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Abstract
Spatial navigation is a complex cognitive activity that depends on perception, action, memory, reasoning, and problem-solving.
Effective navigation depends on the ability to combine information from multiple spatial cues to estimate one’s position and the
locations of goals. Spatial cues include landmarks, and other visible features of the environment, and body-based cues generated
by self-motion (vestibular, proprioceptive, and efferent information). A number of projects have investigated the extent to which
visual cues and body-based cues are combined optimally according to statistical principles. Possible limitations of these inves-
tigations are that they have not accounted for navigators’ prior experiences with or assumptions about the task environment and
have not tested complete decision models. We examine cue combination in spatial navigation from a Bayesian perspective and
present the fundamental principles of Bayesian decision theory. We show that a complete Bayesian decision model with an
explicit loss function can explain a discrepancy between optimal cue weights and empirical cues weights observed by (Chen et al.
Cognitive Psychology, 95, 105–144, 2017) and that the use of informative priors to represent cue bias can explain the incongruity
between heading variability and heading direction observed by (Zhao and Warren 2015b, Psychological Science, 26[6], 915–
924).We also discuss (Petzschner and Glasauer’s , Journal of Neuroscience, 31(47), 17220–17229, 2011) use of priors to explain
biases in estimates of linear displacements during visual path integration. We conclude that Bayesian decision theory offers a
productive theoretical framework for investigating human spatial navigation and believe that it will lead to a deeper understand-
ing of navigational behaviors.
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In 1707, an English fleet under the command of Sir
Clowdesley Shovell foundered after running aground on the
Isles of Scilly, almost within eyesight of the southwest coast
of England. Four ships went down and as many as 2,000
sailors lost their lives. The cause of the wreck, according to
experts of the time, was that the seamen did not know their
location because of errors in estimating longitude. Although
the measurement of latitude had been solved since the time of
the ancient Greeks, the measurement of longitude pestered
maritime navigators well into the 18th century. Latitude can
be determined from the altitude of the sun over the horizon, a

measurement readily made with two rods hinged at one end.
The measurement of longitude at sea, however, is a problem
of measuring time, and it did not admit to practical solution
until 1761 with the invention by John Harrison of a portable
and reliable clock with a balance spring regulator (Boorstin,
1983).

Spatial navigation is a complex cognitive activity that de-
pends on perception, action, memory, reasoning, and
problem-solving (Golledge, 1999). Although people are not
often faced with navigational problems as challenging and
consequential as Admiral Shovell’s, they rely on their naviga-
tional skills every day, from activities as common as getting
from home to work and back again, to less routine endeavors,
such as traveling across town in search of a new, highly rated
restaurant. Effective navigation requires combining informa-
tion from multiple sources or cues to estimate locations. The
navigator needs to know their position in space and the loca-
tions of goals. One important category of spatial cues in body-
powered navigation is body-based cues generated by self-mo-
tion, such as signals generated by the vestibular system, the
perception of muscle contractions and limb position
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(proprioception), and internal copies of efferent movement
signals. Navigation based solely on such body-based cues is
often referred to as path integration.1 Path integration is fun-
damental to maintaining orientation in space and may be cru-
cial to forming a cognitive map of the environment (Chen
et al., 2015; Gallistel, 1990; R. F. Wang, 2016). Humans rely
heavily on their perceptions of the external world (especially
the visual system) to navigate (Foo et al., 2005; Mou &
Zhang, 2014; Zhao & Warren, 2015a), and these constitute a
second category of spatial cues. These cues differ from those
in the first category in that the stimuli are external, in the
environment, not internal to the navigator.

Even a quotidian activity such as walking across campus for
a meeting in a distant building may depend on combining in-
formation from multiple mental representations of the layout of
the campus (e.g., Meilinger, 2008), the perception of objects
and places along the path (e.g., R. F. Wang & Brockmole,
2003), and the perception of bodily motion during locomotion
(e.g., Lindberg & Gärling, 1981). Spatial cues differ in their
accuracy and precision, and a given cue’s accuracy and preci-
sion may vary over time and space. A salient and significant
building, for instance, may provide accurate and precise infor-
mation about location for long periods of time, whereas body-
based cues to self-motion can be error-prone, especially as lo-
comotion distance increases (Loomis et al., 1993; Souman
et al., 2009). Even GPS signals lose fidelity under some envi-
ronmental conditions (e.g., dense foliage, urban canyons).

People also differ greatly in their abilities to use various sources
of spatial information to learn new environments and to navi-
gate (e.g., Allen, 1999; Gagnon et al., 2018; Hegarty et al.,
2006; Ishikawa & Montello, 2006; Montello et al., 1999;
Shelton et al., 2013; Weisberg et al., 2014).

Research on cue combination in navigation was stimulated
at least in part by Cheng et al.’s (2007) ground-breaking review
of work on cue interactions in spatial actions and judgments.
Since the publication of that article, a number of projects have
examined the extent to which multiple spatial cues are com-
bined in human locomotion, reorientation, or navigation to im-
prove performance relative to the use of single cues alone
(Bates & Wolbers, 2014; Chen et al., 2017; Chrastil et al.,
2019; Frissen et al., 2011; Nardini et al., 2008; Petrini et al.,
2016; Petzschner et al., 2012; Sjolund et al., 2018; Twyman
et al., 2018; Xu et al., 2017; L. Zhang et al., 2019; Zhao &
Warren, 2015b). The most commonly used experimental para-
digm in studies designed to investigate navigation requires par-
ticipants to walk an outbound path consisting of several legs
and then to return to a “home” location using their memories of
the waypoints and the path. The paradigm is often referred to as
“homing,” or when the outbound path has two legs, as “triangle
completion” (Loomis et al., 1993). This task is appealing be-
cause it is quite natural for people to execute and readily allows
spatial cues to be manipulated during the outbound path, the
return path, or both. The key questions in experiments that have
used this paradigm have been whether the accuracy and preci-
sion of participants’ performance in returning to the home lo-
cation is better when multiple spatial cues are available (e.g.,
visual landmarks and body-based information from self-mo-
tion) than when only one is available (e.g., body-based infor-
mation) and whether any improvements are statistically optimal
(defined subsequently). These studies have included experi-
mental conditions in which multiple cues are available but are

1 Historically, path integration referred to navigation using only internal body-
based cues (e.g., Mittelstaedt & Mittelstaedt, 1980). In contemporary taxon-
omies, path integration refers to the process whereby an organism estimates its
position in an environment from spatial cues, both internal (e.g., propriocep-
tion) and external (e.g., optic flow), that by themselves do not uniquely specify
position in that environment (Loomis et al., 1999). This is the way the term is
used in this article.

Table 1 Standard Model Equations

Mean of optimal
combination

μOpt =w1μ1 +w2μ2
μ1 and μ2 are the means of the two single-cue distributions.

Variance of optimal
combination

σ2
Opt ¼ σ21σ

2
2

σ21þσ22
¼ 1

σ21
þ 1

σ22

� �−1
¼ w2

1σ
2
1 þ w2

2σ
2
2

σ2
1 and σ2

2 are the variances of the two single-cue distributions.

Optimal weights
on single cues

w1 ¼ σ22
σ21þσ22

¼ σ2Opt
σ21

w2 ¼ σ21
σ21þσ22

¼ σ2Opt
σ22

Note that w1+ w2= 1.

Empirical weights
on single cues

bw1 ¼ d2
d1þd2bw2 ¼ d1
d1þd2

Empirical weights, as defined here, are computed from the centroids of the observed distributions of performance in the
single-cue and double-cue conditions. di is the Euclidean distance between themean of the Cue i distribution (μi) and the
mean of the distribution of observed performance when both cues are available (i.e., Cue 1 + Cue 2 in Figure 1).
Empirical weights should be equal to optimal weights in the standard model.
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in conflict (e.g., landmarks indicate one return direction where-
as body-based cues indicate a different return direction). The
purpose of the conflict condition is to assess the relative impor-
tance of each type of cue to the navigator.

Past research on cue combination in human navigation has
used a model often referred to as the maximum-likelihood es-
timation (MLE) model to interpret the findings (e.g., Ernst &
Banks, 2002; Rohde et al., 2016).We will refer to this model as
the “standard model” so as not to confuse this particular appli-
cation of MLE with the general method of parameter estima-
tion. According to the standard model of cue combination, per-
formance with multiple cues is a weighted average of perfor-
mance with single cues. Each cue is weighted by its normalized
reliability, such that more reliable cues receive greater weight
than do less reliable cues. The reliability of a cue is typically
estimated by the inverse of the variability of performance using
the cue alone. The standard model is statistically optimal in that
it minimizes the variance of the estimate in the multiple-cue
condition (Cochran, 1937; Oruç et al., 2003). A graphical illus-
tration is presented in Fig. 1. One can interpret the distributions
in this figure as distributions of performance (using Cue 1
alone, Cue 2 alone, and both Cue 1 and Cue 2) and the predict-
ed distribution for two cues using the standard model. In this
example, Cue 2 is more reliable (less variable) than Cue 1. The
predicted distribution for the optimal combination of the two
cues is therefore closer to Cue 2 than to Cue 1 because the
former is weighted more than the latter. The reliabilities of cues
are typically interpreted as measures of sensory-perceptual
noise (higher reliability = lower noise), although we prefer to
think of them as measures of confidence or certainty (Halberda,
2016). The equations for predicting performance in multiple-
cue conditions from single-cue conditions are contained in

Table 1 (the assumptions underpinning these equations are ex-
amined subsequently). For an excellent tutorial on the standard
model of cue combination and sensory integration, see Rohde
et al. (2016). Although the standard model of cue combination
is commonly referred to as “Bayesian,” it can be derived with-
out invoking Bayes’s theorem (Oruç et al., 2003).

As an example, consider Chen et al.’s (2017) project,
which investigated people’s abilities to combine visual spatial
cues and body-based spatial cues in a homing task.
Participants walked from a fixed starting location to three
successive waypoints in an immersive virtual environment
(outbound path) and then walked back to the remembered
location of the first waypoint (return path). Stopping points
on the return paths constituted participants’ estimates of the
first waypoint’s location. On the outbound path, participants
could see the entire environment (e.g., Fig. 2) and walk and
turn normally, and hence, they had full access to visual cues
and to body-based cues, such as proprioceptive, vestibular,
and efferent information. The experimental conditions were
distinguished by the events that occurred at the end of the
outbound path: In the vision condition, participants were
disoriented after reaching the final waypoint, so that when
executing the return path, body-based cues were lost and only
visual cues were available; in the body-based condition, the
visual world was rendered invisible when participants reached
the final waypoint, so that when executing the return path,
only body-based cues were available; in the combination con-
dition, participants were not disoriented and the world
remained visible, so that both visual cues and body-based cues
were available; and in the conflict condition, the landmark
configuration was surreptitiously rotated by 15° so that the
correct location defined by landmarks was different from the
one defined by body-based cues. The principal dependent
measures were the centroids and the variances of the distribu-
tions of stopping points. The equations in Table 1 were used to
predict performance in the combination and the conflict con-
ditions (double-cue conditions) from performance in the vi-
sion condition and the body-based condition (single-cue

Fig. 1 Illustration of the standard model of cue combination. The figure
shows distributions of performance in three cue conditions (Cue 1 alone,
Cue 2 alone, both Cue 1 & Cue 2) and the predicted distribution for the
double-cue condition using the standard model. All distributions are
normalized Gaussians; hence, the heights of the distributions reflect their
inverse variances (i.e., larger height = smaller variance = greater reliability)

Fig. 2 Participants’ view of the landmarks from the starting location in
the virtual environment of Chen et al. (2017). The waypoints appeared in
the space between the starting location and the landmarks
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conditions). Chen et al. found that in the majority of experi-
mental conditions, observed performance in the double-cue
conditions corresponded closely to predicted performance; in
other words, navigators combined visual cues and body-based
cues optimally according to the standard model.

Similar results have been obtained by other investigators (ex-
ceptions will be discussed in subsequent sections of this manu-
script). These studies have greatly advanced the scientific under-
standing of human navigation, but they also raise important
questions about the use of spatial cues in wayfinding. Is naviga-
tional performance affected by prior knowledge or beliefs about
the task environment (e.g., that some locations are more likely to
be goals than are others)? In real navigational scenarios, some
errors have greater costs than do other errors. Do navigators
account for these costs in a principled and quantifiable manner?
The purpose of this manuscript is to explore the answers to these
questions in the context of Bayesian decision theory (e.g.,
Berger, 1985; DeGroot, 1970; Robert, 2007).

The remainder of this manuscript is organized as follows:
We begin with a summary of Bayesian models of cue combi-
nation in the context of human navigation and related behav-
iors. We then present a more formal treatment of cue combi-
nation using Bayesian decision theory. This section is follow-
ed by two applications of Bayesian decision theory to pub-
lished findings that are inconsistent with the standardmodel of
cue combination. We show that these findings can be ex-
plained using Bayesian decision-theoretic models. To be
clear, our aim in this project is not to present a comprehensive
Bayesian model of navigation, but rather to introduce re-
searchers in spatial cognition and navigation, and allied fields,
to the potential power of using Bayesian decision theory to
investigate navigational behaviors. Our goal is to show that
Bayesian decision theory provides a productive framework for
future research on navigation, one that we believe will lead to
a deeper understanding of navigational behaviors.

Bayesian models of cue combination

The scenarios to be discussed in this manuscript require naviga-
tors to estimate the location of a goal given various spatial cues
(e.g., visual landmarks, body-based cues from self-motion, mem-
ory of the layout of objects). Let L represent the location to be
estimated, and S and V represent two spatial cues. In Bayesian
terms (Knill et al., 1996; Mamassian et al., 2002; Yuille &
Bülthoff, 1996), the problem can be formalized as follows:

p LjS;Vð Þ ¼ p S;V jLð Þ p Lð Þ
p S;Vð Þ ð1Þ

The term on the left side of the equation, p(L| S, V), is the
probability of target locations given information provided by
the spatial cues S and V. In Bayesian theory, this term is

referred to as the “posterior.” The location corresponding to
the mean of this distribution might be selected as the goal on a
particular trial of a homing task, for example.

The prior, p(L), is the probability distribution over loca-
tions in the absence of information from the spatial cues.
The prior formalizes the extent to which the navigator believes
or has information that some locations are more probable than
others as goals before any information from S and V is avail-
able. If the navigator has reason to believe (e.g., previous
experience) that some locations are more likely to be goals
than are others, p(L) will vary across locations, and hence, will
be nonuniform; such priors are referred to as “informative.”
However, if the navigator believes than any location is equally
likely to be a goal, p(L) will be the same for all locations; such
a prior is referred to as “uniform” and can be represented as
p(L) = 1.2 Priors are commonly used to represent biases of
various kinds (e.g., Jacobs, 1999; Mamassian & Landy, 2001;
Weiss et al., 2002). For example, Jacobs (1999) used a prior in
a Bayesian model of cue integration in depth perception to
represent bias to see an object as approximately as deep in
3D as it is wide in the image plane.

The term p(S, V| L) is the likelihood function. The notation
suggests that it is the probability of the spatial cues given a
location in the environment. However, in a Bayesian analysis,
the information in the sensory cues is assumed to be given
(e.g., provided by various sensory-perceptual systems); p(S,
V| L) is therefore a function of L (for this reason, this term
sometimes is written as, L LjS;Vð Þ, where L stands for likeli-
hood). The likelihood function gives the likelihood of loca-
tions given the sensory cues in the absence of prior
knowledge.

The term in the denominator of Eq. (1) is a scaling param-
eter (technically, the sum across L of the product of the like-
lihood function and the prior), as it ensures that the sum of the
values of the posterior across locations is 1. For current pur-
poses, it can be ignored, producing:

p LjS;Vð Þ∝p S;V jLð Þ p Lð Þ ð2Þ
(the symbol, ∝, means “proportional to”). If p(S, V| L) is fac-
torable (e.g., S and V are conditionally independent given L),
we obtain:

p LjS;Vð Þ∝p SjLð Þ p V jLð Þ p Lð Þ ð3Þ
This equation can be used to predict observed performance if
the prior and the likelihood functions for S and for V are

specified mathematically or computationally. Xu et al. (2017)

2 Unfortunately, in Bayesian terminology, a uniform prior is not the same as an
uninformative prior; the latter term usually refers to priors that express vague
or very general information about a variable and have desirable statistical
properties.
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and Wang et al. (2018) use approaches of this kind to model
performance in reorientation tasks.

Another way to view a Bayesian model of navigation is as
follows: A navigator may have beliefs (which may be incor-
rect) about the location of the goal before they have any
sensory-perceptual information about its location. These be-
liefs are captured in the prior distribution. The navigator then
obtains data about the goal location from their sensory-
perceptual systems (e.g., by walking the outbound path in a
homing task). These data are used to update the prior, produc-
ing the posterior. The posterior reflects the navigator’s beliefs
about the probability of locations being the goal after having
gathered information from the spatial cues.

Applications of cue-combination models to spatial naviga-
tion have used a different formulation. Performance in an
experimental condition in which participants estimate loca-
tions using two cues is predicted from performance in condi-
tions in which participants estimate locations using single
cues. Formally, this paradigm involves predicting the dual-
cue posterior distribution from two single-cue posterior distri-
butions (Jacobs, 1999; Landy et al., 1995):

p LjS;Vð Þ∝p LjSð Þp LjVð Þ ð4Þ
An important underlying assumption of this experimental par-
adigm is that the operations of the single-cue systems in the
multiple-cue condition (e.g., navigation with both visual cues
and body-based cues available) can be approximated by
assessing performance in the single-cue conditions individu-
ally (e.g., navigation using only visual cues and navigation
using only body-based cues).

Equation (4) can be derived from Eq. (3) by the application
of Bayes’s theorem. Expanding (3),

p LjS;Vð Þ∝ p LjSð Þp Sð Þ
pS Lð Þ

p LjVð Þp Vð Þ
pV Lð Þ p Lð Þ ð5Þ

where pS(L) and pV(L) are scaling parameters for p(L| S) p(S)
and p(L| V) p(V), respectively (pS(L), pV(L), and p(L) are dis-
tinguished because they may differ in an experimental appli-
cation, as discussed subsequently). If the scaling parameters
are ignored, we obtain:

p LjS;Vð Þ∝p LjSð Þ p LjVð Þ p Sð Þ p Vð Þ p Lð Þ ð6Þ
If one assumes that all priors are uniform (e.g., p(S) = p(V) =
p(L) = 1), Eq. (4) is obtained.3

The formulation in Eq. (4) corresponds to a version of
“weak-coupling” of sensory-perceptual modules in Yuille
and Bülthoff’s (1996) taxonomy and is the approach that has
been used in nearly all investigations of cue combination in
navigation (exceptions are discussed subsequently). Two

critical assumptions weremade to produce Eq. (4): (a) the cues
are conditionally independent and (b) the priors are uniform.
A third assumption (c) is needed to yield the equations in
Table 1— namely, that the probability distributions are
Gaussian (see, e.g., Bromiley, 2018). This formulation is the
standard model of cue combination. The standard model can
be viewed as a special case of a Bayesian model, although as
noted previously, the standard model can be derived without
using Bayes’s theorem. The assumption that priors are uni-
form is a limitation of previous applications of the standard
model to navigation.

The discussion so far has been abstract. It is natural to ask
how a Bayesian model might be realized in a homing task. As
the participant walks the outbound path, she accumulates in-
formation from multiple sources about her position and the
location of the goal (typically specified by instruction at the
beginning of the outbound path). Let us assume that goal
locations are not selected uniformly (e.g., they are more fre-
quent in one quadrant of the environment) and that the navi-
gator has learned this distribution from past experience in the
task. The navigator combines her prior knowledge and infor-
mation from the spatial cues to estimate the location of the
goal. At the end of the outbound path, the navigator walks
toward that location. In a Bayesian analysis (Eq. 3), prior
knowledge is represented as a distribution over locations in
the environment (e.g., p(L), with a peak in one quadrant) and
each spatial cue (e.g., body-based cues from self-motion) is
associated with a likelihood function (e.g., p(S| L)). The prod-
uct of the prior distribution and the likelihood functions (ap-
propriately scaled) forms the posterior distribution (e.g., p(L|
S, V)). All estimates and inferences are based on the posterior
distribution. For example, the mean of the posterior may con-
stitute the navigator’s estimate of the goal location. Because
the sensory-perceptual information from the spatial cues and
the goal location change from trial to trial, the likelihoods and
the posterior also change from trial to trial (Ma, 2019). The
reader may be incredulous that Bayesian processes can be
implemented at all in perceptual-cognitive systems, let alone
on a trial-by-trial basis. There is evidence, however, that the
computations needed to implement Bayesian processes may
be natural consequences of certain characteristics of neural
activity (Ma et al., 2006). These results indicate that
Bayesian processes can be implemented in the brain and on
appropriate time scales.

Informative priors

In this section, we demonstrate that prior knowledge, as rep-
resented by an informative prior distribution, functions like an
additional spatial cue in the typical cue combination para-
digm. Suppose that an investigator is interested in the integra-
tion of external visual cues (V) and body-based self-motion
cues (S) in a standard homing task. Following standard

3 Consider that p(X| L)p(L) ∝ p(L| X). Assuming that the prior over locations is
uniform (p(L) = 1), then substituting into Eq. (3) for S and V produces Eq. (4).
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practice (e.g., Ernst & Banks, 2002; Nardini et al., 2008),
performance is assessed under conditions in which partici-
pants have only one cue available (visual or self-motion),
two consistent cues, or two cues in conflict. Assume that target
locations are uniformly distributed across the navigational are-
na in the single-cue conditions but are more likely to occur in
one region of the arena than in others in the double-cue con-
ditions (referring back to Eq. 5, pS(L) = pV(L) = 1 but p(L) ≠ 1);
assume further that navigators learn this distribution over re-
peated trials. The mental representation of the distribution of
target locations in the double-cue conditions corresponds to an
informative prior. In this scenario, the correct formulation of
behavior, with sufficient practice, in the double-cue conditions
is:

p Lð jS;VÞ∝p Lð j SÞ p Lð j VÞ p Lð Þ: ð7Þ

Observed performance in the double-cue conditions is de-
termined by the posterior on the left side of Eq. (7). The
distributions, p(L | S) and p(L | V), are estimated from observed
performance in the single-cue conditions and the prior, p(L), is
under experimental control (e.g., the centroid and variability
of this distribution are set by the experimenter). If the distri-
butions in Eq. (7) are assumed to be Gaussian, then the for-
mulae for the parameters of interest are (see Table 1 and
Bromiley, 2018):

μc ¼ wsμs þ wvμv þ wpμp ð8Þ

wi ¼ σ2
c

σ2
i
; ð9Þ

and

σ2
c ¼

1

σ2
s
þ 1

σ2
v
þ 1

σ2
p

 !−1

; ð10Þ

where μc and σ2
c are the mean and the variance of the posterior

distribution (i.e., the optimal combination of the two cues and
the prior); wi are the optimal weights on the two cues and the
prior; and σ2

i are the variances of the component distributions
(the subscripts, s, v, and p, refer to the cues S and V, and the
prior, respectively). Observed performance in the consistent
cue and the conflicting cue conditions can be compared with
predicted performance generated by Eqs. (8)–(10). These
equations show that the prior functions like an additional spa-
tial cue in this scenario (e.g., compare Eq. 8 to the mean of the
optimal combination of two cues in Table 1).

Suppose that participants are insensitive to the manipula-
tion of the probability of target locations in the double-cue
conditions. If they nevertheless integrate visual cues and
self-motion cues optimally, the correct model of performance
will correspond to Eq. (4). In this scenario, the observed

variabilities in the double-cue conditions will be larger than
those predicted by Eq. (10):

σ2
C ¼ 1

σ2
s
þ 1

σ2
v
þ 1

σ2
p

 !−1

<
1

σ2
s
þ 1

σ2
v

� �−1

¼ σ2
CObs

; ð11Þ

where σ2
C is as above, and σ2

CObs
is the observed variance in the

double-cue conditions if participants optimally combine infor-
mation from the two spatial cues but ignore the prior. Put
another way, observed performance in the double-cue condi-
tions will appear to be suboptimal relative to performance
predicted from the single-cue conditions and the prior, al-
though it will be optimal relative to performance predicted
from just the single-cue conditions.

Only a handful of projects have investigated effects of prior
knowledge or experience on spatial memory and navigation.
Huttenlocher et al. (2004) varied the distributions of target
locations in a simple spatial memory task (the "dot-and-circle
task" of Huttenlocher et al., 1991). They found that partici-
pants’ memories of location were not affected by these ma-
nipulations. Sampaio et al. (2020), however, implemented a
version of the dot-and-circle task in virtual reality (VR) and
found that participants’memories of the locations of common
objects on a table top were biased toward the customary loca-
tions of those objects (e.g., pizza on a plate toward the ob-
server’s front).

In the domain of navigation-related behaviors, Petzschner
and Glasauer have developed elegant Bayesian models of the
role of prior experience and of cue combination in visual path
integration. In these experiments, participants executed and
then reproduced a straight displacement or a single turn in
desktop VR; hence, path integration depended solely on
visual information. Petzschner and Glasauer (2011) showed
that reproductions of distances and turns were sensitive to the
statistics of the displacement and turn-angle samples (e.g.,
bias toward the mean), and that these biases were predicted
by a Bayesian model with iteratively updated priors (this ex-
periment will be explored in more detail subsequently).
Petzschner et al. (2012) showed further that participants inte-
grated a symbolic cue and prior experience into reproductions
of linear displacements and that their behavior was well-
predicted by Bayesian models (see also, Petzschner et al.,
2015). To our knowledge, these methods and models have
not been applied to more complex navigation tasks, such as
homing.

Incorporating a loss function

A limitation of prior research on spatial cue combination in
human navigation is that studies have not incorporated a com-
plete Bayesian decision model (for examples of Bayesian
decision models, see Körding & Wolpert, 2006; Ma, 2012;

Psychon Bull Rev (2022) 29:721–752726



Mamassian et al., 2002; Trommershäuser et al., 2008). One
component of such a model (see Fig. 3) estimates the posterior
distribution of the relevant variable using Bayesian principles.
This component was described previously. In our experi-
ments, this exercise has involved estimating the posterior dis-
tribution over locations given visual and self-motion cues
(Chen et al., 2017; Sjolund et al., 2018). The other component
of the model corresponds to the application of a decision rule
that transforms the posterior distribution into an action.
Decision rules are determined by the loss function (or equiv-
alently, the gain function) that specifies the consequences of
various actions. According to Bayesian decision theory, the
action that minimizes expected losses given the posterior dis-
tribution should be chosen (Berger, 1985; Robert, 2007). In
the context of a navigational problem, selecting an estimate of
a location could be an action.

As an example, suppose that one is driving an automobile
on the road shown in Fig. 4. This is a navigational problem in
which the driver must (among other things) estimate and fol-
low a safe path around the corner. To make the corner, the
driver should generally try to stay in the middle of the road.
However, a navigational error to the right, into the grass and
shrubbery, is likely to be less costly than a navigational error
to the left, which could result in jumping the guardrail and
tumbling down a cliff. Hence, one might expect the driver to
steer to the right of the midpoint of the road, reducing the
likelihood of the more costly error, while still keeping the
car on the road.

Loss functions can take any form depending on the costs of
errors of estimation. The form of the loss function determines
the appropriate estimate of the parameter of interest given the

posterior. For consistency with subsequent theory develop-
ment, let θ be the parameter to be estimated (e.g., the correct
target location) and a be the action (e.g., the actual location
selected). Common loss functions are absolute-error loss,

L θ; að Þ ¼ θ−aj j; ð12Þ
and squared-error loss,

L θ; að Þ ¼ θ−að Þ2: ð13Þ

The use of absolute-error loss entails that the median of the
posterior is the appropriate estimate of θ, and the use of
squared-error loss entails that the mean of the posterior is the
appropriate estimate of θ (e.g., Berger, 1985). Another com-
monly used estimate of the parameter of the posterior, espe-
cially in the vision community, is the maximum a posteriori
(MAP) estimate, which is the mode of the posterior. The use
of a MAP estimate entails that the action must be exactly
correct and that the costs of all errors are equal. The MAP
estimate is implied by the use of Dirac-delta loss (Yuille &
Bülthoff, 1996),

L θ; að Þ ¼ −δ θ−að Þ: ð14Þ
This loss function, which is based on the Dirac delta function,
produces constant loss except if the action is correct (θ − a =
0), where loss is infinitely small.

Returning to the example in Fig. 4, if we assume for sim-
plicity that target locations at any point in time are represented
on a single spatial dimension perpendicular to the direction of
travel, the use of an asymmetrical absolute-error loss function
(“multilinear loss”) that assigned twice as much loss to errors
to the left as to errors to the right would entail that the 67th
percentile (2/3rd fractile) of the posterior is the optimal esti-
mate of the target θ (e.g., Robert, 2007). As the driver winds
her way along the highway, the high-risk zonemay sometimes
be on the left and may sometimes be on the right. The loss
function must adapt to these environmental changes, such that
the optimal target will “slide” back and forth across the pos-
terior distributions. The guardrail may be missing on the cliff
side of a given section of highway, in which case relative
losses may increase dramatically (e.g., from 2:1 to 4:1, pro-
ducing an optimal target of the 4/5th fractile). One might also
expect to see substantial individual differences in relative

Fig. 3 A complete Bayesian decision model. Adapted from Mamassian et al. (2002, Fig.1.6)

Fig. 4 A driving scenario with an asymmetrical distribution of losses
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losses: A beginning driver might be especially prone to hug
the safe side of the highway, whereas a highly skilled driver
might veer little from the midline.

Previous investigations of spatial cue combination in nav-
igation have employed squared-error loss, although there is no
theoretical justification for using this loss function (Petzschner
& Glasauer, 2011, examined alternative implicit loss
functions in visual path integration). In fact, statistical deci-
sion theory argues against such a loss function, as it probably
penalizes large errors too much and it increases without bound
as error increases (Berger, 1985; Smith, 1988). The advan-
tages of squared-error loss are that it produces tractable math-
ematical derivations, is familiar to psychological researchers
(as least-squares), and yields an estimate of the parameter
(viz., the mean of the posterior distribution) that is readily
interpretable.

Bayesian decision theory

This section of the manuscript provides a more formal treat-
ment of Bayesian decision theory. Bayesian decision theory is
not a model of human performance or of any other natural
phenomena; it is a mathematical framework for making deci-
sions. Bayesian decision theory can be used, however, as the
theoretical scaffolding for building psychological models. We
present two such applications in subsequent sections of this
manuscript. UsingMa’s (2019) taxonomy, our analysis focus-
es on the inference, action, and response stages of Bayesian
modeling. Our notation follows that of Berger (1985) and
Robert (2007).

Formal development

Bayesian analysis is performed by combining information
about an unknown parameter before data have been
collected—the prior—with the actual or hypothesized distri-
bution of the data given the parameter—the likelihood
function—to produce the distribution of the parameter condi-
tional upon the sample data—the posterior distribution (see
Fig. 3). All inferences and decisions are based on the posterior
distribution.4

Formally, the posterior is the conditional distribution of the
parameter (θ) given the data (x), and is denoted, π(θ| x). By
definition (e.g., Hogg & Craig, 1970), the conditional distri-
bution is the joint distribution of the two variables divided by
the marginal distribution of the conditioning variable:

π θjxð Þ ¼ f xjθð Þπ θð Þ
m xð Þ ð15Þ

where f(x| θ) is the distribution of the data given the parameter
(the likelihood function; but as noted previously, in a
Bayesian analysis, the data are viewed as fixed, and the pa-
rameter varies), π(θ) is the distribution of the parameter before
data have been collected (the prior), and m(x) > 0 is the mar-
ginal distribution of x:

m xð Þ ¼ ∫ f xjθð Þπ θð Þdθ: ð16Þ
The marginal distribution of x is the predicted observed dis-
tribution of the data if the likelihood function and the prior
distribution are true.

Equation (15) is equivalent to Eq. (1), but is expressed
in the formalisms of Bayesian analysis and decision the-
ory. Paraphrasing a summary of Bayesian analysis pre-
sented earlier: Prior to collecting data, we have beliefs
or information about the nature of the parameter θ.
These beliefs are captured in the prior distribution. We
then collect data, which are assumed to be informative
about θ. These data are used to update the prior, produc-
ing the posterior. The posterior reflects our eventual un-
derstanding of the nature of θ after having gathered infor-
mation about it from the world.

The fundamental principle of Bayesian decision theory
is to choose an action that minimizes expected loss given
the distribution of θ at the time of decision making. This
distribution is the posterior. The posterior expected loss
of an action a, for the posterior π(θ| x), is defined as,

ρ π θjxð Þ; að Þ ¼ ∫L θ; að Þπ θjxð Þdθ: ð17Þ
This equation is the expected value of the loss function,
L(θ, a), with respect to the posterior distribution, π(θ| x),
and can be interpreted as the average value of the loss
function across all values of θ weighted by their likeli-
hood. A Bayes action, denoted δπ(x), is the action that
minimizes Eq. (17). In an estimation problem, where
one is estimating the value of θ, the Bayes action is to
choose the estimate that minimizes posterior expected loss
given the data (x). In a navigational scenario, the naviga-
tor may be estimating the target location that minimizes
expected loss given their estimate of the posterior distri-
bution of locations using the sensory-perceptual informa-
tion available. Table 2 contains several common loss
functions and the associated Bayes actions.

For squared-error loss, the posterior expected loss is,

ρ π θjxð Þ; að Þ ¼ ∫ θ−að Þ2π θjxð Þdθ: ð18Þ
The value of awhich minimizes Eq. (18) is Eπ[θ], the mean of
the posterior distribution (e.g., Berger, 1985). Formally, this
can be expressed as follows:4 The strengths of such an approach to statistical inference, in particular, have

been discussed in many venues and will not be repeated here (see, e.g.,
Gallistel, 2009; Rouder et al., 2009; Vandekerckhove et al., 2018, and accom-
panying articles).
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δπ xð Þ ¼ Eπ θ½ � ¼ ∫θπ θjxð Þdθ ¼ ∫θ
f xjθð Þπ θð Þ

m xð Þ
� �

dθ

¼ ∫θf xjθð Þπ θð Þdθ
∫ f xjθð Þπ θð Þdθ : ð19Þ

It is important to recognize that the Bayes action for squared-
error loss is the mean of the posterior distribution regardless of
the form of the posterior (assuming the mean exists).

A generalization of squared-error loss is weighted squared-
error loss:

L θ; að Þ ¼ w θð Þ θ−að Þ2 ð20Þ
where w(θ) is a nonnegative function of θ. Weighted squared-
error loss is a standard loss function in Bayesian analysis
(Berger, 1985; Robert, 2007), although we are not aware of
any applications of it in the psychological sciences. Weighted
squared-error loss captures the notion that the cost of an error
of estimation may depend on the value of θ in addition to the
difference between the true value of θ and its estimate.
Another attractive feature of weighted squared-error loss is
that appropriate choices of w(θ) produce bounded loss func-
tions (i.e., loss does not increase without bound as the magni-
tude of error increases). The Bayes action for weighted
squared-error loss, with weight function w(θ) and posterior
π(θ| x), is:

δπ xð Þ ¼ ∫θπ θjxð Þw θð Þdθ
∫π θjxð Þw θð Þdθ ð21Þ

(see Appendix A for the derivation). Weighted squared-error
loss is used in the next section to interpret some anomalous
findings in the cue combination literature.

The reader may see that the weight function in Eq. (21) is
analogous to the prior distribution in Eq. (19). Indeed, estimat-
ing θ using Eq. (21) and prior π(θ) is equivalent to estimating θ
using Eq. (19) and prior πw(θ) ∝ π(θ)w(θ) (Robert, 2007). In the

Table 2 Common Loss Functions and Their Associated Bayes Actions

Loss Function Formula Bayes Action (δπ(x))

Dirac-delta L(θ, a) = − δ(θ − a),
δ is the Dirac delta function

mode of π(θ| x)

Absolute-error L(θ, a) = ∣ θ − a∣ median of π(θ| x)

Multilinear Lk1 ;k2 θ; að Þ ¼ k2 θ−að Þ if θ > a
k1 a−θð Þ if θ≤a

�
k2/(k2 + k1) fractile
of π(θ| x)

Squared-error L(θ, a) = (θ − a)2 mean of π(θ| x)

Weighted squared-error L(θ, a) =w(θ)(θ − a)2,
w(θ) is nonnegative

General case:

δπ xð Þ ¼ ∫θπ θjxð Þw θð Þdθ
∫π θjxð Þw θð Þdθ

Special case:
w θð Þ ¼ a exp − θ−bð Þ2

2c2

h i
and π(θ| x) =N(μ, σ2),

then δπ xð Þ ¼ σ2bþc2μ
σ2þc2

Notes. θ is the parameter of interest. a is the action (e.g., parameter estimate). π(θ| x) is the posterior distribution. N(μ, σ2 ) is the normal distribution.
Multilinear loss is equivalent to absolute-error loss when k1 = k2. The Bayes action is the action that minimizes expected loss given the posterior distribution;
it does not depend on the form of the posterior (as long as the relevant statistic exists), except for the special case of weighted squared-error loss

y = 0.6089x + 0.2292
R² = 0.6274
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Fig. 5 Relationship between optimal visual weight and empirical visual
weight in the conflict condition. Data from Chen et al. (2017) Experiments
1a–1b, 4.Each point corresponds to a single participant (N = 57)
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standard cue-combination paradigm, if all distributions are
Gaussian and a uniform prior is assumed (which is typical),
the distribution formed by the product of the weight function
and the posterior is identical to that formed by the product of the
weight function and the single-cue distributions composing the
posterior (see Bromiley, 2018, for relevant derivations); in such
an application, the weight function is effectively a prior. In a
cognitive process model, however, the properties of a prior and
a weight function may differ in important ways. A prior based
on preexperimental knowledge is likely to be stable throughout
an experiment, whereas a weight function may vary from ex-
perimental condition to experimental condition depending on
the costs of errors of estimation.

An example of the application of a loss function

In this section of the manuscript, we show that a cue-
combination model founded on Bayesian decision theory can
predict findings in the literature that are inconsistent with the
standard model. This Bayesian decision-theoretic model is not
intended to be a general model of cue combination in navigation.
Our goal is to demonstrate the potential power of using the tools
of Bayesian decision theory to investigate human navigation.

Figure 5 summarizes key findings from three of Chen
et al.’s (2017) experiments. Recall that in those experiments,
participants walked an outbound path of three segments, and
at the end, were required to walk back to the first waypoint
(which was not visible). Four experimental conditions were
implemented at the end of the outbound path, three of which
are relevant here: In the vision condition, participants only had
visual cues available when executing the return path; in the
body-based condition, they only had body-based cues to exe-
cute the return path; and in the conflict condition, both visual
cues and body-based cues were available, but the correct lo-
cation defined by landmarks was different from the one de-
fined by body-based cues. Figure 5 plots the relationship be-
tween optimal weights on visual cues and empirical weights
on visual cues (see Table 1) in the conflict condition.
Although the magnitude of the relationship is reasonably
strong (given the substantial individual differences), the rela-
tionship is not consistent with the standard model of cue com-
bination: The intercept and the slope of the regression line
differ from 0 and 1, respectively. 5 This relationship is not

Fig. 6 Hypothetical distributions of single-cue performance. a Both cues
have high variability and provide poor information about location. bBoth
cues have low variability and provide good information about location.
Optimal cue weights are .6 and .4 for the more and the less reliable cue,
respectively, in both panels

5 The pattern in Fig. 5 is not an artifact of using simple linear regression, which
only models error in Y. The same pattern is evident in orthogonal regression,
which models error in Y and in X simultaneously: intercept = .167 ± .0443,
slope = .719 ± .0707 (standard errors are Jackknife estimates).

Fig. 7 Illustration of Bayesian decision theoretic model. Predicted
performance is shifted toward the mean of the weight function, which is
located halfway between the two single-cue distributions
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caused by regression to the mean in estimated distances, as the
optimal and empirical cue weights are independent of the
correct and reproduced distance. By contrast, the relationship
between predicted variability and observed variability in the
conflict condition was consistent with the standard model:
The slope did not differ from 1 and the intercept did not differ
from 0 (see Chen et al., 2017).

The results in Fig. 5 indicate that participants were walking
to a target location that was closer to the midpoint between the
single-cue conditions than their own single-cue performance
would predict. Participants tended to underweight the cue that
produced relatively good performance and overweight the cue
that produced relatively poor performance. Why might this
be? Chen et al. (2017) conjectured that participants were hedg-
ing against navigational errors that could result from fully
weighting a cue with high relative reliability. A given cue will
have high relative reliability if other cues have even worse
reliability (see Table 1). Navigators might have been unwill-
ing to trust fully a cue with high relative reliability when other
cues were available because their response could still be inac-
curate. Figure 6 illustrates the problem. The weight assigned
to each cue is the same in Fig. 6a–b, even though in Fig. 6a
both cues provide relatively poor information about location,
whereas in Fig. 6b, both cues provide relatively good infor-
mation about location. The assumption is that participants
were operating primarily in the regime illustrated in Fig. 6a
and underweighted cues with high relative reliability to reduce
the risk of making large absolute errors. Chen et al. (2017)
conjectured that this trade-off could be captured in a complete
Bayesian decision model using an appropriate loss function
but did not pursue this notion further.

The reader may question whether loss can even be defined
in this task, as navigators did not receive feedback and there
were no consequences for errors. Loss in this context is sub-
jective and therefore differs from typical applications of deci-
sion rules where loss is determined by the experimenter (see,
e.g., Maloney& Zhang, 2010). Although it is customary in the
psychological sciences to view loss as objective (e.g., an in-
correct response yields a penalty imposed by the experimenter

or the environment), the concept of loss in Bayesian decision
theory is fundamentally subjective.6 In the context of spatial
navigation, the subjective nature of loss implies that naviga-
tors may make decisions based on their own assessments of
the costs of errors. Returning again to the driving scenario in
Fig. 4, a risk-averse driver might impose a highly asymmetri-
cal loss function (e.g., errors to the left are 10 times more
costly than are errors to the right), whereas a risk-tolerant
driver might impose a more symmetrical loss function (e.g.,
errors to the left are 1.5 times more costly than are errors to the
right). One of the aims of the scientist is to determine which
subjective loss functions navigators are using.

To explain the pattern of results in Fig. 5, we developed a
model of the homing task that incorporated a complete
Bayesian decision model of the cognitive processes on each
trial. Because the means and the variances of predicted per-
formance in the conflict condition are independent in the mod-
el, the modeling of each will be discussed separately.

A standard loss function for implementing bias in decision
processes is weighted squared-error loss (e.g., Berger, 1985;
Robert, 2007). The apparent bias in return paths toward the
midpoint between the locations indicated by landmarks and
by self-motion cues can be captured with weighted squared-
error loss using a Gaussian weight function:

w θð Þ ¼ a exp
− θ−bð Þ2
2c2

" #
; ð22Þ

where a is the maximum height of the function, and b and c2

are its mean and variance, respectively (we use the generic
Gaussian notation in the weight function to make clear the
sources of parameters in subsequent formulae). In Appendix

6 Skeptical readers are encouraged to see Berger (1985) and Robert (2007) for
numerous examples of subjective loss functions. DeGroot (1970) aptly char-
acterized the subjective nature of statistical decision theory in the opening
paragraph to his chapter on utility (the complement of loss): “A statistician’s
subjective probabilities … are numerical representations of his beliefs and
information. His utilities … are numerical representations of his tastes and
preferences” (p. 86, emphasis original).

Table 3 Model Comparisons and Parameter Estimates

Experimental condition Bayes factor r

Exp. 1a: One landmark 1.32 × 10-4 .627

Exp. 1a: Three landmarks 2.68 × 10-3 .377

Exp. 1b: Rotation 1.33 .215

Exp. 1b: No rotation 8.73 × 10-2 .410

Exp. 4: Day 1 1.17 × 10-3 .501

Exp. 4: Day 2 1.31 × 10-1 .301

Note. Bayes factor = likelihood(standard model)/likelihood(Bayesian decision theory model). Bayes factors ≤ 3.33 × 10-1 favor the Bayesian decision
theory model. See Appendix B for details
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A, we show that if the posterior distribution π(θ| x) is normal
N(μ, σ2), then the Bayes action [Eq. (21)] is:

δπ xð Þ ¼ bσ2 þ μc2

σ2 þ c2
: ð23Þ

Rearranging terms,

δπ xð Þ ¼ μ−
σ2

σ2 þ c2

� �
μ−bð Þ ð24Þ

In the conflict condition of Chen et al. (2017), par-
ticipants had to estimate a goal location (i.e., the loca-
tion of the first waypoint) using information from dis-
crepant spatial cues. According to the standard model of
cue combination, the optimal estimate of the goal loca-
tion is μ, the mean of the posterior distribution con-
structed from the combination of the two spatial cues.
According to the decision-theoretic model embodied in
Eq. 24, the optimal estimate of the goal location is the
mean of the posterior distribution (μ) adjusted by the
difference between the mean of the posterior and the
mean of the Gaussian weight function (b). The effect
of this adjustment is to “pull” the optimal estimate to-
ward the value b. The magnitude of the adjustment de-
pends on the relative variances of the posterior and the
weight function. For fixed σ2, as c2 increases in magni-
tude (i.e., as the weight function becomes flatter), the
adjustment approaches zero and the optimal estimate
approaches μ; whereas as c2 decreases in magnitude
(i.e., the weight function becomes more peaked), the
adjustment approaches the difference between μ and b,
and the optimal estimate approaches b. The model is
illustrated in Fig. 7. The weight function operates like
an informative prior in the decision process (Berger,
1985, p. 161).

According to the model, observed performance in the con-
flict condition reflected participants’ use of the optimal esti-
mate of the target location using weighted squared-error loss
rather than just squared-error loss. The mean of the resulting
distribution of performance should therefore be:

μConflict ¼ μ−
σ2

σ2 þ c2

� �
μ−bð Þ; ð25Þ

where μ and σ2 are the mean and the variance, respectively, of
the optimal combination of the two cues using the equations in
Table 1; and b and c2 are the corresponding parameters of the
weight function.

Chen et al.’s (2017) experiments were not designed to test
models for individual participants, or even to test models with
multiple free parameters, so several simplifying assumptions
were made to ensure that we had sufficient power for model
comparisons. We assumed that the ratio,

r ¼ σ2

σ2 þ c2
ð26Þ

was constant and the same for all participants within an ex-
perimental condition. This ratio is the relative reliability of the
weight function. The value of b varied across participants and
was set equal to the midpoint between mean performance in
the vision condition and mean performance in the body-based
condition for each participant. With these assumptions, only
one parameter had to be estimated, r:

μConflict ¼ μ−r μ−bð Þ: ð27Þ

This alternative model was compared with the null model:

μConflict ¼ μ: ð28Þ

The null model is the standard model of cue combination,
which is defined by the equations in Table 1. 7

The decision-theoretic model in Eq. (27) was fit to data
from Experiments 1a, 1b, and Experiment 4 of Chen et al.
(2017). (See Appendix B for details.) These experiments were
selected because they used similar methods. Each of these
experiments comprised two within-participant conditions,
and these were modeled separately. All six of these experi-
mental conditions used the homing task described previously:
Participants walked from a fixed starting location to three
waypoints in sequence and then had to return to the first way-
point using their memories of its location. These experiments
manipulated the number of landmarks (1 vs. 3), the integrity
of body-based cues (at the end of the outbound path, partici-
pants rotated 270° and back or did not rotate), and experience
in the task (Day 1 vs. Day 2).

The results are summarized in Table 3. The Bayes factors
are the likelihoods of the standard model (the null hypothesis)
relative to the likelihoods of the decision-theoretic model (the
alternative hypothesis) given the data. Bayes factors are
interpreted directly without reference to statistical tables; for
example, a Bayes factor of 0.10 means that the alternative is
10 times more likely than the null given the data (Kass &
Raftery, 1995). We consider Bayes factors greater than or
equal to 3 as evidence in favor of the standard model and
Bayes factors less than or equal to 1/3 as evidence in favor
of the decision-theoretic model; Bayes factors between these
bounds favor neither model. In five of six data sets, the
decision-theoretic model better predicted mean performance
than did the standard cue combination model. Importantly, the

7 We also estimated a common value of c2 across participants, allowing the
ratio r to vary (σ2 is estimated from the observed variances in the single-cue
conditions). These fits were usually slightly worse than those produced by
estimating r, although the differences were not so large as to justify a choice
between the two. To our minds, a fixed ratio across participants (allowing σ2

and c2 to vary) seems more plausible than a fixed variance of the weight
function.
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computations of the model likelihoods penalized the decision-
theoretic model for having one free parameter (see Appendix
B). In Experiments 1a and 4, the estimated values of r indicate
that the influence of the weight function is smaller (r de-
creases) with greater perceptual certainty (1 vs. 3 landmarks)
and more practice in the task (Day 1 vs. Day 2); that is, par-
ticipants placed greater trust in the information from their
sensory-perceptual systems as the quality of that information
improved. A parallel effect does not seem to hold in

Experiment 1b, but the model is not supported in the condition
in which body-based cues were disrupted by body rotation.

According to the decision-theoretic model, the empirical
weights computed using the formula in Table 1 are not pure
measures of cue weighting because of the influence of the
weight function. It is possible, however, to recover the weights
through the model. In Appendix C, we show that if the
decision-theoretic model is an accurate characterization of
performance, then the empirical weight on the visual cue
should be:

w
0
V ¼ bwV−

r
dV−B

μ−bð Þ; ð29Þ

where bwV is the empirical weight on the visual cue using the
formula in Table 1; dV − B is the distance between the means of
the vision condition and body-based condition; and r, μ, and b
are as defined previously. Figure 8 plots the relationships be-
tween empirical visual weights and optimal visual weights for
one of the datasets modeled previously (Experiment 4, Day 1;
corresponding figures for the remaining datasets can be found
in Appendix C). The parameter r in Eq. (29) was set equal to
the value estimated in the model fitting (.501 for this data set).

The two panels in Fig. 8 are representative of the pattern
evinced in each data set: The regressions of empirical weights
on optimal weights (e.g., Fig. 8a) yielded intercepts greater
than zero and slopes less than one, whereas the regressions of
model empirical weights (Eq. 29) on optimal weights (e.g.,
Fig. 8b) yielded intercepts that did not differ significantly from
zero and slopes that did not differ significantly from one. The
latter pattern is predicted by Bayesian models of cue combi-
nation (under assumptions identified previously). It appears,
then, that a fully specified Bayesian decision model can ex-
plain the problematic relationship between optimal weights
and empirical weights obtained by Chen et al. (2017).

We also assessed the extent to which this decision-theoretic
model could reproduce the observed variability in the conflict
condition. We computed predictions for a process model of
the task (see Appendix D for details). According to the model,
on each trial of the homing task, a posterior distribution of
target locations is constructed from sensory-perceptual infor-
mation provided by visual and body-based systems. The mean
of the posterior is used as the preliminary estimate of the
target’s location for that trial. Information from the visual
and the body-based systems is also used to estimate the value
of the weight function. This feature of the model provides a
mechanism for the posterior and the weight function to be
correlated (Oruç et al., 2003). Consistent with the modeling
described in Appendix B, the average of two single-cue esti-
mates is used as the mean of the weight function (b), reflecting
a bias to walk toward the midpoint between the locations
indicated by the two cues. The value of the weight function
is obtained by sampling from the appropriate Gaussian

y = 0.4535x + 0.3249
R² = 0.4738

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

thgie
WlausiVlacirip

mE

Op�mal Visual Weight

y = 0.9443x + 0.0813
R² = 0.8033

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

thgie
WlausiVlacirip

mEledo
M

Op�mal Visual Weight

A

B

Fig. 8 Relationships between empirical visual weights and optimal visual
weights for Chen et al. (2017) Experiment 4, Day 1. a Empirical visual
weights as in Table 1. b Model empirical weights as discussed in text
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distribution. The mean of the posterior and the value of the
weight function are then combined using Eq. (25) to obtain the
Bayes action, which is the location to which the navigator

walks. We assumed that the relative reliability of the weight
function, which determines the magnitude of bias, is stable for
an experimental condition and reflects properties of the task

Fig. 9 Predicted and observed mean standard deviations (in meters) for
six experiments. Resampling model (R+), nonresampling model (R−),
observed performance in conflict condition (Obs), Bayes average of R+

and R− (Bayes Ave). Obs is bracketed by R+ and R− (±1 SE), consistent

with a probability mixture of two processes. Bayes factors (BF) favor the
null hypothesis of no difference between Obs and Bayes Ave. Error bars
are 1 SE of mean
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environment (e.g., the number of landmarks, experience with
the homing task). These values were the same as those esti-
mated previously (values of r reported in Table 3).

It may seem as though the model allows the navigator to
change the loss function after perceiving the environment; it is
as if the player of a card game were allowed to change the
rules after seeing their cards. Such a process is not permitted in
Bayesian decision theory. In fact, the loss function remains the
same from trial to trial but one of its parameters changes as a
result of perception; this parameter is the mean of the weight
function. This situation is analogous to the driving scenario
discussed previously: Just as the high-risk zone and the rela-
tive costs of errors could change over time as a result of per-
ception, so too the navigator in our experiments is, according
to the model, learning on each trial which areas of space
(values of θ) are those in which errors are especially important.
The decision rule can be characterized as “to be safe, err to-
ward the middle of the two cues when they differ,” but the
location of the “middle” changes from trial to trial. The influ-
ence of the weight function, which is determined by its rela-
tive reliability (the parameter r), is not affected by trial-to-trial
sensory-perceptual information. Perceptual uncertainty in es-
timating the parameter b is incorporated into the model, as is
appropriate (see Appendix D).

We envisioned two versions of this model: In one version,
the posterior and the weight function were computed from the
same sample of the single-cue systems (R−, for no resam-
pling), introducing a positive correlation between the two.
The effect of a correlation between decision components is
to increase the variability of their combination (Oruç et al.,
2003). In the other version, the posterior and the weight func-
tion were computed from independent samples of the single-
cue systems and hence were uncorrelated (R+, for resam-
pling). This version of the model embodies the conjecture that
failures of attention or working memory may necessitate re-
sampling of information from single-cue systems. Predicted
variability of the Bayes action for both versions of the model
can be computed analytically for individual participants.

Because both versions of the model could be true, even for a
given participant on different trials, we computed the Bayes
average of their predictions (Claeskens & Hjort, 2008;
Raftery, 1995; Wasserman, 2000) to compare to observed
performance. Figure 9 contains predictions for the two model
versions, their Bayes average, and observed performance in
the conflict condition for each of the six experimental condi-
tions. We want to emphasize that no additional parameters
were estimated to obtain the results in Fig. 9. The fits to var-
iability are a form of cross-validation of the model.

In each experimental condition, the two versions of the
model bracket observed performance: Performance in the con-
flict condition is never less than the prediction of the resam-
pling model (R+) and never exceeds the prediction of the non-
resampling model (R−) by more than one standard error. This
pattern is consistent with our conjecture that mean perfor-
mance is a probability mixture of two processes. Table 4 con-
tains statistical comparisons using Bayes factors between the
Bayes average and observed performance in the conflict con-
dition and between the Bayes average and the standard model.
These results show that the decision-theoretic model predic-
tions do not differ from the observed results (in Column 2, all
Bayes factors ≥ 3) and are never convincingly worse than the
standard model predictions (in Column 3, all Bayes factors <
3; all but one < 1), and in three cases, are convincingly better
(Bayes factors ≤ 1/3). Across all six experiments (N = 115),
the standard model is convincingly worse than the decision-
theoretic model (Bayes factor = 2.5 × 10-3). The squared cor-
relation between observed and predicted variability across the
six experimental conditions is .995. Combinedwith the results
summarized in Table 3, the decision-theoretic model predicts
performance in the homing task better than does the standard
model.

In summary, Chen et al.’s (2017) findings were mostly
consistent with predictions of the standard model except for
the linear relation between optimal cue weights (computed
from the variances of the component distributions) and empir-
ical cue weights (computed from the means of those

Table 4 Comparisons of Observed vs. Predicted Data (Data vs. BDT) and Models (Standard Model vs. BDT)

Experimental condition Bayes factor1 (Data vs. BDT) Bayes factor2 (Standard model vs. BDT)

Exp. 1a: One landmark 5.56 1.92

Exp. 1a: Three landmarks 3.65 9.91 × 10-2

Exp. 1b: Rotation 4.34 5.72 × 10-1

Exp. 1b: No rotation 5.47 3.03 × 10-1

Exp. 4: Day 1 5.41 7.31 × 10-2

Exp. 4: Day 2 3.24 8.43 × 10-1

Note. 1 Bayes factors (JZS, r = 1; Rouder et al., 2009) test the null hypothesis of no difference between the observed variability and the predicted Bayes
average in the conflict condition. The null hypothesis is supported in all experiments (all Bayes factors ≥ 3). 2 Bayes factor = likelihood(standard model)/
likelihood(BDT). BDT = Bayesian decision theory model. The standard model is not favored in any experiment (no Bayes factor ≥ 3); the BDT is
favored in three experiments (Bayes factors ≤ 3.33 × 10-1 ).
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distributions; see Table 1). This relation indicated that partic-
ipants underweighted reliable cues and overweighted unreli-
able cues when executing the return paths. According to the
decision-theoretic model, the visual cues and the body-based
cues were combined optimally, but participants did not fully
trust the resulting distribution of estimates of the home loca-
tion because they were aware of the intrinsic variabilities, and
hence, inaccuracies, of the component spatial cue systems.
Relying heavily on a cue with high relative reliability could
still result in large homing errors. This concern led participants
to walk toward a subjective “safe zone” between the two dis-
parate spatial cues. This bias in return paths was implemented
via the loss function that defined the decision rule.

An alternative non-Bayesian explanation of this pattern of
results is that navigators alternated across trials between the
location indicated by the posterior (i.e., the standard model
prediction) and the location corresponding to the average of
the two cues. Mixture models of this type have been investi-
gated in several perceptual tasks (e.g., Laquitaine & Gardner,
2018; Wozny et al., 2010). A key prediction of such models is
that response distributions are bimodal. There was no evi-
dence of bimodality in Chen et al.’s (2017) data but the dis-
parity between cues (15°) was probably not sufficiently large
to reveal bimodality.

For completeness, we tested this non-Bayesian mixture
model by first fitting it to mean performance, allowing the
mixture probability to be a free parameter, and then to the
variability of performance using the same mixture probabili-
ties. The mixture model and decision-theoretic model make
identical predictions for mean performance (because of the
way that we implemented the decision-theoretic model).
Letting p and 1-p be the mixture probabilities for the posterior
mean and the mean of the two cues, respectively, then 1-p is
equal to the relative reliability of the weight function (r in
Table 3). This equality is purely arithmetic and has no con-
ceptual interpretation. The two models make different predic-
tions, however, for the variability of performance. Across all
six experiments, the mixture model is convincingly worse
than the decision-theoretic model (Bayes factor = 5.8 ×
10-5). The squared correlation between observed and predict-
ed variability across the six experimental conditions is .902
(cf. .995 for the decision-theoretic model).

The modeling of variances exemplifies an important cate-
gory of situations in which the response distribution is affected
by trial-to-trial variation in sensory-perceptual systems and
therefore must be compared to an appropriate model-based
distribution of performance (Ma, 2019). This model is
Bayesian but it is not optimal (e.g., Norton et al., 2019), as
the trial-to-trial variation in sensory-perceptual systems does
not affect the relative reliability of the weight function (and
hence the magnitude of bias) in each experimental condition.
As noted previously, we assumed that the relative reliability of
the weight function is stable for an experimental condition and

is determined by the nature of the task environment. This
assumption could be tested in appropriately designed experi-
ments. One can construct an optimal version of the model by
sampling the value of the weight function from a distribution
with a constant mean across trials (in effect, ignoring the
sensory-perceptual information on a given trial). The weak-
ness of such a model is that it does not reflect the cognitive
processes that we hypothesize are operating on each trial; in
addition, such amodel predicts lower variability in the conflict
condition than was observed.8

Examples of the application of an informative prior

In the previous section of the manuscript, we showed that exper-
imental findings that were problematical for the standard model
of cue combination could be explained by specifying an explicit
loss function in a complete Bayesian decision model. In this
section, we turn our attention to the other essential component
of a Bayesian model, the prior distribution. The first example
uses a prior to represent knowledge of properties of the stimuli,
and the second uses a prior to represent a cognitive bias.

Regression and range effects in path integration Petzschner
and Glasauer (2011) developed Bayesian models to explain
biases in estimates of linear and angular displacements during
visual path integration (see also, Lakshminarasimhan et al.,
2018). Only the distance estimation data will be summarized
here. Participants used a joystick to traverse a straight path in a
virtual desert environment. When the sample distance for the
trial had been reached, movement was terminated automati-
cally. Participants then had to reproduce the just experienced
distance using the same locomotion mode. Velocity was con-
stant during production and reproduction but jittered between
the two to eliminate temporal cues to distance. Three overlap-
ping ranges of distances were experienced in separate sessions
of 200 trials each (1–10 m, 5–14 m, 10–19 m). Participants
were blind to the distance traveled and estimated on each trial,
and did not receive feedback. Petzschner and Glasauer’s find-
ings are reproduced in Fig. 10a. The key results are that esti-
mates within each range were biased toward the mean of the
range (e.g., shorter distances overestimated, longer distances
underestimated) and the magnitude of bias increased with the
average magnitude of displacement (i.e., smaller for the 1–10-
m range than for the 10–19-m range).

The Bayesian model is illustrated in Fig. 10b. The model
assumes that participants learn the average range of the distances
experienced within each session and represent this knowledge as

8 An optimal model can also be constructed by allowing the relative reliability
of the weight function (r) to depend on the variability of the visual and body-
based systems. The problem with this model is that the magnitude of bias is
inversely related to the variability of the sensory-perceptual systems, which is
inconsistent with the proposed role of the weight function in the decision
model.
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an informative prior. In the example, the prior is centered on the
mean of the higher range of distances. Sensory-perceptual likeli-
hood functions are illustrated for theminimumand themaximum
distances within that range; they are assumed to be unbiased (i.e.,
means = actual distance). The scaled products of the likelihood
functions and the prior yield the posterior distributions (e.g., Eq.
15). The estimated distances, which are obtained from the poste-
riors, are closer to the mean of the range, producing overestima-
tion of the shorter distance and underestimation of the longer
distance. The amount of bias is larger for the longer distance in
the range because its likelihood function has greater variance
than does the likelihood function for the shorter distance. This
model predicted the results of the experiment quite well (R2 =
.97).9 The model included a parameter sensitive to the loss func-
tions potentially used by participants (Dirac-delta, absolute-error,
squared-error; see Table 2). Values of the fitted parameter indi-
cated that cohorts of about the same size used each loss function.

The biases produced by the prior in this model are formally
analogous to those produced by the loss function in our decision-
theoretic model of homing. In Petzschner and Glasauer’s (2011)
model, the prior biases the estimate away from the likelihood
function toward the mean of the prior; in our decision-theoretic

model, the weight function (which operates like a prior in the
decision stage) biases the estimate away from the posterior dis-
tribution toward the mean of the weight function.
Mathematically, the computations are identical; conceptually
and theoretically, however, the components of the models
correspond to different entities computed at different stages of
cognitive processing.

Dissociation between homing variability and homing direc-
tion in path integrationZhao andWarren (2015b) employed a
homing task very similar to that used by Chen et al. (2017) but
varied the disparity between visual cues and body-based cues
in the conflict conditions over a much wider range (15°, 30°,
45°, 90°, 115°, and 135°). They obtained two major findings:

1. The observed variability of homing direction was consis-
tent with predictions of the standard model in the com-
bined cue condition and in most of the conflict conditions,
even for large cue disparities.

2. The observed mean of homing direction was not consistent
with the standard model of cue combination and indicated
that participants relied on single cues to establish a walking
direction. One group of participants (N = 11) walked in the
direction indicated by the visual landmarks, until the discrep-
ancy between visual cues and body-based cues exceeded
90°, at which point some participants continued to follow
the visual cues and others switched to body-based cues. A

9 Petzschner and Glasauer also developed a model in which the prior was
iteratively updated across trials using the distance just experienced. The itera-
tive model did not predict the results any better than the model described in the
text, but had some qualitative strengths, and hence, was preferred by the
authors.

Fig. 10 Distance estimation results and Bayesian model from Petzschner
and Glasauer (2011). a Distance estimates from visual path integration
show characteristic patterns of regression to the mean and range effects
(greater regression to the mean with increasing magnitude of the distance
range). Dotted line indicates equality between reproduced and sample
distances. Adapted from Petzschner and Glasauer (2011), Fig. 3. b
Bayesian model posits an informative prior centered on the middle of
each distance range (only the upper range distributions are illustrated).

Likelihood functions are unbiased. Bayesian combination of the prior
with each likelihood function yields posterior distributions from which
distance estimates are obtained. Posterior distributions are closer to the
prior than are likelihoods, and the magnitude of bias (vertical arrows) is
larger for the larger distance (a result of representing internal estimates of
distances on a logarithmic scale, such that variances increase with
magnitude). Adapted from Petzschner et al. (2015), Fig. 1
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second group of participants (N = 7) walked in the direction
indicated by body-based cues in all conflict conditions, ap-
parently ignoring the visual cues entirely.

There was no evidence in Zhao and Warren’s (2015b) re-
sults of trial-to-trial cue-switching (e.g., Laquitaine &
Gardner, 2018) or of model-based decision strategies (e.g.,
Wozny et al., 2010). In particular, bimodality diagnostic of
those processes was not evident (see Fig. 3 of Zhao &
Warren, 2015b). Heading direction was determined by one
cue, whereas heading variability was consistent with the opti-
mal combination of visual and body-based cues (as defined in
Table 1) at nearly all cue disparities.

Although Zhao andWarren’s results are inconsistent with the
standard model of cue combination, they can be explained in a
Bayesian model with informative priors. The conflict conditions
in their experiment were blocked by increasing cue disparity and
always occurred after the single-cue and combined-cue condi-
tions. Participants apparently learned early in the 15° disparity
block that the two cues were incongruent, as even in this condi-
tion, participants’ homing direction was determined by only one
cue.10 It is likely that once participants learned that the cues were
incongruent they attended to this feature of the environment as
the disparity increased across blocks of conflict trials.

Our conjecture is that participants in Zhao and Warren’s
(2015b) experiment treated the conflict condition as a single-
cue condition, but with an informative prior centered on one of
the cues. This prior represented the bias to use only one cue in
the presence of conflicting information. Integration of a
single-cue distribution and an informative prior will produce
a combined distribution with smaller variability than the two
component distributions, just as integration of two single-cue
distributions produces a combined distribution with reduced
variability (see Table 1). The prior need only have variability
similar to that of the ignored cue to produce a reduction in
variability in the conflict condition equal to that predicted by
the optimal combination of the single-cue distributions. The
mean, however, will be equal to the shared mean of the single-
cue distribution and the prior distribution. This effect is illus-
trated in Fig. 11. Additional processes are needed to predict
the shift from the visual cue to the body-based cue when the
disparity between the two was sufficiently large (none of the
participants switched from body-based cues to visual cues),
but Bayesian models of similar phenomena have been devel-
oped for perceptual localization tasks (Körding et al., 2007;
Roach et al., 2006) and could be applied to homing tasks.

It may seem strange or even magical that the reliability of
the prior would match the reliability of the ignored cue. We
hypothesize that the bias to rely on one spatial cue and to
ignore the other spatial cue when they conflict is a top-down,
cognitive bias. This bias must be of sufficient magnitude to
attenuate the influence of the ignored cue (through facilitation
of the favored cue, inhibition of the ignored cue, or a combi-
nation). Strength of bias in a Bayesian model is represented by
reliability (or its inverse, variability); hence, the reliability of
the prior—which represents the bias to use the favored cue—
should approximately match the reliability of the ignored cue.
The top-down cognitive bias that we are proposing follows
from Chen et al.’s (2017, Figure 14) model of cue weighting.

Consider the Stroop task as an analogy. To name the color
of the words efficiently, one must focus attention on color
naming and inhibit the currently inappropriate response of
reading the words. The magnitude of inhibition is not related
to color naming but to the automaticity of reading (low for
beginning readers, high for adult readers). Models of conflict
tasks, such as the Simon task and the Eriksen flanker task,
have incorporated processes of the kind we are proposing
(Jo et al., 2021; Ridderinkhof, 2002; although these are not
Bayesian models).

Zhao and Warren’s (2015b) results naturally raise ques-
tions about the differences between participants who attended
to visual cues (until the disparity between visual and body-
based cues became sufficiently large) and participants who
only attended to body-based cues. Chen et al. (2017,
Experiment 4) found that participants who relied relatively
more on body-based cues and performed relatively better with
body-based cues also had higher scores on a standardized test
of mental rotation ( r ¼ :50 ). Given that mental rotation cor-
relates positively with several skills related to navigation

10 Chen et al. (2017) and Nardini et al. (2008) found that navigators integrated
cues optimally in the 15° disparity condition. A potentially important differ-
ence between their experiments and Zhao and Warren’s is that all cue condi-
tions were intermixed within blocks over the course of the experiment in Chen
et al.’s and Nardini et al.’s projects.

Fig. 11 Idealized distributions of performance for two single-cue
conditions, a prior distribution centered on the visual cue, and the
predicted distribution for the optimal combination of the visual cue and
the prior. The predicted distribution for the optimal combination of the
visual cue and the body-based cue is included for comparison. The
variance of the prior was set to be slightly greater than the variance of
the visual cue so that both distributions would be visible in the figure
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(Hegarty et al., 2006; Weisberg et al., 2014), one would pre-
dict that participants in Zhao and Warren’s experiment who
attended to body-based cues (“distal-path-integration group”)
would be the better navigators (ceteris paribus). Participants
in Zhao and Warren’s experiment might have sorted them-
selves based on their perceived navigational skill (Hegarty
et al., 2002) into followers of landmarks or followers of their
own body-based sense of direction.

Examples of nonoptimal cue combination

The results of several investigations of cue combination in
navigation have shown that participants do not combine cues
optimally, or even at all in some circumstances. Petrini et al.
(2016) examined cue combination in a path reproduction task.
Participants experienced an outbound path with vision only,
self-motion only, or vision and self-motion, and then
reproduced the path by walking in darkness. They found that
adults did not integrate visual and self-motion cues in this task,
whereas children did so optimally. Tcheang et al. (2011) also
did not find evidence of cue integration in a homing task, and
like Petrini et al.’s study, one or more cues were available
during the outbound path but only one cue (self-motion
information) was available during testing. Newman and
McNamara (2021) have shown that in a homing task, adults
do not integrate visual and self-motion cues until they execute
the return path; if the same principle holds in the paradigms
used by Petrini et al. and Tcheang et al., the nature of the
experimental conditions could have precluded combining
cues because only one cue was available at the time of testing.

Other findings may be irreconcilable with Bayesian
models. For example, Chrastil et al. (2019) found little evi-
dence that cues were combined at all, let alone combined
optimally, in a novel homing task (see also, L. Zhang et al.,
2019). For reasons described subsequently, we view such
findings as expected and informative.

General discussion

The aim of this project was to apply Bayesian decision theory
to a complex cognitive activity, spatial navigation. Our partic-
ular interest was to understand how navigators combine spa-
tial cues to estimate the location of a target location, or goal.
According to a Bayesian analysis of this problem, navigators
combine any prior knowledge they may have about the distri-
bution of goals in the environment with spatial information
provided by sensory-perceptual systems to construct a distri-
bution of possible goal locations conditioned on the sensory-
perceptual information. This distribution, which is known for-
mally as the posterior, is the basis of all inferences and deci-
sions about the goal. A decision rule is then used to transform
the posterior distribution into the choice of a goal location.

Decision rules are determined by the loss function that spec-
ifies the consequences of various actions. According to
Bayesian decision theory, the location that minimizes expect-
ed losses given the posterior distribution should be chosen as
the goal.

Several projects have investigated spatial cue combination
in navigation (cited previously), but all of them have assumed
that prior knowledge, if it existed, did not privilege some
locations over others (i.e., prior knowledge was uniform
across locations) and none used an explicit decision rule. We
showed that Bayesian decision theoretic models were able to
predict experimental results that were inconsistent with pre-
dictions of the standard model. The use of an explicit decision
rule explained discrepancies between optimal and empirical
cue weights in Chen et al.’s (2017) experiments and the use of
informative priors explained the incongruity between heading
variability and heading direction in Zhao and Warren’s
(2015b) experiment.

Incorporating informative priors, specifying a complete de-
cision model, or allowing nonindependence between stimuli
or decision processes gives Bayesian decision theory consid-
erable explanatory power. To date, investigations of human
spatial navigation have not capitalized on this explanatory
power. We are not aware of any investigations of human nav-
igation that have manipulated the probability of locations be-
ing goals, prior experiences with spatial cues, or the costs of
navigational decisions. One study that comes very close is that
of H. Zhang et al. (2010). They examined optimality of route
planning in an economic navigation task where participants
traced paths on a computer screen with their fingers. Versions
of that experiment that involved physical locomotion could be
implemented in immersive VR using readily available tech-
nology. These are promising and completely unexplored areas
of experimental and theoretical investigation.

As stated previously, our aim in this manuscript is to demon-
strate the potential utility of using Bayesian decision theory to
investigate navigational behaviors. The baseline model to which
the Bayesian model has been compared is the standard model of
cue combination. We believe that this model is the appropriate
reference point in the current context because it has been used to
design and interpret nearly all previous investigations of cue
combination in navigation (for an important exception, see
Petzschner et al., 2012). We have no doubt, however, that other
models, both Bayesian and non-Bayesian, could be developed to
explain Chen et al.’s (2017) and Zhao and Warren’s (2015b)
findings, and we hope that this project serves to stimulate others
to create and to test such models.

One limitation of previous studies of cue combination in
navigation is that they have quantified performance in a single
dimension: either distance between the stopping point and the
target (e.g., Chen et al., 2017; Nardini et al., 2008) or homing
direction (e.g., Zhao &Warren, 2015b). An important step for
future research is to extend the models to the environments in
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which participants actually navigate. Friedman et al. (2013)
published an excellent tutorial on applications of the standard
model to two-dimensions, and in Appendix A we provide the
derivation of Gaussian weighted squared-error loss in two
dimensions (this derivation generalizes to the incorporation
of a prior with individual spatial cues in two dimensions). A
major benefit of extending the models to two dimensions is
that formal models of single-cue likelihood functions (e.g.,
models that generate bivariate distributions of locations on
the ground plane) can be developed and used to derive the
posterior. Performance in multiple cue conditions can then
be predicted in terms of parameters of the likelihood functions
instead of performance statistics collected in single-cue exper-
imental conditions (e.g., Xu et al., 2017). This type of model-
ing would represent a significant step forward in understand-
ing the computations involved in integrating spatial cues to
estimate one’s position and the locations of navigational goals
in the environment (e.g., Fetsch et al., 2013; Fetsch et al.,
2012; Seilheimer et al., 2014).

Incorporating loss functions into navigational planning and
decisions has practical application. The use of mapping apps
is ubiquitous. For driving, these apps minimize total travel
time, which means that the loss function assigns higher costs
to routes that take longer, accounting for both distance and the
speed limit (as well as some real-time data, such as traffic
density and wrecks). Anyone who has used such apps in areas
not well-served by interstate highways will at some point find
themselves driving on small roads in remote places. It is often
very difficult to determine in advance the status of a section of
road that a mapping app selects for the route (e.g., the first
author once found himself on a muddy unpaved road in rural
Colorado on a drive from Nashville to Jackson, Wyoming,
because that short segment produced the optimal solution for
total travel time). These apps typically have settings that allow
the user to avoid highways, tolls, and ferries, thereby custom-
izing the loss function to some extent. However, a driver who
is pulling a travel trailer may have a maximum speed well
below the speed limit onmany sections of highway, and there-
fore may want to minimize distance; other drivers may wish to
minimize route complexity or maximize the use of interstate
highways; and a parent may want their child to use a route that
maximizes safety. All of these options for alternative loss
functions could easily be made available with current technol-
ogy, but as far as we know, none is currently implemented.

Criticisms of Bayesian models

Bayesian models have a rich history of application in
many domains of the psychological sciences (e.g.,
Griffiths et al., 2008; Yuille & Bülthoff, 1996; Zaki,
2013). Although these models have been successful in

predicting a wide array of behaviors, they also have been
scathingly criticized (Bowers & Davis, 2012). One line of
criticism focuses on the (prior) plausibility of Bayesian
models in l ight of the many demonstrat ions of
nonoptimality in human behavior. This is a valid point,
but not one that applies to our agenda, as we view
Bayesian decision theory as a conceptual framework for
designing experiments , developing models , and
interpreting data (as discussed subsequently), and expect
experimental findings to adjudicate between Bayesian and
non-Bayesian cognitive models.

A second common criticism is that Bayesian models have
so many degrees of freedom that they are unfalsifiable. We
believe that this criticism is unwarranted. Bayesian models
typically have few parameters to estimate; most of the struc-
ture is imposed by the model itself (Ma, 2019). In many in-
vestigations of cue combination in navigation, there were no
free parameters (Chen et al., 2017; Sjolund et al., 2018; Zhao
& Warren, 2015b). Bayesian models are more complex than
many cognitive models, as they include three independent
components: The prior distribution, the likelihood function,
and the decision rule. Criticizing a Bayesian model because
it takes advantage of the structure available to it is not reason-
able to our minds. However, we appreciate that Bayesian
models may seem ad hoc given the numerous choices avail-
able to the researcher in constructing and testing a model.
These implicit degrees of freedom are not captured in typical
measures of model complexity. This concern is real and im-
portant, and one that applies to many domains of modeling,
and indeed, to the conduct of psychological science in general
(Simmons et al., 2011). The solution to this problem is trans-
parency in model development and evaluation. The selection
of model components (e.g., the prior) must be justified in
advance of data collection, preferably on the basis of indepen-
dent theoretical or empirical considerations, and researchers
must identify revisions to the model (e.g., additional parame-
ters) that were motivated by the findings. Other researchers
can then evaluate plausibility for themselves.

A third criticism is that non-Bayesian models are not given
sufficient consideration in discussions of Bayesian models.
This weakness might have existed in the past but it is much
less of a problem now. As just two examples: Norton et al.
(2019) tested five Bayesian models and six non-Bayesian
models and Laquitaine and Gardner (2018) tested 13
Bayesian models and one non-Bayesian model. Importantly,
the Bayesian models tested by Laquitaine and Gardner in-
cluded variants that differed in prior distributions and
loss functions. The results of both projects favored
non-Bayesian alternatives, which should allay concerns
that Bayesian models, even complex ones, are not
falsifiable.
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Limitations of the current project

This project is limited in at least two ways. First, the models
were applied to existing data sets, obtained from experiments
that were not designed to test models of the kind proposed
here. Future studies need to test directly components of
Bayesian-decision-theoretic models: Are navigators sensitive
to Bayesian priors (e.g., nonuniform distributions of goal loca-
tions), and if so, do they use them in a manner consistent with
Bayesian decision theory? Do navigators account for the costs
of navigational errors and paths in principled and quantifiable
ways, and if so, which loss functions are used? Are there sys-
tematic individual differences in the selection of decision
rules?

The second limitation follows from the first: The models
were not tested at the level of individual participants and the
model comparisons were therefore limited to mean perfor-
mance. Chen et al. (2017), in particular, did not collect enough
data per participant per condition to permit reliable model
fitting for individual participants. Future experiments need to
be designed so that model parameters can be estimated for
individual participants, preferably using methods that specify
structure to individual variation in parameter values (Lee &
Wagenmakers, 2013; Shiffrin et al., 2008).

Coda

Bayesian decision theory is not a model of human performance.
Bayesian decision theory, as applied to psychological phenom-
ena, is an ideal observer (Geisler, 2011): It specifies a mathe-
matically optimal way to use information frommultiple sources
to make decisions. Human spatial navigation is precisely the
type of problem that Bayesian decision theorywas developed to
explore. Bayesian decision theory should not be expected to
predict all of the details of human performance in a task; put
another way, one should not expect human performance always
to be consistent with Bayesian principles. Investigations of hu-
man performance generally, and navigation performance spe-
cifically, are at least as informative when behavior deviates
from the predictions of Bayesian decision theory as when it is
consistent with those predictions, as such inconsistencies can
lead to productive questions about cognitive processes: Where
do the deviations occur? Is it possible to bring theory and data
into correspondence by relaxing one or more assumptions of
the theory, and if so, what do these modifications imply about
the underlying cognitive processes? What cognitive or percep-
tual processes may lead to non-Bayesian performance? One
does not need Bayesian decision theory to conduct experiments
that investigate the effects of prior experience on navigation
performance or the influence of the costs of errors on the selec-
tion of navigational paths. Bayesian decision theory, however,
provides a coherent conceptual framework for designing such

experiments, developing process models of the tasks, and
interpreting the findings.

Midday on October 22, 1707, the day of the Isles of Scilly
disaster, Admiral Shovell gathered the sailing masters (the
principal navigators) of the fleet on board his ship, the
Association, and consulted them about the fleet’s position
(Cooke, 1883). All but one thought that the fleet was a safe
distance from the Isles of Scilly, the lone dissenter of the
opinion that the fleet was only 3 hours sail from the islands.
Shovell adopted the majority opinion, and set sail on a course
that he thought was taking the fleet into the open English
Channel, but in fact took the ships directly into the deadly
rocks in foul weather. It does not appear that the Admiral
considered the enormous variability of the sailing masters’
estimates of the fleet’s position (May, 1960) or the relative
costs of navigational errors under the various estimates of the
fleet’s position. Had he done either, the outcome might have
been very different.

Appendix A

This appendix contains the derivation of the Bayes action
(sometimes referred to as the Bayes rule) for weighted
squared-error loss. Our aim is to present these derivations in
a manner that is accessible to graduate students in psychology
who have completed one year of graduate statistics and have
sufficient familiarity with calculus to understand differentia-
tion and integration.

Information form of univariate normal

The most common way to parameterize the univariate
Gaussian probability density function (pdf; i.e., normal distri-
bution) in psychology is as follows:

f xð Þ ¼ 1ffiffiffiffiffiffi
2π

p
σ
exp

− x−μð Þ2
2σ2

 !
: ðA1Þ

This parameterization is often referred to as the moment
form (π in this formula is the mathematical constant, not a
probability distribution). An alternative parameterization is
the canonical or information form, which is useful for many
derivations, especially in the multivariate case (Bromiley,
2018; Shön & Lindsten, 2011). We begin by deriving the
information form for the univariate Gaussian pdf:

f xð Þ ¼ 1ffiffiffiffiffiffi
2π

p
σ
exp

− x2−2xμþ μ2ð Þ
2σ2

� �
; ðA2Þ

f xð Þ ¼ 1ffiffiffiffiffiffi
2π

p
σ
exp

xμ
σ2

−
x2

2σ2
−

μ2

2σ2

� �
; ðA3Þ
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f xð Þ ¼ 1ffiffiffiffiffiffi
2π

p
σ
exp −

μ2

2σ2

� �
exp

xμ
σ2

−
x2

2σ2

� �
: ðA4Þ

By taking the natural logarithm of the first two terms, they
can be included within the exponential as a single term that
does not depend on x:

Ζ ¼ ln
1ffiffiffiffiffiffi
2π

p
σ
exp −

μ2

2σ2

� �� �

¼ −
1

2
ln 2πð Þ þ ln σ2


 �þ μ2

σ2

� �
; ðA5Þ

f xð Þ ¼ exp Zþ xμ
σ2

−
x2

2σ2

� �
: ðA6Þ

The natural parameters of this function are the scaled mean
μ
σ2

 �

and the inverse variance, or reliability 1
σ2

 �

.
General derivation of Bayes action for weighted

squared-error loss
The Bayes action for weighted squared-error loss is stated

in Berger (1985) and in Robert (2007), but both sources leave
the proof to the reader. We are not aware of a published,
complete derivation, and provide one here.

The loss function for weighted squared-error loss is,

L θ; að Þ ¼ w θð Þ θ−að Þ2; ðA7Þ
where θ is the parameter to be estimated (e.g., the correct
target location), a is the action (e.g., the actual location select-
ed), and w(θ) is a non-negative function of θ. The aim is to
minimize the posterior expected loss of the action a, for the
loss function L(θ, a) and posterior distribution π(θ| x):

ρ π θjxð Þ; að Þ ¼ ∫w θð Þ θ−að Þ2π θjxð Þdθ: ðA8Þ

The variable x refers to the data that are informative about
θ.

We first expand the quadratic expression and distribute the
integral:

ρ π θjxð Þ; að Þ ¼ ∫w θð Þ θ2−2aθþ a2

 �

π θjxð Þdθ; ðA9Þ
¼ ∫θ2w θð Þπ θjxð Þdθ−2a∫θ w θð Þπ θjxð Þdθ
þ a2∫w θð Þπ θjxð Þdθ: ðA10Þ

The minimum is obtained by taking the derivative of (A10)
with respect to a, setting the result to 0, and solving for a:

0 ¼ d
da

∫θ2w θð Þπ θjxð Þdθ−2a∫θ w θð Þπ θjxð Þdθþ a2∫w θð Þπ
�
θjx
�
dθ

h i
;

ðA11Þ
0 ¼ 0−2∫θ w θð Þπ θjxð Þdθþ 2a∫w θð Þπ θjxð Þdθ; ðA12Þ
2∫θ w θð Þπ θjxð Þdθ ¼ 2a∫w θð Þπ θjxð Þdθ; ðA13Þ

∫θw θð Þπ θjxð Þdθ
∫w θð Þπ θjxð Þdθ ¼ a ¼ δπ xð Þ; ðA14Þ

which is the result we set out to prove. (This derivation
assumes that all integrals converge and that ∫w(θ)π(θ| x)dθ >
0. The superscript on δ designates the distribution with respect
to which loss is minimized.)

Derivation of Bayes action for Gaussian weighted
squared-error loss in 1D

The goal is to evaluate (A14) for a Gaussian weight func-
tion and normal posterior. Although one can derive this func-
tion using existing sources (e.g., Bromiley, 2018; Oruç et al.,
2003), doing so requires establishing equivalences between
entities that are not obviously related or expressing the prob-
ability density functions in terms of reliabilities. For simplicity
and transparency, we provide a complete derivation in the
current notation here.

Let w θð Þ ¼ aexp − θ−bð Þ2
2c2

h i
and suppose that π(θ| x) =N(μ,

σ2). (a, b, and c are the generic parameters of the Gaussian
function.) The goal is to derive the Bayes action δπ(x) of
Equation (A14). We begin by expressing both functions in
information form to make the subsequent derivations more
tractable.

Zw ¼ ln að Þ− 1

2

b2

c2

� �
; ðA15Þ

w θð Þ ¼ exp Zw þ θb
c2

−
θ2

2c2

� �
: ðA16Þ

These two equations are obtained in the same manner as
(A5) and (A6), respectively.

Zπ ¼ −
1

2
ln 2πð Þ þ ln σ2


 �þ μ2

σ2

� �
; ðA17Þ

π θjxð Þ ¼ exp Zπ þ θμ
σ2

−
θ2

2σ2

� �
: ðA18Þ

These two equations are the same as Eq. (A5) and Eq. (A6)
with θ replacing x.

The product of w(θ) and π(θ| x) can be computed by sum-
ming the terms within the exponentials:

w θð Þπ θjxð Þ

¼ exp Zw þ Zπð Þ þ θ
b
c2

þ μ
σ2

� �
−
1

2
θ2

1

c2
þ 1

σ2

� �� �
;

ðA19Þ

¼ exp Zw þ Zπð Þ−Zwπ þ Zwπ þ θ
b
c2

þ μ
σ2

� �
−
1

2
θ2

1

c2
þ 1

σ2

� �� �
;

ðA20Þ
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¼ exp Zw þ Zπð Þ−Zwπ½ � exp Zwπ þ θ
b
c2

þ μ
σ2

� �
−
1

2
θ2

1

c2
þ 1

σ2

� �� �
; ðA21Þ

Zwπ is constructed from elements that do not depend on θ
so that the second exponential has the Gaussian form in Eq.
(A6):

Zwπ ¼ −
1

2
ln 2πð Þ þ ln

1

c2
þ 1

σ2

� �−1
" #

þ
b
c2 þ μ

σ2

 �2
1

c2
þ 1

σ2

� �
0
BB@

1
CCA:

ðA22Þ

To see the correspondence, note that:

b
c2

þ μ
σ2

¼ bσ2

c2σ2
þ μc2

σ2c2
¼ bσ2 þ μc2

σ2c2
; ðA23Þ

¼ bσ2 þ μc2

σ2c2
�

1

σ2 þ c2
1

σ2 þ c2

; ðA24Þ

¼
bσ2 þ μc2

σ2 þ c2

� �
σ2c2

σ2 þ c2

� � ; ðA25Þ

And that:

1

c2
þ 1

σ2
¼ σ2 þ c2

σ2c2
; ðA26Þ

1

c2
þ 1

σ2

� �−1

¼ σ2c2

σ2 þ c2
: ðA27Þ

The last term in Eq. (A22) is the square of Eq. (A25) di-
vided by Eq. (A26),

b
c2 þ μ

σ2

 �2
1

c2
þ 1

σ2

� � ¼

bσ2þμc2

σ2þc2

� �
σ2c2

σ2þc2

� �
2
4

3
5
2

σ2 þ c2

σ2c2

� � ; ðA28Þ

which simplifies to,

¼
bσ2þμc2

σ2þc2

� �2
σ2c2

σ2 þ c2

� � : ðA29Þ

Rewriting the second exponential in Eqs. (A21) and (A22),
we have, respectively:

exp Zwπ þ θ

bσ2 þ μc2

σ2 þ c2

� �
σ2c2

σ2 þ c2

� �
0
BBB@

1
CCCA−

1

2
θ2

σ2 þ c2

σ2c2

� �2
6664

3
7775; ðA30Þ

Zwπ ¼ −
1

2
ln 2πð Þ þ ln

σ2 þ c2

σ2c2

� �−1
" #

þ
bσ2þμc2

σ2þc2

� �2
σ2c2

σ2 þ c2

� �
0
BB@

1
CCA:

ðA31Þ

By defining μwπ ¼ bσ2þμc2

σ2þc2 and σ2
wπ ¼ σ2c2

σ2þc2, we obtain:

f θð Þ ¼ exp Zwπ þ θ
μwπ

σ2
wπ

� �
−
1

2
θ2

1

σ2
wπ

� �� �
; ðA32Þ

Zwπ ¼ −
1

2
ln 2πð Þ þ ln σ2

wπ


 �þ μ2
wπ

σ2
wπ

� �
; ðA33Þ

which are of the same form as Eq. (A6) and Eq. (A5),
respectively. This means that the second exponential in Eq.
(A21) is the equation for a Gaussian distribution with mean
and variance, respectively:

μwπ ¼ bσ2 þ μc2

σ2 þ c2
; ðA34Þ

σ2
wπ ¼ σ2c2

σ2 þ c2
¼ 1

c2
þ 1

σ2

� �−1

: ðA35Þ

We can now evaluate the integral in the denominator:

∫w θð Þπ θjxð Þdθ ¼ ∫exp Zw þ Zπð Þ−Zwπ½ �exp Zwπ þ θ
μwπ

σ2
wπ

� �
−
1

2
θ2

1

σ2
wπ

� �� �
dθ;

ðA36Þ
¼ exp Zw þ Zπð Þ−Zwπ½ �∫exp Zwπ þ θ

μwπ

σ2wπ

� �
−
1

2
θ2

1

σ2
wπ

� �� �
dθ; ðA37Þ

because the first exponential does not depend on θ. The
integral of a probability density function is 1; hence,

∫w θð Þπ θjxð Þdθ ¼ exp Zw þ Zπð Þ−Zwπ½ �: ðA38Þ

If w(θ) is normal (i.e., a ¼ 2πc2ð Þ−12 ), then Eq. (A38) is
normal with mean μ (assuming that b is viewed as the vari-
able) and variance c2 + σ2.
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Now, for the integral in the numerator:

∫θ w θð Þ π θjxð Þdθ ¼ ∫θ exp Zw þ Zπð Þ−Zwπ½ � exp Zwπ þ θ
μwπ

σ2wπ

� �
−
1

2
θ2

1

σ2wπ

� �� �
dθ;

ðA39Þ
¼ exp Zw þ Zπð Þ−Zwπ½ �∫θ exp Zwπ þ θ

μwπ

σ2
wπ

� �
−
1

2
θ2

1

σ2wπ

� �� �
dθ: ðA40Þ

The integral in this expression is the expected value of θ
distributed as a Gaussian distribution with mean,

μwπ ¼ bσ2 þ μc2

σ2 þ c2
: ðA41Þ

Hence,

δπ xð Þ ¼ exp Zw þ Zπð Þ−Zwπ½ � μwπ

exp Zw þ Zπð Þ−Zwπ½ � ; ðA42Þ

δπ xð Þ ¼ μwπ ¼ bσ2 þ μc2

σ2 þ c2
: ðA43Þ

The mean, μwπ, can also be expressed as,

μwπ ¼ σ2
wπ

b
c2

þ μ
σ2

� �
; ðA44Þ

where,

σ2
wπ ¼ σ2c2

σ2 þ c2ð Þ : ðA45Þ

Rearranging terms in Eq. (A43),

δπ xð Þ ¼ μ−
σ2

σ2 þ c2

� �
μ−bð Þ: ðA46Þ

Extension to 2D

See Friedman et al. (2013) for a lucid exposition of the stan-
dard cue-combination model in two dimensions. Here, we
derive the Bayes action in two dimensions for Gaussian
weighted squared-error loss. The same derivation can be used
for the application of a Gaussian prior.

Following Bromiley (2018), the information form of a sin-
gle multivariate Gaussian is:

f θð Þ ¼ exp Z þ ηTθ−
1

2
θTΛθ

� �
; ðA47Þ

where,

Z ¼ −
1

2
dln2π−ln Λj j þ ηTΛ−1η

 �

; ðA48Þ

Λ =Σ−1 is the inverse of the covariance matrix; η =Λμ; |Λ|
is the determinant of Λ; and d is the number of variates. θ and
μ in this context are d-dimensional vectors. Bromiley shows

that the product of N multivariate Gaussians is a scaled
Gaussian, analogous to the univariate case. Our interest is in
the product of a 2D Gaussian weight function and 2D
Gaussian posterior. We assume here for simplicity of notation
that the weight function is multivariate normal. The two-di-
mensions, or variates, are v and y (v rather than x because x has
been used for another purpose).

w θð Þπ θjxð Þ

¼ exp ∑Zi−Ζwπ½ � exp Zwπ þ ηTwπθ−
1

2
θTΛwπθ

� �
; ðA49Þ

where,

∑Zi ¼ −
1

2
4ln2π− ln Λwj j þ ln Λπj jð Þ þ ηTwΛ

−1
w ηw þ ηTπΛ

−1
π ηπ


 �� 

;

ðA50Þ

Zwπ ¼ −
1

2
2ln2π−ln Λwπj j þ ηTwπΛ

−1
wπηwπ

� 

: ðA51Þ

The components of these formulae are as follows:

Σw ¼ c2v cvy
cvy c2y

� �
;Σπ ¼ σ2

v σvy

σvy σ2
y

� �
; ðA52Þ

Λw ¼ Σw
−1 ¼ Σwj j−1adjugate Σwð Þ

¼
c2y
Σwj j −

cvy
jΣwj

−
cvy
jΣwj

c2v
Σwj j

2
6664

3
7775; ðA53Þ

Λπ ¼
σ2
y

jΣπj −
σvy

jΣπj

−
σvy

jΣπj

σ2
v

jΣπj

2
6664

3
7775; ðA54Þ

ηw ¼ Λw
bv
by

� �
¼

c2ybv−cvyby
jΣwj

c2vby−cvybv
jΣwj

2
664

3
775; ðA55Þ

ηπ ¼
σ2
yμv−σvyμy

jΣπj
σ2
vμy−σvyμv

jΣπj

2
6664

3
7775; ðA56Þ

Λwπ ¼ Λw þ Λπð Þ

¼
c2y
jΣwj þ

σ2
y

jΣπj −
cvy
jΣwj

þ σvy

jΣπj

� �

−
cvy
jΣwj

þ σvy

jΣπj

� �
c2v
jΣwj þ

σ2
v

jΣπj

2
6664

3
7775; ðA57Þ
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and

ηwπ ¼ ηw þ ηπð Þ ¼
c2ybv−cvyby

jΣwj þ σ2
yμv−σvyμy

jΣπj
c2vby−cvybv

jΣwj þ σ2
vμy−σvyμv

jΣπj

2
6664

3
7775: ðA58Þ

Equation (A14) generalizes to the multidimensional case.
Recall that the aim is to minimize expected loss given the
weight function and the posterior. The expected loss,

ρ π θjxð Þ; að Þ ¼ ∫w θð Þ θ−að ÞT θ−að Þπ θjxð Þdθ; ðA59Þ
where θ, a, and x are d-dimensional vectors and w(θ) is a
nonnegative real-valued function of θ. Differentiating with
respect to a we have:

∂ ρ π θjað Þ; að Þ
∂a

¼ ∂
∂a

∫w θð Þ θ−að ÞT θ−að Þπ
�
θjx
�
dθ

h i
; ðA60Þ

¼ ∫w θð Þ ∂
∂a

θ−að ÞT θ−að Þ
h i

π θjxð Þdθ; ðA61Þ

¼ −2∫w θð Þ θ−að Þπ θjxð Þdθ; ðA62Þ
¼ −2∫θ w θð Þ π θjxð Þdθþ 2a∫w θð Þπ θjxð Þdθ; ðA63Þ

assuming that the conditions of differentiation under the
integral are met (Casella & Berger, 2002; Rudin, 1976).

Setting Eq. (A63) equal to zero:

0 ¼ −2∫θ w θð Þ π θjxð Þdθþ 2a∫w θð Þπ θjxð Þdθ ⇒; ðA64Þ
∫θ w θð Þ π θjxð Þdθ ¼ a∫w θð Þπ θjxð Þdθ; ðA65Þ

a ¼ ∫θ w θð Þ π θjxð Þdθ
∫w θð Þ π θjxð Þdθ ¼ δπ xð Þ: ðA66Þ

For the specific 2D case of interest, we have:

δπ xð Þ ¼
∫θ exp ∑Zi−Ζwπ½ � exp Zwπ þ ηTwπθ−

1

2
θTΛwπθ

� �
dθ

∫exp ∑Zi−Ζwπ½ � exp Zwπ þ ηTwπθ−
1

2
θTΛwπθ

� �
dθ

;

ðA67Þ

δπ xð Þ ¼
exp ∑Zi−Ζwπ½ �∫θ exp Zwπ þ ηTwπθ−

1

2
θTΛwπθ

� �
dθ

exp ∑Zi−Ζwπ½ �∫exp Zwπ þ ηTwπθ−
1

2
θTΛwπθ

� �
dθ

;

ðA68Þ

δπ xð Þ ¼ ∫θ exp Zwπ þ ηTwπθ−
1

2
θTΛwπθ

� �
dθ; ðA69Þ

δπ xð Þ ¼ Ewπ θ½ � ¼ μwπ: ðA70Þ

To obtain the unscaled mean, μwπ , we need to evaluate

Λ−1
wπηwπ:

Λ−1
wπηwπ ¼ Λw þ Λπð Þ−1 ηw þ ηπð Þ; ðA71Þ

¼ Σ−1
w þ Σ−1

π


 �−1
Σ−1

w bþ Σ−1
π μ


 �
: ðA72Þ

Note that this matric equation is of the same form as Eq.

(A44) above (refer also to Eq. A35), withΣ−1
i playing the role

of 1
σ2i
.

In the special case where the covariances, cvy = σvy = 0,
then,

Σ−1
w ¼

1

c2v
0

0
1

c2y

2
664

3
775;Σ−1

π ¼
1

σ2
v

0

0
1

σ2
y

2
664

3
775: ðA73Þ

Simplifying (A72):

δπ xð Þ ¼
1

c2v
þ 1

σ2
v

0

0
1

c2y
þ 1

σ2
y

2
664

3
775
−1 bv

c2v
þ μv

σ2
v

by
c2y

þ μy

σ2
y

2
664

3
775; ðA74Þ

δπ xð Þ ¼
σ2
vc

2
v

c2v þ σ2
v

0

0
σ2
yc

2
y

c2y þ σ2
y

2
6664

3
7775

σ2
vbv þ c2vμv

σ2
vc2v

σ2
yby þ c2yμy

σ2
yc2y

2
6664

3
7775; ðA75Þ

δπ xð Þ ¼
σ2
vbv þ c2vμv

c2v þ σ2
v

σ2
yby þ c2yμy

c2y þ σ2
y

2
6664

3
7775: ðA76Þ

In words, the Bayes action, assuming cvy = σvy = 0, is the
vector corresponding to the weighted combination of the
mean vectors of the weight and posterior distributions. Each
dimension is combined independently, with each distribution
weighted according to its relative reliability on that dimension.

Appendix B

Chen et al. (2017) assessed the variability and accuracy of
performance using the 2D distance between locations (e.g.,
the participant’s stopping point on the return path and the
correct target location; see pp. 113–114 of that article for a
discussion of the relative merits of various measures of per-
formance). To ensure that our results would be consistent with
theirs, the modeling was conducted on distance data. This
means that the models were fit to one-dimensional data (for
possible extensions to 2D see the main text and Appendix A).
The relevant data and computations can be found in the sup-
plementary Excel file “BDT_Data_and_Models.”

Response variabilities in the vision and the body-based
conditions were obtained from Chen et al. (2017). These
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values were used as estimates of σ2
1 and σ

2
2 in Table 1. Optimal

weights for visual and body-based cues were calculated using
the formulae for w1 and w2 in Table 1. Chen et al. used four
target locations, symmetrically distributed about the midline
defined by the participant’s initial facing direction on each
trial. For the current project, distances between the centroid
of observed performance in the conflict condition and the
centroids of observed performance in the vision condition
and the body-based condition were computed on each side
of the midline and then averaged across the two sides (Chen
et al. computed the weights for each side and averaged those
across sides; the two approaches yield virtually identical esti-
mates). These computations were carried out for each partic-
ipant. These distances defined the distributions used for
modeling and were used to compute the empirical weights
(see Table 1). One participant in Experiment 1a: 3
Landmarks was excluded as an outlier because of a very large
discrepancy between the optimal weight and the empirical
weight on visual cues (.97 vs. .13, respectively).

The distributions for the vision condition, conflict con-
dition, and body-based condition were located on a single
dimension by arbitrarily multiplying the mean distance
between the vision condition and the conflict condition
by −1. This transformation entails that the conditions
were ordered, vision, conflict, body-based, with the ob-
served conflict mean equal to 0, for all participants. The
predicted mean of the posterior distribution, μ in Eq. (30),
was computed for each participant using the formula in
Table 1 for the mean of the optimal combination. The
mean of the weight function, b in Eq. (30), was set equal
to the midpoint between the means of the vision and the
body-based conditions.

The ratio r was estimated using a least squares criterion in
Solver (Microsoft Excel 16 for Mac) using GRG nonlinear
estimation. Sums of squared errors (SSE) between predicted
and observed performance were transformed to adjusted log
likelihoods using the normal linear model and these were
exponentiated to estimate the marginal likelihoods composing
the Bayes factor (Claeskens & Hjort, 2008; Raftery, 1995;
Wasserman, 2000):

lnmi ¼ −
n
2

ln2πþ ln
SSEi

n

� �
þ 1

� �
−
pi
2
ln nð Þ; ðB1Þ

Bij ¼ exp lnmið Þ
exp lnmj

 � ; ðB2Þ

where n is the number of participants in the experimental
condition and pi is the number of parameters estimated in
the model (0 for the null model; 1 for the alternative model).
Note that (B1) is ½ the Bayesian information criterion (BIC).
Straightforward algebra shows that (B2) is equal to:

Bij ¼ SSEi

SSE j

� �−n
2

n
p j−pið Þ

2 : ðB3Þ

Appendix C

In this appendix, we derive the predicted empirical weights on
single cues according to the decision-theoretical model. We
refer to these as the “model empirical weights.”Relevant com-
putations can be found in the supplementary Excel file,
“BDT_Data_and_Models.”

The weight function in the weighted squared-error loss
function is assumed to be Gaussian,

w θð Þ ¼ aexp
− θ−bð Þ2
2c2

" #
; ðC1Þ

and the posterior is normal, π(θ| x) =N(μ, σ2). If the model
accurately characterizes performance, then the observed mean
in the conflict condition should be (see the main text and
Appendix A),

μC ¼ μ−
σ2

σ2 þ c2

� �
μ−bð Þ: ðC2Þ

As discussed in the main text, we estimated a common
value of the relative reliability of the weight function across
participants:

μC ¼ μ−r μ−bð Þ: ðC3Þ

The empirical weights are computed from the observed
distances between the mean of the conflict condition and the
means of the vision and the body-based conditions:

dV ¼ μC−μV ; ðC4Þ
dB ¼ μB−μC ðC5Þ

(assuming that the means are ordered, vision, conflict,
body-based, as discussed in Appendix B).

Our goal is to estimate the weights based on the true pos-
terior, which is not observed behaviorally:

d
0
V ¼ μ−μV : ðC6Þ

Rearranging terms in Eq. (C3) and substituting into Eq.
(C6) we obtain:

d
0
V ¼ μC þ r μ−bð Þ½ �−μV ; ðC7Þ

d
0
V ¼ μC−μVð Þ þ r μ−bð Þ; ðC8Þ

d
0
V ¼ dV þ r μ−bð Þ: ðC9Þ
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Similarly,

d
0
B ¼ dB−r μ−bð Þ ðC10Þ

(the second term is subtracted in Eq. C10 because the signs
are reversed in Eq. C5 relative to Eq. C4).

The model empirical weight on the visual cue is:

w
0
V ¼ d

0
B

d
0
V þ d

0
B


 � ðC11Þ

w
0
V ¼ dB−r μ−bð Þ

d
0
V þ d

0
B


 � : ðC12Þ

Because d
0
V þ d

0
B ¼ dV þ dB, we obtain from Eq. (C12):

w
0
V ¼ bwV−

r
dV þ dBð Þ μ−bð Þ: ðC13Þ

Note also that dV + dB = μB − μV in this model
implementation.
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Fig. 12 Regressions of empirical weights on optimal weights for
Experiment 1a: 3 Landmarks
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Fig 13 Regressions of empirical weights on optimal weights for
Experiment 1a: 1 Landmark
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The model empirical weights computed from Eq. (C13)
were regressed on optimal weights using the observed vari-
ances in the vision and body-based conditions. Values from
Eq. (C13) less than 0 or greater than 1 were set to 0 or 1,
respectively. Figures 12, 13, 14, 15 and 16 include these plots
and for comparison plots of the (unadjusted) empirical
weights regressed on the same optimal weights. Graphs for
Chen et al.’s (2017) Experiments 1a, 1b, and Experiment 4:
Day 2 are included in this appendix; graphs for Experiment 4:
Day 1 are included in the main text.

Appendix D

This appendix describes the modeling of variances for the
decision-theoretic model. These computations can be found
in the supplementary Excel file, “BDT_Variances_V2.”

Assume that single-cue systems, V and B, are Gaussian
with means and variances, μV ;σ

2
V ;μB; and σ2

B, respectively;

the posterior is Gaussian with mean, μP =wVμV +wBμB, wV

¼ σ2B
σ2Vþσ2B

and wB ¼ σ2V
σ2Vþσ2B

, and variance, σ2
P ¼ σ2Vσ

2
B

σ2Vþσ2B
; and the

weight function is Gaussian with mean, b, and variance, c2.

y = 0.6099x + 0.2602
R² = 0.5142

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

thgie
WlausiVlacirip

mE

Op�mal Visual Weight

y = 0.9915x + 0.0676
R² = 0.7504

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

thgie
WlausiVlacirip

mEledo
M

Op�mal Visual Weight

Fig. 14 Regressions of empirical weights on optimal weights for
Experiment 1b: No rotation
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Fig. 15 Regressions of empirical weights on optimal weights for
Experiment 1b: Rotation
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Let xV and xB be samples from the single cue distributions
on a given trial. The value of the posterior for that trial is,

post ¼ wVxV þ wBxB: ðD1Þ

One can view the values xV and xB as location estimates
produced by each of the sensory-perceptual systems (these
estimates may themselves be the means of posterior distribu-
tions computed by upstream processes). For the R+ model, a

new sample, x
0
V and x

0
B, is taken from the single-cue distribu-

tions to compute the value of the weight function. These
values are averaged, and the weight estimate is sampled from

a Gaussian with mean, x
0
V þ x

0
B


 �
=2, and variance, c2. The

Bayes action for that trial is,

BA ¼ post−r post−weightð Þ; ðD2Þ

where r is the ratio of variances in Table 3 for the relevant
experimental condition.

Rearranging terms,

BA ¼ 1−rð Þpost þ r weight: ðD3Þ

Using the standard formula for the variance of the sum of
random variables,

Var BAð Þ ¼ 1−rð Þ2 Var postð Þ þ r2 Var weightð Þ
þ 2 1−rð ÞrCov post;weightð Þ ðD4Þ

Var BAð Þ ¼ 1−rð Þ2σ2
P

þ r2 c2 þ 1

2

� �2

σ2
V þ 1

2

� �2

σ2
B

 !

þ 2 1−rð ÞrCov post;weightð Þ: ðD5Þ

Trial-to-trial variability in the single-cue systems affects
the variability of the sample from the weight function, and this
variability propagates to the Bayes action.

For the R+ model, (D5) was evaluated for each participant

with Cov(post,weight) = 0 (as the samples xV, xB and x
0
V , x

0
B

are independent) using estimates of σ2
P, σ

2
V , and σ2

B from their
task performance and an estimate of c2 using Eq. (26) from the
main text:

c2 ¼ σ2
P

r
−σ2

P: ðD6Þ

For the R− model, the single-cue estimates xV and xB were
used to compute both the posterior and the mean of the weight
function; otherwise, themodelswere identical. This feature of the
model causes the covariance between the posterior and the
weight function to be positive. The covariance in (D5) can be
computed for each participant using the property of bilinearity:

Cov post;weightð Þ

¼ Cov wVxV þ wBxB;
1

2
xV þ 1

2
xB

� �
; ðD7Þ

Cov post;weightð Þ ¼ wV
1

2
Cov xV ;xV


 �þ wV
1

2
Cov xV ; xBð Þ þ wB

1

2
Cov xB; xVð Þþ

wB
1

2
Cov xB; xBð Þ;

ðD8Þ

Cov post;weightð Þ ¼ 1

2
wVσ

2
V þ wBσ

2
B


 �
; ðD9Þ
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Fig. 16 Regressions of empirical weights on optimal weights for
Experiment 4: Day 2
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because Cov xið ; xiÞ ¼ σ2
i and Cov(xi, xj) = 0, j ≠ i. In this

special case, the covariance between the linear combination
defining the posterior and the linear combination defining the
weight function is the variance of the posterior itself. 11

The predicted standard deviation was computed for each
participant and each of the two models. Sums of squared er-
rors between predicted and observed performance were trans-
formed to log likelihoods and these were exponentiated to
obtain the marginal likelihoods (see Appendix B; no parame-
ters were estimated for either model; hence, pi = 0). The Bayes
average was defined as the weighted sum of the predicted
variances of the two models (consistent with the mixing of
two distributions), with each model weighted by its relative
posterior probability (Claeskens&Hjort, 2008; Raftery, 1995;
Wasserman, 2000):

Pr M j

 � ¼ exp lnmj


 �
∑kexp lnmkð Þ : ðD10Þ

The Bayes average was computed for each participant
using common relative posterior probabilities, converted to
the standard deviation, and then averaged across participants
to obtain the means and standard errors in Fig. 9.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.3758/s13423-021-01988-9.
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