

In the present study, we use the squared exponential ker-
nel function.

Once the model is inferred by GP, it is then used in the 
design optimization step to identify the optimal design. This 
optimization process is known as active learning in machine 
learning (Settles, 2012). The active learning in GPAL relies 
upon the (Bayesian updated) distribution of the function f (x) 
in Eq. (1). In particular, we implement the uncertainty sam-
pling scheme of Lewis and Catlett (1994) in which GPAL 
queries the design point x with the highest variance of f (x). 
As such, an optimal design is the one that leads to the largest 
reduction in uncertainty about the unknown function f (x). 
Shown in Fig. 2 is an example of the model inference and 
design optimization steps in GPAL.

Models of numerical estimation

We used formal models of numerical estimation in literature 
to assess the characteristics of GPAL-inferred functions (i.e., 
GP-estimated posterior mean function). The three features 
of number-line estimates could be interpreted in a log-linear 
framework, but GP-estimated functions per se do not provide 
a quantifiable measure of logarithmicity. To quantify the 
degree of log compression in GPAL-inferred functions, we 
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used a mixed log-linear model (MLLM; Anobile et al., 2012; 
Opfer et al., 2016; see below for details).

However, interpreting the results in a log-linear frame-
work might not be justifiable if GPAL produces functions 
better explained by alternative models, such as cyclic power 
models (CPMs; Hollands & Dyre, 2000). The CPMs are 
derived from the proportional reasoning account, assuming 
log or linear patterns in estimates do not reflect numerical 
representations, but proportional reasoning skills required 
for number-line estimation (Barth & Paladino, 2011; Cohen 
& Sarnecka, 2014; Rouder & Geary, 2014; Slusser et al., 
2013). Both the MLLM and CPMs can describe log and 
linear functions, but some versions of the CPM also pre-
dict distinctive patterns that the MLLM would not describe. 
Given that GPAL is free of assumptions about the shapes of 
underlying functions, whether logarithmic or cyclic, com-
paring the two models with the functions inferred by GPAL 
will allow us to determine the functional form of numeri-
cal estimation in an unbiased manner without favoring one 
model or another (see Appendix for GPAL simulations).1

Mixed log-linear model (MLLM) The MLLM is a commonly 
used model to describe number-line estimates. This model 
is defined as:

where y is the estimate of a given number x in a number line 
with the upper bound of U. The parameter λ, as a measure 
of logarithmicity, is the relative weight of the logarithmic 
function to the linear function in estimation. The estimate 
y becomes completely linear with λ = 0, and completely 
logarithmic with λ = 1. a and b are two scaling parameters.

The model parameters were estimated by fitting a hierar-
chical Bayesian model (Lee & Wagenmakers, 2014) using 
JAGS in MATLAB (Plummer, 2003; Steyvers, 2011). The 
MCMC sampling was iterated 150,000 times, with the first 
50,000 samples being discarded as burn-in samples. The 
model parameters for participant i were defined as follows: 
λi ∼ Beta (μληλ, (1−μλ)ηλ), ai ∼ Beta (1, 1), and bi ∼ Uniform 
(0, U), where μλ and ηλ are hyperparameters following μλ ∼ 
Beta (1, 1), and ηλ ∼ Gamma (1, 20).

Cyclic power model (CPM) Two versions of the CPM, one- 
and two-cycle power models (1CPM and 2CPM), were 
compared with the MLLM. Another version of the CPM, 
zero-cycle power model (0CPM), was not tested because its 
prediction is qualitatively similar to that of MLLM, likely 
making the models indistinguishable. The MLLM would not 
predict the power function with the value of the exponent 
(i.e., β) larger than 1, but such large β values in the 0CPM 
were rarely reported (Slusser et al., 2013; Spence, 1990). 
The 1CPM assumes that there are two reference points, at 
the two ends of the number line. The 2CPM assumes the 
midpoint as an additional reference point in addition to the 
two ends. We used the models provided by Hollands and 
Dyre (2000), which extended the model in Spence (1990). 
The model equations are as follows:

(3)y = a

(
�

U

ln(U)
ln(x) + (1 − �)x

)
+ b,

Fig. 2  An illustrated scheme of the Gaussian Process Active Learning 
(GPAL) algorithm. Note. The left panel summarizes the current state 
of knowledge about the underlying model after five observations. In 
this graph, the black dots are observed data, and the black curve is 
the inferred model as the GP mean function. The blue area indicates 
the two standard deviations from the GP mean and represents the 
uncertainty about the underlying model. The grey curves are a few 

functions sampled from the GP. GPAL selects the optimal design for 
the next trial as the point with the largest variance, indicated by the 
dashed vertical black line. Shown on the right panel is a new observa-
tion (red dot) made with the optimized design, which is then used to 
update the GP. The iterative process repeats itself for the next trial. 
For additional technical details, readers are directed to Chang et  al. 
(2021)

1 Recent studies have suggested that the choice of given numbers in 
the number-line task could affect the comparison between the MLLM 
and the CPMs (Opfer et  al., 2016; Slusser et  al., 2013). For exam-
ple, a task with given numbers evenly distributed across the number 
line (Slusser et al., 2013) is more likely to support the CPMs, whereas 
given numbers concentrated in the early part of the number line are 
in favor of the MLLM (Siegler & Opfer, 2003). However, the designs 
selected by GPAL are model-neutral, since GP infers the underlying 
psychophysical functions without a priori assumptions about their 
shape.
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In the equations above, y is the number estimate, x is the 
given number, U is the upper bound of the number line, and 
β is the exponent of the power function. CPMs predict linear 
functions with β = 1, and predict more cyclic biases as β 
deviates more from 1. For the 2CPM, we assumed the use 
of a reference point in the middle (U/2). The models were 
fitted using the same procedure as the MLLM. The model 
parameters in the hierarchical Bayesian model for participant 
i were defined as follows:

βi ∼ Gamma (μβ /ηβ, ηβ), where μβ and ηβ are hyperpa-
rameters following μβ ∼ Gamma (1, 1), and ηβ ∼ Gamma 
(2, 1).

Model comparison analysis The MLLM and CPMs were fit-
ted to the Gaussian process (GP) posterior mean functions 
estimated by the GPAL algorithm from the experimental 
data. Model fits were compared by the deviance information 
criterion (DIC; Spiegelhalter et al., 2002), which is a gener-
alization of the Akaike information criterion (AIC; Akaike, 
1998) for hierarchical Bayesian models. The DIC evaluates 
model fit while being penalized by model complexity (e.g., 
number of parameters). The model comparison based on the 
DIC supports the model with the smallest DIC value. The 
model comparison results are described and discussed in the 
following sections.

Results and discussion

Studies that use number-line tasks typically use the medi-
ans of the raw data to recover an underlying function. This 
process was not necessary in the present study because GP 
automatically interpolated raw data to form an estimate of 
the underlying function. Therefore, instead of median points, 
we used the posterior mean of the estimated GP functions 
(see Appendix for outlier detection method). The GP poste-
rior means averaged over participants are shown in Fig. 3.

Despite the small number of trials in each block (45 for 
adults; 25 for children), the functions inferred by GPAL were 
consistent between the first and the second blocks (i.e., test 
and retest). Reliability of GPAL was measured using the 
concordance correlation coefficient (CCC; Lawrence & Lin, 
1989), a measure of agreement between the first and second 

(4)1CPM ∶ y = U

(
x�

x� + (U − x)�

)

(5)

2CPM ∶ y =

⎧
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�
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measurements. The mean CCC between the posterior mean 
functions from test and retest (Fig. 3) over participants was 
0.89 for children (SD: 0.11) and 0.90 for adults (SD: 0.15). 
The strong correlation demonstrated high reliability of GP 
predictions.

Next, we compared the MLLM and CPMs using GP-
estimated posterior mean functions (see Appendix for the 
results of the same analysis with the raw data) to determine 
how we should interpret the shapes of the functions. GP 
functions would be better explained by the MLLM if they 
were from numerical representation or by the CPMs if they 
were from proportional reasoning skills. Table 2 shows that 
the DIC values were the lowest for the MLLM regardless of 
the upper bound, for both children and adults. A better fit 
of the MLLM over the CPMs suggests that non-symbolic 
number estimates may reflect log-linear representations for 
number. Therefore, we interpreted the results in a log-linear 
framework. Results are discussed in relation to the three 
questions raised in the Introduction.

Characteristic features of number‑line estimation

Log-to-linear developmental improvement To measure 
the degree of logarithmic compression in the GP functions, 
the posterior mean of the GP was fitted by the hierarchical 
Bayesian MLLM (see Appendix for the results with the raw 
data). The developmental changes in logarithmicity were 
explored by dividing participants into three age groups, 
younger children (kindergarteners – 2nd graders; n = 32), 
older children (3rd – 7th graders; n = 39), and adults (n = 
159). Figure 4 shows the posterior means of the hyperpa-
rameter μλ, which represents the mean of the prior distri-
bution for λ, estimated from the data combined over test 
and retest blocks for each age group across upper bounds. 
Larger values of the posterior mean indicate more logarith-
mic estimation.

Overall, the values of μλ were the largest for younger 
children and decreased with age. Younger children’s esti-
mation was highly logarithmic, whereas adults’ estimation 
was much more linear. The estimates of older children had 
intermediate levels of logarithmicity. The developmental 
decrease in μλ from the novel multi-scale task is consist-
ent with previous research showing that the logarithmicity 
components (λ) decreases with age in a conventional fixed 
number-line task with symbolic numbers (Kim & Opfer, 
2017, 2020; Opfer et al., 2016; Siegler & Booth, 2004).

Larger number ranges led to more logarithmic estimation. 
The posterior mean μλ value in every age group was the 
smallest at the smallest upper bound of 50 (Fig. 4). In 0–50 
number lines, younger children showed somewhat logarith-
mic estimation, with the posterior mean of μλ being 0.12 
(95% highest posterior density interval (HPDI): [0.02,0.22]; 
see Appendix for interpretation of HPDI intervals). Older 
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children and adults were highly linear in estimation and dif-
fered little among one another. The posterior mean of μλ 
was 0.02 (95% HPDI: [0.01,0.04]) for older children, and 
0.06 (95% HPDI: [0.04,0.08]) for adults. The age-related 
differences were much larger in 0–400 number lines. With 
the upper bound of 400, the posterior mean of μλ was 0.69 
(95% HPDI: [0.60,0.78]) for younger children, 0.45 (95% 
HPDI: [0.37,0.54]) for older children, and 0.20 (95% HPDI: 
[0.16,0.24]) for adults, presenting the most salient log-to-
linear transition in development.

Coexistence of log-linear representations The changes in 
μλ across the upper-bound numbers were more apparent in 
younger children, but estimates of older children and adults 
also became more logarithmic on large-scaled number lines. 
Even adults who were least affected by the number range 

showed somewhat logarithmic estimation with a large upper-
bound number. Specifically, adults’ estimation on 0–400 

Fig. 3  GP-estimated functions for children and adults. Note. The large plots on the left side are the mean functions collapsed across test and 
retest blocks. The small plots on the right side show the functions from the test and retest blocks separately

Table 2  DIC values for the hierarchical Bayesian models MLLM, 
1CPM, and 2CPM

MLLM mixed log-linear model, 1CPM one-cycle power model, 
2CPM two-cycle power model

Children Adults

Upper 
bound

MLLM 1CPM 2CPM MLLM 1CPM 2CPM

50 16518 27349 26527 29330 52750 62985
100 24659 30732 32126 45514 60995 73945
200 28014 34246 38394 57280 71550 86077
400 35494 41257 44689 75555 86677 98882
Mean 26171 33396 35434 51920 67993 80472
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number lines was nearly as logarithmic as younger children’s 
estimation on 0–50 number lines. In line with logarithmic 
estimates of symbolic numbers in adults (Landy et al., 2013), 
this outcome suggests that Western, educated adults still rely 
on logarithmic representations when estimating large non-
symbolic numbers.

Logarithmicity and approximate arithmetic The degree 
of logarithmicity correlated with participants’ perfor-
mance in the approximate addition task. To assess the 
correlation, we obtained individuals’ Weber fraction 
(w, Pica et al., 2004) in the approximate addition task. 
Weber fraction is an accuracy measure with numerical 
ratios taken into account. For example, if w is .5, par-
ticipants would reliably compare 15 versus 10 dots (i.e., 
50% difference) once they correctly perform arithmetic 
operations.

Next, we computed Bayesian partial correlations between 
λ and w values, while controlling for the effects of education 
levels (see Appendix for education level coding). Overall, 
there were positive correlations between λ and w across 
upper bounds. The posterior mean of the correlation coef-
ficient (r) was 0.10 for 0–50 number lines, 0.15 for 0–100 
number lines, 0.18 for 0–200 number lines, and 0.19 for 
0–400 number lines. The 95% HPDIs of r included zero 
only for 0–50 number  lines (95% HPDI = [-.04,0.24]). 
These results show considerable correlation between the 
two non-symbolic number tasks, suggesting that the asso-
ciations between number-line estimation and math skills are 
found with non-symbolic numbers, not only with symbolic 
numbers.

Characteristics of GPAL‑selected designs

A novelty of the present experiment was that the data collec-
tion was controlled by an active learning algorithm. A com-
bination of an upper bound and a given number was selected 
by GPAL trial-by-trial to optimize function estimation. The 
resulting frequencies of the designs selected by GPAL are 
shown in Fig. 5. The distribution of given numbers selected 
by GPAL was markedly different from typical fixed designs 
used in number-line tasks, where given numbers are evenly 
distributed over the design space (Slusser et al., 2013) or 
concentrated in the first half of the range (Siegler & Opfer, 
2003). Rather, GPAL most frequently chose the designs at 
the edges of the triangular design space. This indicates that 
estimates of the smallest number (i.e., 5) and of the upper-
bound number of each number line had the highest uncer-
tainty (i.e., posterior variance) most of the time.

A comparison of the frequencies with which designs 
were selected for children and adults in Fig. 5 suggests that 
design selection in GPAL is sensitive to the shape of esti-
mated function. The designs for adults were more extreme 
than those for children, presumably because the function was 
more linear for adults. Samples at the two ends of the lines 
are highly informative for estimating nearly straight lines in 
linear functions. In contrast, if the function is logarithmic, a 
broader sample of given numbers (i.e., designs) is required 
because the endpoints alone are insufficient to estimate the 
shape of a non-linear curve. This idea is shown in the two 
side plots with red circles in Fig. 5.

General discussion

The present study examined children’s and adults’ estimates 
of non-symbolic numbers across multiple number ranges 
by adaptively optimizing the choice of design variables in a 
number-line task. This Bayesian active learning algorithm 
provided several insights into the development of non-sym-
bolic number estimation.

The primary insight concerned the similarity of non-
symbolic and symbolic number-line estimation. Our results 
showed all three features of symbolic number-line tasks. 
Specifically, we found that: (1) non-symbolic number esti-
mation also shows a “log-to-linear shift”; (2) logarithmic 
and linear patterns of non-symbolic number estimates co-
exist in the same individuals, with logarithmicity increasing 
with numeric range; and (3) logarithmicity of non-symbolic 
number estimates is positively correlated with the quality 
of estimates for arithmetic sums. The model comparison 
using model-neutral designs provided by GPAL supported 
the interpretation of these findings in the log-linear frame-
work. All findings about non-symbolic number estimation 
(but the log-to-linear shift) were novel and predicted by the 

Fig. 4  The logarithmicity measure (μλ) of Gaussian process (GP) esti-
mates for the age groups plotted against upper bounds. Note. Error 
bars indicate Bayesian 95% highest posterior density interval (HPDI)
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idea that symbolic and non-symbolic numbers are estimated 
through shared numerical representations with a common 
developmental pathway. Together, the results suggest that 
estimation of non-symbolic and symbolic numbers relies 
on common representations (Dehaene, 2011; Dehaene et al., 
2008; Siegler & Opfer, 2003), rather than qualitatively dis-
tinct representations (Carey, 2004; Carey & Barner, 2019; 
Rips et al., 2008).

Another insight, which manifested in several unexpected 
ways, was that size matters. One way that it mattered was 
in differentiating age groups: Sensitivity to the upper bound 
decreased with age. Specifically, with age, the upper bound 
had a smaller effect on the logarithmicity of estimates, and 
so a large number scale (e.g., 0–400) best distinguished 
among age groups. This finding highlights the importance of 
using large numbers for studying numeric development, but 
it also shows the utility of GPAL in finding these numbers, 
which were not known a priori.

Size also mattered when addressing the association 
between number representations and arithmetic ability, 
where conclusions in the literature often conflict (Fazio 
et al., 2014; Halberda et al., 2008). In the case of symbolic 
numbers and symbolic arithmetic, there is a robust corre-
lation (Booth & Siegler, 2008; Fazio et al., 2014; Kim & 
Opfer, 2017), and between non-symbolic number estimation 
and symbolic arithmetic, there is a weak correlation (Fazio 
et al., 2014). Here we looked at non-symbolic estimation and 
non-symbolic arithmetic, and found that logarithmicity of 
estimates correlated with the Weber fraction in the approxi-
mate addition task, with the strength of the correlation tend-
ing to increase with upper bound. These results support the 
idea that the approximate number system supports arithmetic 
intuitions (Halberda et al., 2008), but the influence of the 
approximate number system is reduced by crossing format 
(from non-symbolic to symbolic) and limiting the range of 
numbers tested.

Still another way that size matters is how it reveals the 
process of developmental change. Past studies that explored 
the range-dependency of the numerical estimation typi-
cally used number-line tasks with a few different scales. 
For example, Berteletti et al. (2010) presented 0–10 and 
0–100 number lines to the same participants. Thompson 
and Opfer (2010) used 0–1,000, 0–10,000, and 0–100,000 
number lines in a between-subject design. These studies 
showed that log compression increased with increasing 
number range in children, but the changes in logarithmicity 
were abrupt rather than gradual, possibly because there were 
only a few selected upper-bound numbers that differed by 
orders of magnitude. In contrast, when the upper-bound was 
included as a design variable that could be comprehensively 
controlled, we found a gradual change from more logarith-
mic to more linear estimation in all age groups. Thus, GPAL 
revealed an unexpected feature of developmental change that 
will be important to follow in future studies.

GPAL was particularly useful in the current study because 
we explored participant behaviors in a large design space 
in an efficient and model-free manner. Alternative methods 
such as using a fixed design or model-based experimental 
design optimization could be employed, but they would 
reduce the efficiency in data collection and also the infor-
mativeness of the data. That is, number-line tasks with fixed 
designs would require many more trials or multiple sessions 
to compare computational models and estimate a logarith-
micity measure across upper bounds as in the current study. 
A model-based design optimization method (e.g., ADO; 
Cavagnaro et al., 2010) could facilitate parameter estima-
tion (e.g., estimation of the logarithmicity parameter of the 
MLLM) across upper bounds, but the model would prede-
fine the relation between the upper bound and logarithmic-
ity, which may mischaracterize representation of number. 
When this happens (i.e., model misspecification), a design 
optimization algorithm might bias the design selection so 

Fig. 5  Design selection frequencies in the number-line task with multiple scales Note. On every trial, Gaussian process active learning (GPAL) 
selected a given number (design variable 1) and an upper-bound number (design variable 2)
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the conclusion of the study. GPAL overcomes both of these 
limitations, namely, inefficient data collection and model 
misspecification.

In conclusion, the present study explored non-symbolic 
number estimation in children and adults using a novel 
active learning algorithm (GPAL). The three characteristic 
features of symbolic number-line estimation were observed 
in the study. The results, taken together, suggest that non-
symbolic and symbolic numbers may be represented through 
common processes that share a developmental trajectory.

Appendix

1. GPAL simulations

In the main body of the paper, we introduced several 
functions that are likely to be observed in the number-line 
task. Here, in simulations with artificial data, we assessed 
the technical soundness and ability of GPAL to identify and 
recover these functions as data-generating models. That is, 

if GPAL works as claimed, the method should be able to 
recover the functional form of any model, including MLLM 
and CPMs.

Specifically, in the simulations, we used four different 
functions, which are linear (MLLM with λ = 0), logarithmic 
(MLLM with λ = 1), 1CPM (β = 0.5), and 2CPM (β = 0.5). 
The four models were then used to generate estimates for 
given numbers which are selected by GPAL. Normal random 
errors with the variance of 25 were added to the estimates. 
For simplicity, the number range was fixed to 0–100. This 
way the simulation of GPAL with ten trials was repeated 
100 times for each of the four functions. Appendix Figure 6 
shows results obtained at the end of ten simulated experi-
mental trials, averaged over 100 independent simulation 
runs. The solid black curves in the graphs are the GPAL-
inferred functions. They were practically indistinguishable 
from the data-generating functions (dotted red curves), 
thereby demonstrating that GPAL can successfully recover 
all the functions of interest.

2. Outlier detection

Fig. 6  Results of function recovery simulations using GPAL. Note. In 
each graph, the solid black curve is the Gaussian process (GP) mean 
function obtained as an average over 100 independent simulation 

runs. The dotted red curve is the data generating function (ground 
truth). The blue area depicts the 95% confidence region
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Participants with extremely high posterior variance of 
GP (> 3SD from the mean) were excluded from the analy-
sis, because the predictions of GP with particularly high 
variance were not considered reliable. Two children and six 
adults met this criterion. These outliers were detected sepa-
rately for children and adults.

3. Model fitting with the raw data

The model evaluation and parameter estimation in the 
current study relied on the GP-estimated posterior mean 
functions instead of the raw data. We also fitted the same 
three models of interest to the raw data to explore whether 
the sparse data obtained by GPAL would lead to the same 
outcome and conclusion. The raw data from children gen-
erally supported the results in the current study. Appendix 
Table 3 shows the DIC values of the MLLM and the CPMs 
fitted to the raw data. The MLLM generally showed smaller 
DIC values than the CPMs, as in the model comparison 
using the GP-estimated posterior mean functions (Table 2). 
The estimates of the logarithmicity measure (μλ) in the 
MLLM obtained from the raw data (Appendix Fig. 7) also 
showed the patterns consistent with those in Fig. 4. Younger 
children showed larger posterior mean of μλ than older chil-
dren, with increasing trends of μλ across upper bounds in 
both age groups. However, large HPDIs, especially with 
50 as the upper bound, suggested that the sparse raw data 
in each number range were not as reliable as the functions 
inferred by GP using the full data across number ranges. The 
raw data analysis was not feasible with adults because their 
data were extremely sparse, as shown in Fig. 5. Some adults 
had only one or two data points for some number ranges, 
making the by-range model fitting unviable.

4. Interpretation of the 95% highest posterior density inter-
vals (HPDIs) in Fig. 4

In Bayesian inference, statistical evidence for the dif-
ference between the posterior distributions of μλ from dif-
ferent age groups were considered strong when their 95% 
HPDIs did not overlap with each other. One concern about 
the analysis with the three age groups was that dividing 
children into two groups with reduced sample sizes might 
substantially reduce statistical power. However, HPDIs 
across upper bounds and age groups shown in Fig. 4 (and 
also Appendix Fig. 7) suggest that the divided groups have 
sufficiently strong statistical power to conclude that the val-
ues of μλ are meaningfully different across upper bounds 
and age groups.

5. Education level coding in the partial correlation analysis

To control for the effects of education levels in the Bayes-
ian partial correlations between λ and w values, the educa-
tion level was coded as 0 for kindergarteners, as the grade for 
1st–7th graders, and as 13 for adults. Thirteen corresponds 
to a high school graduate, which was the minimum educa-
tion level of the adult participants. We did not differentiate 
adults by education level because their number-line estima-
tion varied little compared to children. For the correlation 
analysis, the data were collapsed over children and adults, 
for 50, 100, 200, and 400 upper bounds.

Funding The present work was supported by grant FA9550-16-1-0053 
to MAP and JIM from the Air Force Office of Scientific Research 

Table 3  DIC values for the hierarchical Bayesian models MLLM, 
1CPM, and 2CPM. Measured with the raw data from children

MLLM mixed log-linear model, 1CPM one-cycle power model, 
2CPM two-cycle power model

Children

Upper bound MLLM 1CPM 2CPM

50 5791 9797 8430
100 9623 12058 11581
200 13296 14859 15746
400 17370 18526 19977
Mean 11520 13810 13934

Fig. 7  The logarithmicity measure (μλ) from the raw data of children 
plotted against upper bounds. Note. Error bars indicate Bayesian 95% 
highest posterior density interval (HPDI)
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