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Abstract
I applied the methodology known as maximum likelihood conjoint measurement (MLCM) to diagnose how numerical
magnitude affects the perception of physical size of numerals in the size congruity effect (SCE). Traditional theories of the
SCE argue for automatic activation of numerical magnitude, and therefore the obligatory interaction in perception between
number and size. Participants in the current study were presented with pairs of numerals varying on physical size and
numerical magnitude. They judged which member of the pair was physically larger, while ignoring numerical magnitude.
Three nested observer models (i.e. independent, additive, and saturated) of the contribution of physical size and numerical
magnitude to perceived size were fit to the data using maximum likelihood. The independent observer model exhibited
the best fit for the majority of observers. These results cast doubts on the view that numerical magnitude is activated
automatically in judgments of physical size of numerals.

Keywords Size congruity effect · Numerical cognition · Conjoint measurement

Introduction

In the lofty realm of mathematics, numbers are abstract
objects (Dantzig, 1954). In the real world, however, num-
bers come dressed in physical attributes. For example,
numbers are written on road signs, appear on screens, or
sounded through speakers in the airport. Thus, the per-
ception of numbers in the empirical world involves both
semantic and physical dimensions, and the semantic mean-
ing cannot be processed without first perceiving the physical
aspects. How do people perceive the physical dimension of
a number? Does numerical magnitude affect perception of
the numeral’s physical size? The emerging consensus is
that it does (see, Dehaene, 1997 for review), leading many
researchers to argue that the semantic dimension (numerical
magnitude) is processed automatically whenever a digit is
presented for view for any purpose. An interaction between
physical and numerical dimension of a number is there-
fore inevitable. The present study subjected the assump-
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tion of automatic activation of numerical magnitude to a
novel scrutiny, harnessing a rigorous psychophyscial tech-
nique known as maximum likelihood conjoint measurement
(MLCM, Ho, Landy, & Maloney, 2008, Knoblauch & Mal-
oney, 2012). The technique is based on the classic conjoint
measurement methodology originally developed by Luce
and Tukey (1964), and its subsequent elaborations (Krantz,
Luce, Suppes, & Tversky, 1971). It allows a rigorous
examination of the degree to which numerical magnitude
contributes to judgments of numerals’ physical size. To
anticipate the conclusions, I show that numerical magnitude
does not interact with physical size. Consequently, I chal-
lenge the assumption of automatic perception of numerical
magnitude.

The size congruity effect

When presented with pairs of numerals that vary on
both physical size and numerical magnitude, people are
faster and more accurate to select the physically larger
member of the pair in congruent (7-2) than incongruent (7-
2) condition. This phenomenon has been dubbed the size
congruity effect (SCE). It entails that numerical magnitude
intrudes on judgments of physical size, even when it
is irrelevant to the task at hand. The SCE has been
recorded in numerous studies and with different notations
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of number (Dehaene, 1997; Algom, Dekel, & Pansky,
1996; Besner & Coltheart, 1979; Schwarz & Heinze, 1998;
Henik & Tzelgov, 1982; Tzelgov, Ganor-Stern, &Maymon-
Schreiber, 2009; Tzelgov, Meyer, & Henik, 1992; Pansky
& Algom, 1999; Fitousi, 2014; Fitousi, 2010; Fitousi,
Shaki, & Algom, 2009; Fitousi & Algom, 2006; Fitousi &
Algom, 2018). The pervasiveness of the SCE has led many
researchers to interpret it as strong evidence for mandatory
processing of numerical magnitude (Tzelgov et al., 1992).
The current study challenges this view.

The evidence for automatic activation of number seems
strong, but there are pervasive biases in the routine exper-
imental design of the SCE that cast doubts on mandatory
activation of numerical magnitude in the SCE. Algom
et al. (1996) have identified two critical biases prevalent
in SCE studies. First, there is an asymmetry in the number
of stimuli used for the numerical and physical dimensions.
Researchers usually use the numbers 1 to 9 for numerical
magnitude, but only two or three values (small, medium,
larger) for physical size. This asymmetry can determine
the observed interaction (Algom et al., 1996; Pansky &
Algom, 1999). Second, the relative discriminability of val-
ues along the number and size dimensions is not matched.
Usually, the numerical dimension is more salient than the
physical dimension. This results in interference from the
more discriminable (number) to the less discriminable (size)
dimension (Melara & Mounts, 1993; Pansky & Algom,
1999; Algom & Fitousi, 2016). When physical size was
made more salient than numerical value, a reverse SCE
emerged (Fitousi & Algom, 2006). Moreover, when num-
ber and size were matched on discriminabilty the SCE
was vanished (Algom et al., 1996). The malleability of
the SCE casts doubt on the automatic nature of numerical
information processing.

Garner (1974) has distinguished between pairs of integral
and separable dimensions. The former are processed
together as a Gestalt and are difficult to tear apart,
the latter can be readily separated in perception and
maintain a certain degree of independence (Algom &
Fitousi, 2016). The assumption of automatic activation also
corresponds with the idea the number and size are integral
dimensions. The studies of Algom and his associates
(Algom et al., 1996; Pansky & Algom, 1999; Fitousi &
Algom, 2006) have shown that numerical magnitude and
physical size are separable dimensions, and that the SCE
can result from known biases in the routine experimental
design, not from truly integral processing. The present
study further sought to test the level of independence
of the number and size dimensions by harnessing a
powerful non-speeded methodology– the MLCM (Ho,
Landy, & Maloney, 2008; Qi, Chantler, Siebert, & Dong,
2015). The MLCM has been widely applied to classic
psychophysical dimensions such color dimensions of hue,

chroma, and lightness (Gerardin, Dojat, Knoblauch, &
Devinck, 2018; Rogers, Knoblauch, & Franklin, 2016),
and surface gloss and bumpiness (Ho et al., 2008;
Qi et al., 2015). The current study expands the scope
of applications to physical and semantic dimensions of
numerals.

The MLCM provides a stronger test of the automaticity
approach than is afforded by the SCE. First, the MLCM
is a theory-driven approach that is based on rigorous
mathematical derivations (Krantz et al., 1971; Luce &
Tukey, 1964), while the SCE is an operational measure,
whose presence or absence in the data can be readily
affected by a myriad of experimental factors (Algom et al.,
1996; Pansky & Algom, 1999; Fitousi & Algom, 2006).
Second, the MLCM is more explicit theoretically because
it specifies the form of relations between dimensions, while
the SCE is only an empirical observation that is amenable
to circular explanations. Third, the MLCM is applied to a
continuum of dimensional values (Ho et al., 2008; Qi et al.,
2015), whereas the SCE is derived from two categories
(congruent vs. incongruent). Finally, together with the
Garner paradigm (Algom et al., 1996), the MLCM serves as
an additional powerful source for converging operations on
the separability of dimensions (see for, Rogers et al. 2016,
2018).

Method

Observers

A total of 24 observers participated in this study. They
were recruited from Ariel University pool of participants
(F=19, M=5, mean age = 23.3, sd = 1.59). Observers
were compensated with a course credit. All observers had
normal or corrected-to-normal vision. All observers were
naive to the goals of the study. The number of observers
was determined based on a power analysis according to
the following logic. In MLCM there are three possible
models that can fit to the data of an observer (independent,
additive, and saturated, see Model section). Under the null
hypothesis, any of these three strategies has equal chance
of being adopted by the observer (π = 0.333). Under
the alternative automatic hypothesis, observers combine
numerical magnitude and physical size in an interactive
fashion. Thus, the saturated model should be more prevalent
than expected by chance (π = 0.60). I used the ‘pwr’
package (Champely, Ekstrom, Dalgaard, Gill, Weibelzahl,
& Anandkumar, 2018) in the open source software R (Core
Team, 2017) to compute the sample size needed to detect
such an effect, with a power of 0.8 and significance level of
α = 0.05. A sample size of N=22 was found to meet these
requirements.
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Stimuli and apparatus

The stimuli were white numerals placed over a black
background. The stimuli were created with the Microsoft
Paint software. All numerical characters were in font type
‘Ariel’. Five font sizes were used: 26, 36, 48, 58, and 72.
Five numerical magnitudes were chosen 1, 3, 5, 7, and 9.
The five font sizes and the five numerals were combined
in a full factorial fashion to yield 25 possible numerals (5
levels of physical size × 5 levels of numerical magnitude =
25). Figure 1 shows the stimuli on a Cartesian grid. Let i

denote the rows of this grid and j denote its columns. The
stimuli matrix represents a full factorial combination of i

levels of physical size and j levels of numerical magnitude.
For a given level of numerical magnitude j , physical size is
increasing as we move up the ith rows. For a given physical
size level i, numerical magnitude is increasing as we move
to the right j th columns.

Procedure and design

On each trial observers viewed 1 of the 325 possible pairs
of numerals from those illustrated in Fig. 1 (including self-
comparisons). Viewing distance was approximately 56cm.
The two numerals were presented simultaneously one next
to the other on the center of the screen. The observer’s task
was to judge which of the two numerals was physically
larger while ignoring numerical magnitude. Each pair was
presented 3 times, making a total of 975 trials1. Each trial
started with a central fixation point presented for 200 ms,
then the pair of numerals appeared for 400 ms and was
removed from the screen. The observer indicated whether
the numeral on the left or the numeral on the right appeared
to him or her as physically larger by pressing one of
two corresponding keys on the keyboard (‘z’ or ‘m’). The
observer’s response initiated the next trial. The task was not
speeded. The actual observer’s response was recorded and
served as the main dependent variable of interest.

Model

Additive conjoint measurement permits us simultaneously
to measure and model the contributions of both physical
size and numerical magnitude dimensions to perceived size.
The results are estimates of two functions: perceived size
and perceived magnitude that capture these contributions.
The psychophysical task required for application of MLCM
is a comparative judgment task (Luce & Tukey, 1964;
Knoblauch & Maloney, 2012). On each trial, observers are
presented with a pair of stimuli and indicate which member
of the pair is higher (e.g., larger) on a relevant dimension,

1This is the smallest number of repetitions needed to produce reliable
parameter estimates (Ho et al., 2008)

Fig. 1 The stimuli set used in the experiment. Five levels of numerical
magnitude were combined with five levels of physical size. The i stand
for levels of physical size and j for levels of numerical magnitude.
Note that for a given level of numerical magnitude j , physical size
is increasing up the ith rows. For a given level of physical size i,
numerical magnitude is increasing as one moves to the right of the j th
columns

while ignoring an irrelevant dimension. The procedure
corresponds well with the comparative judgment task that
has been typically used to gauge the SCE (Henik & Tzelgov,
1982). But one should bear in mind that it is not speeded,
and that the comparisons also include pairs in which the
physical sizes of the two members are comparable (sampled
from the same row i of the Cartesian grid in Fig. 1).

In the current experiment, observes viewed all possible
pairs of the 25 numerals (see Fig. 1), and on each trial
judged which member of the pair was physically larger2.
Let φs denote values on the physical size scale and let φm

denote values on the numerical magnitude scale. The value
of physical size is constant across the ith row, and is denoted
φs

i and the value of numerical magnitude is similarly
constant in the j th column and is denoted φm

j . Comparison
between two numerals can be represented as a comparison
between two ordered pairs (φs

i , φ
m
j ) and (φs

k, φ
m
l ). It is

assumed that the visual system computes an estimate of
perceived physical size that is based on both its physical
size φs and numerical magnitude φm. The estimates of this
quantity are ψS(φs

k, φ
m
l ) and ψS(φs

i , φ
m
j ), with uppercase

letters for psychological measures and lowercase letters
for actual physical or semantic variables. The resulting
estimates of perceived physical size amounts to:

�(i, j, k, l) = ψS(φs
k, φ

m
l ) − ψS(φs

i , φ
m
j ) + ε (1)

2Self-comparisons were included, but they did not affect the model
fitting. They are often incorporated to measure response bias
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where the random variable ε ∼ N (μ, σ 2
S ) is a judgment

error.
There are three nested models of the decision process

that can be tested in the MLCM framework (Knoblauch
& Maloney, 2012; Ho et al., 2008): (a) the independent
observer (an ideal observer), (b) the additive observer, and
(c) the saturated observer. Each model provides estimates
of the perceptual scale values of physical size and how they
are affected by values of numerical magnitude. Graphical
illustrations of these models can be seen in Fig. 2. Because
the models are well defined, they allow a rigorous test
of the degree to which numerical magnitude intrudes
on judgments of physical size. The independence (ideal
observer) model assumes that decisions about physical size
are made based only on physical size, with no contributions
from numerical magnitude. The additive model assumes
that decisions with respect to physical size are made based
on the sum of component psychological responses elicited
by physical size and numerical magnitude. The saturated
model is based on the premise that decisions about physical
size also include an interaction term that depends on the
specific values of physical size and numerical magnitude, in
addition to their simple additive combination.

If the SCE indeed reflects the automatic activation
of magnitude due to strong interactive relations between
number and size (Henik & Tzelgov, 1982; Tzelgov et al.,
2009; Tzelgov et al., 1992), then the saturated model should
provide the best fit to the data of all observers. In contrast,
if the SCE results from pervasive biases in the standard
experimental design, and the two dimensions are not truly
integral, but rather separable dimensions (Fitousi & Algom,
2018; Algom et al., 1996), then the independent or additive
models should provide the best fit to the data.

The three models form a nested series in which the
independent model is the most constrained and the saturated
model is the least constrained. A nested likelihood ratio test

is used to evaluate the models (Gerardin et al., 2018; Rogers
et al., 2016; Ho et al., 2008; Fitousi, 2014)

The additive conjoint model replaces ψS(φs
i , φ

m
j ) by

ψS:s
i + ψS:m

i where ψS:s
i is an additive contribution of

physical size to psychological (or perceived) size that is
constant across the ith row and ψS:m

j is a comparable
contribution of the numerical magnitude to perceived
physical size that is constant across the j th column (see
Fig. 1). ψS:s

i and ψS:m
j are parameters of the additive

model that are estimated from data. The additive model
is based on the assumption that numerical magnitude and
physical size interact in determining perceived physical size,
but that the contribution of a particular level of numerical
magnitude ψS:m

j to perceived physical size is independent

of the physical size (Ho et al., 2008). The first term ψS:s
i

forms the psychophysical scale, mapping physical size to
perceived size, and the second term ψS:m

j represents the
“contamination” of perceived physical size by changes in
numerical magnitude. The assumption is tested here, along
with the hypothesis that changes in numerical magnitude
affect perceived physical size at all, which amounts to the
hypothesis that ψS:m

j = 0 for all j .
The additive model can therefore be rewritten as:

�(i, j, k, l) = ψS:s
k + ψS:m

l − ψS:s
i − ψS:m

j + ε (2)

which can be rearranged to:

�(i, j, k, l) = [ψS:s
k − ψS:s

i ] + [ψS:m
l − ψS:m

j ] + ε (3)

The additive model for physical size is based on comparison
of the perceived size levels of the two numerals with an
additive contamination from the difference in perceived
numerical magnitude. Because there are 5 levels along

Fig. 2 Illustrations of the three hypothetical models of conjoint
measurement with numerical magnitude and physical size: A. An
independent observer, B. An additive observer, and C. A saturated
observer. According to the independent observer the psychological
response to physical size is affected only by changes in objec-
tive physical size with no contribution whatsoever from changes

in numerical magnitude. According to the additive observer psy-
chological responses to physical size are also affected by additive
contributions from numerical magnitude. Finally, according to the sat-
urated model, psychological responses to physical size are determined
by unique combinations of physical size and numerical magnitude
values
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each dimension, there are 2 × 5 levels plus 1 variance,
which amount to 11 free parameters. To make the model
identifiable, it is customary to fix the response at level 1 (the
lowest) in each dimension to 0, ψS

1 = ψM
1 = 0, and the

variance to 1. This reduces the number of free parameters to
8 (Knoblauch & Maloney, 2012; Ho et al., 2008).

The independent model is identical to the additive model
except that there is no contamination of perceived physical
size by numerical magnitude. The decision in this model is
then based on:

�(i, j, k, l) = [ψS:s
k − ψS:m

i ] + ε (4)

In this model the perceived difference in physical size
depends only on the physical size of the numerals compared.
Hence, the values of ψM

j are fixed at 0 and the total number
of free parameters is 4.

The additive conjoint model assumes that the contam-
ination of size by magnitude is additive and independent
of size. Note that this assumption renders the additive
model inconsistent with the auotomaticity approach (Tzel-
gov et al., 1992). The latter assumes that physical and
numerical magnitudes are transformed onto a single abstract
sensory code (Dehaene, 1997), and therefore predicts a
stronger form of interaction than that predicted by the addi-
tive model. It is the saturated model that aligns best with the
automaticity approach.

The saturated model includes an interaction factor that
depends on the intensity levels of both physical size and
numerical magnitude. The decision variable is defined
according to:

�(i, j, k, l) = [ψS:s
i + ψS:m

j + ψS:s:m
ij ]

−[ψS:s
k + ψS:m

l + ψS:s:m
kl ] + ε (5)

In this model, responses cannot be accounted for based on
simple additive combination, but require the assumption of
interactive terms. Hence, it is assumed that the response
to each numeral is based on a unique combination of
the separate contributions of physical size and numerical
magnitude. Note that the 25 numerals that are presented in
Fig. 1 are comprised of 5 levels of physical size and 5 levels
of numerical magnitude. One cell in this grid is fixed at 0
leading to 24 free parameters. This maximal number of free
parameters gives this model its name (saturated).

The three models comprise a nested set (Ho et al., 2008),
where the independent model is the most constrained,
the saturated model is the least constrained, and the
additive model is at an intermediate level. The goals of the
experiment are to estimate the perceptual scale values and
model the contributions of both physical size and numerical
magnitude from each observer’s data, as well identifying the
best fitting model.

Results

Accuracy

Data, codes, and other supporting materials can be down-
loaded from https://data.mendeley.com/datasets/55x3jvs72
f/1. High level of accuracy is required for application of the
MLCM (Ho et al., 2008), and this condition was met here.
All observers performed at a level of 90% - 99% correct
(mean =96%). Note that in MLCM accuracy can be com-
puted only for pairs of numerals with unequal physical size
(76% of the trials). 24% of the pairs have the same value
of physical size (i.e., sampled from the same row i), and
therefore responses to those pairs cannot be designated as
correct or incorrect. It should be noted that the input to the
MLCMmodel is not accuracy rates, but rather the perceived
ordering of pairs 3.

To test for the presence of an SCE in the accuracy data, I
divided the trials into congruent and incongruent trials. The
SCE was computed as the difference in accuracy between
congruent (0.97) and incongruent(0.96) trials, and it was not
significant [t (23) = 1.10, p = 0.13] (one-tail). It’s absence
is not surprising, given that the design was completely
balanced, with equal number of physical and numerical
values (Algom et al., 1996).

MLCM

I used the MLCM package (Knoblauch & Maloney, 2014)
in the open source software R (Core Team, 2017) to analyze
the data. The default method uses the GLM function to
estimate the model coefficients with a maximum likelihood
criterion. The ML estimates are found with an iteratively
reweighted least squares (IRLS) algorithm. The χ2 statistic
is computed from the differences of deviance of the nested
model fits (see Knoblauch & Maloney, 2012 pp. 240-245).

I first compared the additive and independent models. I
did it separately for each observer. The degrees of freedom
for this specific test were computed as the difference
between the coefficient estimates in each model (8 for the
additive model - 4 for the independence model = 4). At
a Bonferroni-corrected level of p < .002, the additive
model provided better fit to the data than the independent
model for only six out of 24 observers (obs. 2, 8, 9, 12,
19, and 21) (see Table 1). For two observers (obs. 6 and

3With enough trials the MLCM model fitting procedure can detect
any deviation from the ideal (independent) observer model, including
signatures of the saturated model. Knoblauch and Maloney (2012)
explain that: “In any experiment, any pattern of response is consistent
with any conjoint measurement representation or the absence of any
representation. Even if the probability of choosing A over B is 0.999,
there is a probability 0.001 of choosing B over A. Any pattern of
response to any series of trials is possible, and we seek the explanation
with greatest likelihood, not the only possible representation” (p.255)
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Table 1 Comparison of independent and additive observer models for
judgments of physical size

Test Numerals (additive model x independent model)

DF χ2 p-value

Obs. 1 4 8.80 .07

Obs. 2 4 24.21 <.002***

Obs. 3 4 4.69 0.32

Obs. 4 4 2.65 0.61

Obs. 5 4 9.05 0.06

Obs. 6 4 14.37 0.006

Obs. 7 4 3.70 0.44

Obs. 8 4 75.67 <.002***

Obs. 9 4 43.16 <.002***

Obs. 10 4 0.73 0.94

Obs. 11 4 12.50 0.01

Obs. 12 4 13.40 <.002***

Obs. 13 4 8.58 0.07

Obs. 14 4 12.50 0.01

Obs. 15 4 5.65 0.22

Obs. 16 4 15.80 0.003

Obs. 17 4 5.62 0.23

Obs. 18 4 7.46 0.11

Obs. 19 4 47.01 <.002***

Obs. 20 4 9.68 0.04

Obs. 21 4 20.57 <.002***

Obs. 22 4 5.54 0.23

Obs. 23 4 2.69 0.61

Obs. 24 4 10.84 0.03

The Bonferroni-corrected level for multiple comparisons is p < .002.
***=p<0.002

obs. 16) the additive model was on the verge of significance
(p=0.006 and p = 0.003, respectively). This entails that
for at least 75% of the observers, the independent (ideal)
observer model provided a better description of the data. For
these observers, judgments of physical size were immune
to intrusions from numerical magnitude. It should be noted
though that for 25% of the observers, the perception of
physical size was contaminated by additive contributions
from numerical magnitude. This implies that for those
observers magnitude did affect size. I will refer to this result
in the General Discussion.

I next derived the estimated contributions of physical size
and numerical magnitude to perceived physical size. These
estimates can inform us on how observers transformed
the values of physical size and numerical magnitude onto
a perceptual (psychological) scale of size. Figure 3 plots
representative plots of perceptual scale values as a function

of the physical size values, separately for physical size and
numerical magnitude. For physical size, observers exhibited
the expected monotonic increase, entailing that observers
indeed perceived numerals as physically larger as their
physical size increased. The contribution of physical size to
psychological size is granted, but does numerical magnitude
contribute to judgments of psychological size? As can
be noted in Fig. 3, additive contributions of numerical
magnitude to psychological size are evident only in the data
of eight observers (obs. 2, 6, 8, 9, 12, 16, 19, and 21).
These are roughly the same observers whose data favored
the additive over the independent model. For the remaining
(majority) of observers, the contribution of numerical
magnitude to perceived size was null. This is also in full
agreement with the results of the model selection procedure.
Interestingly, the magnitude scales varied across these
observers, increasing in some, but decreasing in others. This
suggests that increasing semantic magnitude does not in all
cases increases the perception of physical size.

Next, I compared the saturated and the additive models
(see Table 2). The χ2 statistics in this case has 16 degrees
of freedom because it is computed as the difference in
number of free parameters of the less constrained model
(the saturated model =24) and the more constrained model
(the additive model=8). At a Bonferroni-corrected level of
p < .0083, the saturated model exhibited better fit for
only one of the observers (see Table 2). I also fit the
saturated model to the data, separately for each observer’s
data. Figure 4 projects the estimated perceived physical size
values against the numerical magnitudes according to this
model. Each point corresponds to one of the 25 numerals in
the experiment. The visual patterns reveal that the horizontal
lines connecting the values at each magnitude level are
parallel to each other for most observers. Eyeballing Fig. 4
supports the conclusions drawn from the modeling. For
the participants whose data favored the additive observer
model, the lines are parallel but increasing (obs. 2, 8, 12, 19)
or parallel but decreasing (obs. 21).

In sum, out of 24 observers, 18 perceived physical
size and numerical magnitude according to an independent
(ideal) observer model, 5 observers according to an additive
observer model and only one according to a saturated
observer model. Even under a more liberal statistical
approach, in which the additive model is as prevalent as the
ideal observer model, the saturated model remains a rarity.
The results are generally inconsistent with the predictions of
the automaticity approach to number perception (Henik &
Tzelgov, 1982; Tzelgov et al., 2009; Tzelgov et al., 1992).
They are in line with the attention approach (Algom et al.,
1996; Fitousi & Algom, 2018), whose proponents ascribe
the SCE to pervasive biases in the routine SCE design, and
not to truly abiding integrality of dimensions.
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Fig. 3 Estimated scales for judgments based on physical size. Addi-
tive model average estimates for the 24 observers. The black cir-
cles connected by a line show the contribution of physical size
and the white circles connected by a line show the contribution of

numerical magnitude. Error bars are standard errors of the mean, and
are computed based on the Hessian of the maximum likelihood matrix
(Knoblauch & Maloney, 2012)
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Table 2 Comparison of additive and saturated observer models for
judgments of physical size

Test Numerals (saturated model x additive model)

DF χ2 p-value

Obs. 1 16 17.58 0.34

Obs. 2 16 26.77 0.04

Obs. 3 16 4.69 0.32

Obs. 4 16 24.84 0.07

Obs. 5 16 15.34 0.49

Obs. 6 16 23.45 0.10

Obs. 7 16 20.06 0.21

Obs. 8 16 13.76 0.61

Obs. 9 16 12.34 0.72

Obs. 10 16 16.33 0.42

Obs. 11 16 14.12 0.58

Obs. 12 16 22.99 0.11

Obs. 13 16 29.18 0.02

Obs. 14 16 14.12 0.58

Obs. 15 16 20.23 0.20

Obs. 16 16 35.32 0.003***

Obs. 17 16 20.37 0.20

Obs. 18 16 21.82 0.14

Obs. 19 16 20.37 0.20

Obs. 20 16 12.09 0.73

Obs. 21 16 6.99 0.97

Obs. 22 16 22.99 0.11

Obs. 23 16 12.63 0.69

Obs. 24 16 15.77 0.46

The Bonferroni-corrected level for multiple comparisons is p < .0083
***=p<0.0083

Discussion

The SCE plays a central role in numerical cognition. It has
been often interpreted as evidence for automatic activation
of semantic magnitude and for the notion that magni-
tude and size are converted onto a common abstract code
(Dehaene, 1997). It is therefore important to understand
how the dimensions of physical size and numerical magni-
tude interact, and specifically whether and how the semantic
dimension of magnitude contaminates the perception of
size. The present study examined these questions directly,
by applying the maximum likelihood conjoint measurement
technique (Ho et al., 2008; Knoblauch & Maloney, 2012)
to the dimensions of physical size and numerical mag-
nitude. If the traditional automatic account were correct,
then the MLCM should have favored the saturated observer
model over the additive or (ideal) independent observer
model. That was not the case. The present study showed
that for most observers magnitude was perceived indepen-

dently of size, or affected size according to an additive
observer model. The data of only one participant favored
the saturated observer model. These results argue against
an automatic activation of semantic magnitude, and also
against the idea that number and size are transformed onto
a common abstract code. The results are consistent with the
attention approach advanced by Algom, Fitousi and their
colleagues (Algom et al., 1996; Fitousi & Algom, 2018).

Independence of dimensions has already been shown
by Algom and colleagues in the Garner paradigm (Pansky
& Algom, 1999, 2002; Fitousi & Algom, 2006, 2020),
where the dimensions have been found to be separable.
Algom and colleagues have shown that the great majority of
designs that measured the SCE, induce built-in experimental
biases. For example, by picking two values for physical size
and nine values for numerical values, experimenters have
unwittingly induced an informational bias. Consequently,
observers were attracted to the more variable dimension
(magnitude), which resulted in SCE. Algom and colleagues
have shown that the SCE can be generated, reversed, or
eliminated at will through minor manipulations of such
context (Algom et al., 1996; Pansky & Algom, 1999,
2002; Fitousi & Algom, 2006). For example, by using
equal number of physical size and numerical magnitude
values the SCE was eliminated. The outcomes from the
conjoint measurement and Garner paradigms provide a set
of converging operations on the separability of number and
size (Algom & Fitousi, 2016; Garner, Hake, & Eriksen,
1956; Von Der Heide, Wenger, Bittner, & Fitousi, 2018). In
addition, a recent study by Fitousi and Algom (2018) has
applied the System Factorial Technology (SFT) (Townsend
& Nozawa, 1995) – a powerful stochastic modeling
methodology – to uncover the attendant architecture of
processing magnitude and size. The results revealed the
absence of an interactive architecture. Magnitude and size
were processed according to a serial architecture and with a
self-terminating stopping rule (meaning that magnitude was
not obligatory for processing to halt).

Generalization of the results to other designs

The design employed in the current study is unique
because: (a) it models comparative judgments of non-
speeded responses rather than speeded responses, and (b) it
is balanced in the sense that the stimuli set is comprised of
an equal number of physical and numerical values. Thus,
one may argue that the results obtained in this design
may not generalize to other more ‘traditional’ designs, in
which the SCE emerges (Henik & Tzelgov, 1982). In other
words, one may claim that the dimensions of number and
size should appear as dependent (or processed according
to a saturated observer model) in traditional experiments.
This argument is utterly misguided. First, separability (or
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Fig. 4 Results of the saturated model with the estimated contribu-
tions for each combination of physical size and numerical magnitude
for each observer. Levels of physical size are coded according to: (a)

numbers 1-5, with 1 being the smaller and 5 larger physical size, and
(b) lines’ color, which gradually shift from black (small physical size)
to gray (large physical size)
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integrality) is an intrinsic aspect of stimuli (Algom et al.,
1996; Algom & Fitousi, 2016; Garner, 1974) and holds
under different experimental contexts. Once the dimensions
have been found to be separable or independent, their
interaction in unbalanced designs can be safely ascribed
to other experimental factors, not the stimuli themselves
(see, Garner & Felfoldy, 1970). The upshot is that the
emergence of an SCE does not imply that the dimensions
of size and magnitude become dependent or integral in such
designs. This point has been put succinctly by Algom et al.
(1996): “Interactions, when they appear, are not intrinsic
to dimensions involving numbers”. (p. 569). Pansky and
Algom (1999) further claimed that: the additional sources of
variations reside in the entire stimulus ensemble, not within
the individual stimulus” (p.56).

Second, the independence of size and number cannot be
decided based only on the presence or absence of SCE.
The SCE is an empirical result not a theoretical account.
In the absence of converging operation, any theoretical
concept (e.g., numerical activation) is only a restatement
of the empirical result (Algom & Fitousi, 2016). To avoid
circular reasoning, Garner has noted the need for converging
operations (Garner et al., 1956). Therefore, the separability
of size and number is now supported not by one, but several
converging operations from the: MLCM, Garner (Algom
et al., 1996; Pansky & Algom, 1999), and SFT (Fitousi &
Algom, 2018) paradigms. All of which are well-established,
rigorous, meta-theoretical tools.

Individual differences in the perception of size
and number

A note is in order regarding the presence of individual
differences in processing of magnitude and size. For 25%
of the observers, the perception of physical size was
contaminated by additive contributions from numerical
magnitude. This implies that some participants were
affected by numerical magnitude. One may argue that this
result lends some support to the automatic approach. But
as I have expounded at the outset, a model of additive
‘contamination’ is not predicted by the automatic approach
(Dehaene, 1997). In particular, the accepted marker of
automatic activation – the SCE – implies an interactive
pattern by which an increase in numerical magnitude
leads to a disproportional increase in the estimations of
large-size numerals compared to small- size numerals.
Moreover, for the portion of observers whose data favored
the additive model, the effect of numerical magnitude on
size was characterized by two opposite patterns. For some
observers, increasing numerical magnitude led to a decrease
in perceived physical size, while for others, the reverse
was true. Most importantly, the data strongly rejected
the saturated model, suggesting that number and size are

perceived as two independent entities, and that these entities
are not transformed onto a common abstract code. In any
event, the findings of individual differences in the way
people handle numerical information opens the door for
other future studies in numerical cognition on the presence
of individual strategies.

Data Availability Data can be downloaded from https://data.mendeley.
com/datasets/55x3jvs72f/2.

Open Practices Statement All data, codes, and supporting materials
can be downloaded from here https://data.mendeley.com/datasets/
55x3jvs72f/2.
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