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Abstract
People can make judgments about statistical properties of visual features within groups of objects, such as the average size, size
variability, or numerosity of circles. Emerging from recent work is the view that these kinds of visual estimations, collectively
dubbed ensemble perception, rely on independent abilities that are specific to the statistical property being estimated (mean,
variance, range, numerosity). Here we revisit evidence for the claim that different statistical judgments (i.e., average and
variability) for the same object feature are based on independent abilities. We tested a large sample of people, using a pre-
registered open-ended sequential design to avoid ending up with weak evidence. We estimated the shared variance in ability
across different ensemble judgments, with common constraints for the different tasks. We found that the abilities to judge the
average size and the size variability for an array of circles are positively correlated, even after controlling for the ability to
discriminate the size of single circles. Our results refute the idea that judgments of average and variability for the same object
feature rely on completely independent abilities.
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People can derive statistical properties of different features
when they look at groups of objects. Imagine looking at a
group photograph from a wedding reception. Among other
things, you can derive an overall sense of the group’s emo-
tional expression, while also estimating variability in the age
of the individuals. Laboratory studies of these kinds of judg-
ments confirm that people can successfully judge properties of
ensembles of items (e.g., average, variability), whether those
judgments focus on simple features (e.g., average size –
Chong & Treisman, 2003; average orientation – Parkes
et al., 2001; orientation variance – Morgan et al., 2008) or
on multidimensional features (e.g., average emotion –
Haberman & Whitney, 2007; race/gender diversity – Phillips
et al., 2018). See Whitney and Yamanashi Leib (2018) for a
review of those studies. Not surprisingly, people vary in the

accuracy of their ensemble judgments (e.g., Haberman et al.,
2015), and studying the relations between individual differ-
ences across a variety of ensemble judgments offers an oppor-
tunity to understand the relation among the abilities underly-
ing these decisions (Gauthier, 2018; Vogel & Awh, 2008).

Haberman et al. (2015) published a seminal study of the
factors influencing performance on ensemble judgments.
Testing about 100 college students with different stimuli span-
ning a range of complexity, they found shared variance in
performance among tasks where participants judged “aver-
ages” of simple features (orientation and color). They also
found shared variance for tasks involving complex features
(e.g., face identity/expression). But, importantly, correlations
were small or absent when relating performance with simple
features to performance involving facial features. Haberman
and colleagues thus concluded that ensemble perception in-
volves at least two different abilities, supporting statistical
judgments for ensembles comprising simple versus complex
objects.

This work on individual differences for central tendency
judgments inspired studies of the specificity of ensemble judg-
ment abilities for different types of statistical properties (i.e.,
mean, variance, range, numerosity). Those studies employed
multiple tasks that required judgments about different
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ensemble properties, measuring the correlation between per-
formance on these judgments (mean vs. numerosity/range –
Khvostov&Utochkin, 2019; mean vs. numerosity –Utochkin
& Vostrikov, 2017; mean vs. variance – Yang et al., 2018). In
the three studies, weak correlations across participants be-
tween judgments of different ensemble properties were taken
to imply independence of mechanisms for estimating different
ensemble properties. One study (Khvostov&Utochkin, 2019)
considered weak trial-by-trial correlations for judgments of
different ensemble properties as evidence of independent
mechanisms.1 From these works emerged the view that en-
semble processing is supported by distinct perceptual-
cognitive processes, the engagement of which depends not
only on the complexity of relevant object features, but also
on the nature of the statistical judgment being made.

Here we revisit the claim that judgments about different en-
semble properties of a given object set (e.g., average and vari-
ability) are not correlated, and thus rely on entirely distinct abil-
ities, which implies the absence of common mechanisms. For
two reasons, we question this claim. The first reason has to do
with sample size: the six studies (from three articles) that explic-
itly examined correlations in peoples’ ability to estimate different
summary statistics (Khvostov & Utochkin, 2019; Utochkin &
Vostrikov, 2017; Yang et al., 2018) each reported data for 30
or fewer people. All three articles deployed frequentist statistical
tests, which require sufficient power and cannot provide support
for the null hypothesis. Two of the studies (Khvostov &
Utochkin, 2019; Utochkin & Vostrikov, 2017) added Bayes
Factors (BFs), which can estimate support for a null hypothesis.
However, most of the reported BFs were between .33 and 3,
values often considered too low to support unequivocal conclu-
sions (Jeffreys, 1961). Even those BFs smaller than .33 only
provided moderate evidence in favor of the null (ranging from
.265 to .330). The sensitivity of frequentist statistics, the precision
of estimates, and the ability of Bayesian statistics to provide
conclusive evidence all depend on sample size, albeit in different
ways (Schönbrodt & Wagenmakers, 2018). As a group, these
studies had poor precision, and in several cases, claims were
made based on weak evidence.

The second reason we believe this question should be
revisited concerns a design issue. In each of those six studies,
the estimation tasks differed depending on the ensemble prop-
erty being assessed. For instance, Yang et al. (2018) required
participants to estimate and compare the variance of two en-
semble displays but asked them to estimate the average of a
single ensemble display by asking them to compare it to a

single stimulus. Performance on variance judgments could
have reflected participants’ ability to maintain an ensemble
array in visual working memory as well as their ability to
estimate the ensemble property of interest (i.e., variance). In
contrast, performance on average judgments would have only
reflected participants’ ability to estimate the ensemble proper-
ty of interest (i.e., average), and thus the ability to maintain an
ensemble array in visual working memory would not be cap-
tured as shared variance in the correlation. These task differ-
ences, together with small sample sizes, may limit the likeli-
hood of detecting a correlation between abilities to estimate
different kinds of summary statistics.

To remedy these shortcomings, we tested a large sample of
people in tasks involving estimation of two statistical proper-
ties of the same visual feature, setting the same constraints for
both tasks. We opted for an open-ended sequential design
using Bayesian statistics (Schönbrodt et al., 2017) to ensure
that we would obtain conclusive evidence. Moreover, we
raised the bar for interpreting correlations. Unlike prior studies
mentioned above, we measured perceptual ability with a sin-
gle stimulus and controlled for this source of variability. This
partial correlation approach also allowed better control for
other sources of variability that are not associated with ensem-
ble judgments, compared to other approaches such as using a
correlation of presumably uncorrelated tasks as a baseline
(e.g., Haberman et al., 2015). Controlling for variability in
performance in single stimulus size judgments can control
for the most plausible source of spurious shared variance
while at the same time controlling for other potential sources
of correlation that could arise between any two tasks, such as
differences in motivation.

In a sample of 75 participants, we measured perceptual
ability to judge: (i) the size of a single circle, (ii) the variability
in size within an array of circles, and (iii) the average size
within an array of circles. We then computed the partial cor-
relations between performance on the average and variability
estimation tasks, controlling for participants’ perceptual abil-
ity in judgments with single circles. We found that variability
and average estimation abilities for the same feature were
positively correlated even when individual differences in the
ability to judge the size of individual objects were accounted
for. This result suggests the presence of common mechanisms
contributing to ensemble processing of different statistical
summaries, over and above those that support judgments
about single items.

Methods

Participants

We used the Sequential Bayes Factor (SBF) design to deter-
mine when to stop data collection (Schönbrodt et al., 2017). In

1 We do not consider this method optimal for claims of independence. Trial-
by-trial correlations in errors for two different kinds of ensemble judgments
could be either small or large depending on how the two ensemble properties
are manipulated in a set of trials. In other words, difficulties in judging differ-
ent ensemble properties are not necessarily the same for the same ensemble
array and could be either correlated or uncorrelated across trials depending on
the manipulation.
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an SBF design, researchers collect data and compute BFs after
the pre-determined minimum sample size was met until a pre-
determined level of evidence for/against hypotheses is
reached.We used a BF of 3 as a threshold of evidence in favor
of a correlation, and BF of .33 as a threshold against a corre-
lation (Jeffreys, 1961). Following our pre-registered protocol
(https://osf.io/78w2t/)2, we computed BFs when we reached
the sample size of 75 and stopped data collection as the BF of
interest was larger than 3. Specifically, we collected data from
122 paid participants via Amazon Mechanical Turk (MTurk),
among which 47 performed no better than chance (defined by
the one-sided 95% confidence interval of a binomial distribu-
tion centered at 50% chance) for at least one task – they were
excluded because their results could inflate correlations.3 This
left 75 participants for analyses (38 females, 36 males, includ-
ing one who preferred not to report; age:M = 42.28 years, SD
= 12.18). We only recruited MTurk workers with US IP ad-
dresses who had been approved for more than 100 tasks and
for more than 95% of the tasks they completed. All procedures
were approved by the Vanderbilt University Institutional
Review Board in charge of overseeing protection of human
subjects. Informed consent was obtained prior to the
experiment.

Stimuli

In the single-circle-size task (Fig. 1a), participants saw two
circles one after the other on each trial, each with a diameter
of any of nine values (35.90, 36.99, 38.06, 39.11, 40.15,
41.17, 42.19, 43.18, 44.17 pixels) equally distanced on a psy-
chological scale (Teghtsoonian, 1965). In the size-variance
task and the average-size task, participants saw arrays of six
circles, with the size of each circle randomly sampled from a
uniform probability distribution and then normalized to yield
the desired average and standard deviation (SD). In the two
ensemble tasks, the average diameter of six circles in an array
was one of five possible values (35.90, 38.06, 40.15, 42.19,
44.17 pixels) and the SD of psychological sizes of the six
circles was one of five values (18.75, 37.5, 56.25, 75, 93.75
pixels1.52; note that the psychological size is proportional to
the diameter to the 1.52nd power and thus the unit for
psychological size is pixels1.52; Teghtsoonian, 1965). Circle
sizes in the single-circle-size task were determined in a pilot
experiment so that the average task performance would ap-
proximate that used in the ensemble tasks. In an individual

differences study like ours, we are not interested in
interpreting differences between conditions/tasks; instead,
we are focused on the correlation across performance for dif-
ferent tasks, in the same set of participants. Thus, while aver-
age performance in each task is not important, the analyses
require that each task provide a reliable measure of its target
construct. The use of small step sizes in the single-circle-size
task help ensure this task would be sufficiently hard to avoid
ceiling and provide sensitive measurement of the differences
among participants. Each open circle was drawn as a D4 con-
tour (whose cross-sectional luminance profile was defined
with fourth derivative of Gaussian function; Wilkinson et al.,
1998) of 100% contrast on a uniform gray rectangle.

In the single-circle-size task, each stimulus appeared in a
random location on an imaginary circular contour, 164 pixels
in radius, centered around a fixation mark, with the contour’s
exact position jittered radially within ±12 pixels. In the other
two tasks, the location of one circle was determined in the
same way as in the single-circle-size task, and the other five
circles were placed 60° apart from one another on the same
imaginary circular contour. On each trial, the exact positions
of individual circles varied slightly (within ±12 pixels
radially).

All three tasks were administered online in a single session,
meaning that screen size and viewing distance, while not pre-
cisely controlled, were presumably the same across tasks for
any given participant. The image size of the uniform gray
rectangle was 600 × 500 pixels and fit within a single page
of web browser without scrolling on a relatively low-
resolution monitor (1,024 × 768 pixels). All stimuli were pre-
sented within an HTML5 webpage generated by and hosted
on a custom-built web application server, and the stimulus
presentation was controlled by JavaScript aided by jQuery
3.4.0. Before starting the experiment, participants were ad-
vised to choose a screen on which they could see the entire
gray rectangle and instruction text without having to scroll.

Design and procedures

To avoid order effects contributing to individual differences
(Goodhew & Edwards, 2019; Mollon et al., 2017), we tested
all participants with the same task order (single-circle-size
task, size-variance task, and average-size task) and the same
order of trials within each task.

For all three tasks, each trial included two successive dis-
plays presented for 700 ms each, with a 600-ms interval be-
tween presentations (Fig. 1). When the second display disap-
peared, two response buttons appeared below the gray rectan-
gle. Feedback in the form of a green (“correct”) or a red (“in-
correct”) banner was given on every trial. We selected an
exposure duration longer than those used in early ensemble
studies (e.g., 50–200 ms in Chong & Treisman, 2003), based
on evidence that longer presentation durations can benefit

2 This experiment is the second of two with a very similar design and similar
results. The first experiment was deemed a posteriori to have a potential flaw.
Procedures and results from that experiment are fully available online for the
sake of transparency; see Open Practices Statement at the end of this paper.
3 Visual inspection of the recorded click locations suggested that a substantial
number of the excluded participants may not have paid sufficient attention to
the online experiment. For instance, some of the excluded participants clicked
on random locations rather than on one of the response buttons throughout the
experiment.
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judgments of average circle size (Gorea et al., 2014; Whiting
& Oriet, 2011) and that ensemble judgments are not particu-
larly influenced by foveating individual items (Wolfe et al.,
2015). We also wanted to allow sufficient time for processing
variability as well as average. Display-by-display instructions
for a single trial and practice trials were given before each
task; for instance, for the size-variance task, participants
viewed an array of circles with small variance in their sizes,
with a written text that the circle sizes were similar to one
another and that an array of circles with very different sizes
would be more variable than this array.

There were 80 experimental trials in each of the three tasks.
In the single-circle-size task, one circle had the size of level 5
(40.15 pixels) out of nine sizes, and the other circle could have
the size of level 1, 2, 3, 4, 6, 7, 8, or 9 (35.90, 36.99, 38.06,
39.11, 41.17, 42.19, 43.18, or 44.17 pixels, respectively). In
the size-variance task, one array had the psychological size SD
of level 3 (56.25 pixels1.52) out of five SDs, and the other array
could have the SD of level 1, 2, 4, or 5 (18.75, 37.5, 75, or
93.75 pixels1.52, respectively); and the average sizes of the

two arrays were the same in the same trial. In the average-
size task, one array had the average size of level 3 (40.15
pixels) out of five average sizes, and the other array could
have the average size of level 1, 2, 4, or 5 (35.90, 38.06,
42.19, or 44.17 pixels, respectively); and the SDs of the two
arrays were the same in the same trial.

Analysis

MATLAB (MathWorks, Natick, MA) was used to calculate
accuracy scores (proportion correct), residual accuracy scores
(the difference between the observed value on a task and the
value predicted in the model that controlled for single-circle-
size performance), and their split-half reliabilities. To provide
a stronger test for the correlation between the two ensemble
tasks, we controlled for accuracy in the single-circle-size task
for each of the two ensemble judgments and calculated a par-
tial correlation. Specifically, we regressed size-variance task
accuracy on single-circle-size task accuracy, average-size task
accuracy on single-circle-size task accuracy, and then

Fig. 1 Example displays of a single trial in (a) a single-circle-size task,
(b) a size-variance task, and (c) an average-size task. Response displays
were the same for all three tasks with the exception of texts on the two
response buttons, which read “First/second circle was larger” in the
single-circle-size task, “First/second array was more variable” in the
size-variance task, and “First/second array was larger on average” in the

average-size task. In three examples shown in this figure, the first circle/
array is larger/more variable/larger on average. Sizes and configurations
of circles in this figure are proportional to those in the actual experiment.
The gray background rectangle expanded larger and the texts on the
response buttons were smaller in the actual experiment
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analyzed the correlation between residuals from the two re-
gressions (i.e., correlated residual accuracy scores). In addi-
tion, we computed disattenuated correlations obtained by di-
viding an observed correlation by the square root of the prod-
uct of the two measures’ reliabilities. A disattenuated correla-
tion provides an estimate of what a correlation would be with-
out measurement error (Nunnally, 1970; Osborne, 2002). For
the split-half reliabilities, we calculated the correlations be-
tween split-halves using 20 random sets of split-halves (with
the same numbers of stimulus/array pairs in each half), and
then corrected them using the Spearman-Brown correction.
We reported the average of the Spearman-Brown corrected
correlations from 20 split-halves. We used JASP statistics
software (JASP Team, 2019) for Bayesian analyses, and re-
ported BF10 (i.e., likelihood of the observed data when two
measurements are correlated compared to when the two mea-
surements are not correlated) for each correlation, computed
using a stretched beta prior width of 1. As a rule of thumb, one
may consider BF > 30 as “very strong,” BF > 10 as “strong,”
and BF > 3 as “moderate” evidence for a correlation (Lee &
Wagenmakers, 2013; adjusted from the heuristic proposed
originally by Jeffreys, 1961; as discussed in Stefan et al.,
2019). Likewise, one may consider BF < .03 as “very strong,”
BF < .01 as “strong,” and BF < .33 as “moderate” evidence
against a correlation.

Results

The mean and SD of accuracy scores from the 75 participants
who satisfied prescreening for inclusion in the analyses are
shown in Table 1, along with reliabilities of accuracy and
residual accuracy scores. Each ensemble task was correlated
with single-circle judgments (size-variance task: r = .56, 95%
C.I. = [.38; .70], BF10 = 77161.98; average-size task: r = .38,
95% C.I. = [.17; .56], BF10 = 41.66). We found very strong
evidence for a correlation between the size-variance and the
average-size tasks (Fig. 2a; r = .45, 95%C.I. = [.25; .61], BF10
= 419.67), indicating that the shared variance (R2) between the
two tasks was 20%. Given that the reliability of the two tasks
sets the upper bound of correlation,4 the disattenuated corre-
lation is .64, 95% C.I. = [.48; .76], indicating shared variance
of 40% without measurement error. Crucially, performance in
the two ensemble tasks was positively correlated even after
controlling for performance with single circles (Fig. 2b; r =
.31, 95% C.I. = [.09; .50], BF10 = 4.74; disattenuated r = .54,
95% C.I. = [.36; .68]). This means that there is approximately
29% shared variance after disattenuation (approximately 9%

shared variance before disattenuation). In other words, corre-
lated variance between these two aspects of ensemble percep-
tion – perceived central tendency and perceived variability –
cannot be explained solely on the basis of performance vari-
ability among judgments of individual size.

Discussion

Estimation abilities for judging average and variability of
circle sizes within an array of different-sized circles are
positively correlated, even after controlling for perceptual
discrimination abilities of the size of individual circles.
This result suggests the involvement of common mecha-
nisms when judging different statistical properties of en-
sembles of items differing along a simple dimension (i.e.,
size). This conclusion differs from that of prior studies
with smaller samples and that in many cases obtained in-
conclusive evidence for the null hypothesis (Khvostov &
Utochkin, 2019; Utochkin & Vostrikov, 2017; Yang et al.,
2018). Some of the prior work observed correlations in the
same range as ours (Khvostov & Utochkin, 2019; mean
size and range: r = .35), but were not significant and were
associated with a BF traditionally considered inconclusive.
While it can be difficult to know what resulted in prior low
correlations, we speculate that differences in procedures
between tasks, such as asking participants to compare the
variance of two arrays versus the mean size of an array to a
single item, may have complicated the measurements.
Performance on a given task nearly always reflects contri-
butions from additional factors than just the construct that
performance aims to operationalize (e.g., ensemble-
processing ability in the current study), and this affects
the interpretation of any study trying to interpret correla-
tions between sets of individual tasks. Future work could
deploy a latent variable approach (Bollen, 2002), using the
common variance for tasks with different procedures, to
estimate the ability relevant to each construct (e.g., average
and variability estimation) before testing whether they re-
late. The present results suggest that such a future study
certainly could be fruitful.

Table 1 Mean, SD, reliability of accuracy scores, and the reliability of
residual accuracy scores

Accuracy score Residual accuracy score

M SD Reliability Reliability

Single-circle-size task .85 .06 .63 -

Size-variance task .76 .09 .72 .53

Average-size task .79 .08 .69 .62

4 Task reliabilities set the upper bound of correlation (square root of the prod-
uct of the measurements’ reliabilities) we could expect due to measurement
error (Nunnally, 1970). For instance, the maximum correlation between the
two ensemble tasks could be .69 for accuracy scores and .63 for residual
accuracy scores.
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To be clear, we are not claiming that judgments of average
and variability depend only on a common ability. Even after
correction for measurement error, the shared variance between
the two tasks (R2) was 40%. It is always difficult to interpret a
moderate correlation, and so our strongest possible conclusion
is based on evidence against one extreme claim, which has
been made in prior work (Khvostov & Utochkin, 2019;
Utochkin & Vostrikov, 2017; Yang et al., 2018), that these
judgments rely on independent abilities. With regards to how
to think about the effect size we obtain, we offer the following
considerations. First, we conservatively excluded participants
so that the individuals who did not make a reasonable effort in
both tasks do not inflate the correlations. Because it can be
hard to distinguish such individuals from participants who
tried but were poor at both tasks, this could only lead us to
underestimate the effect size. Second, the size a correlation
needs to be interpreted as a function of the maximum correla-
tion that could be obtained given measurement error. When
we disattenuate the correlations based on the reliability of the
residual accuracy scores, the estimates are relatively high (r =
.54). Third, the size of a correlation is sometimes expected to
exceed what has been called the “crud factor,” i.e., a correla-
tion between one of the tasks and some other task that it is not
expected to relate to (e.g., ensemble judgment and verbal
memory task; Haberman et al., 2015). However, the “crud
factor” argument can be difficult to defend (Orben &
Lakens, 2020), especially for moderate correlations between
disparate tasks that can be the basis of strong domain-general
factors in intelligence (Deary et al., 2010) or visual ability
(Richler et al., 2019). Instead of comparing our effect size to
the size of an effect in a different set of subjects, we measured
performance on another task (single-circle-size judgment) in
the same individuals so that we can control for the specific
variance that could contribute to our effect of interest.5 Our
partial correlation therefore controls for general factors like
motivation, intelligence, and visual acuity, in a way that

comparison to a crud factor cannot. How the remainder of
variance in each task should be apportioned will require fur-
ther work.

Our findings suggest at least three sources of variance in
each ensemble task. The first source of variance is associated
with single-item judgments, evidenced by the correlation be-
tween each ensemble task and the single-circle-size task. This
variance is likely to reflect individual differences in perceptual
abilities not necessarily related to ensemble perception, and
thus controlled in the partial correlation analysis. The second
source is associated with common abilities involved in both
ensemble judgments. We may think of two possible mecha-
nisms that might support these common abilities. One possi-
bility is mechanisms involved in the computation required for
the estimation of both average and variance. For instance,
variance estimation may require average estimation, in a sim-
ilar way as variance is calculated mathematically. The other
possibility is mechanisms associated with common visual pro-
cesses for similar visual input (i.e., multiple circles presented
in an array), such as mechanisms for distributing attention to
array items efficiently. Regardless of which of these mecha-
nisms support common abilities, the partial correlation in our
study suggests common abilities specific to ensemble percep-
tion for simple objects of the same category. Finally, the third
source of variance comes frommechanisms that are not shared
among different ensemble judgments. This pertains to any
portion of the variance on a task that proves reliable (i.e., is
not measurement error), but is not shared with any of the other
tasks. Processes specific to the nature of each type of statistical
property could contribute to this uncorrelated variance.

Fig. 2 Correlation between accuracy on the size-variance task and on the average-size task (a) before and (b) after controlling for the single-circle-size
task accuracy. Dark gray lines show linear regression lines, and shaded areas indicate 95% confidence intervals for the regression lines

5 In other words, if Haberman et al. (2015) hadmeasured verbal memory in the
same subjects as those for two different ensemble tasks, they could have asked
how much of the correlation between these tasks remained, after controlling
for verbal memory. Because performance on each task combines several
sources of variation, one cannot assume that all of the variance shared between
tasks A and B overlaps with the variance shared between tasks B and C.
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Outside of this line of research, there is some evidence that
ensemble perception does not emerge from a “monolithic pro-
cess,” to borrow the phrase used by Haberman et al. (2015).
Despite considerable power, these authors found that average
judgments might share essentially no variance for features that
differ greatly in their complexity. In addition, while they
found a correlation between ensemble judgments and single-
item judgments, they did not measure and, therefore, did not
control for, single-item performance in their subsequent ex-
periments where they reported correlations among simple fea-
ture ensemble judgments. Even for stimuli of different cate-
gories, contributions from object recognition ability could in-
flate correlations, given strong evidence for domain-general
object recognition ability (Richler et al., 2019). Using a latent
variable framework and complex objects, recent work estimat-
ed about 42% shared variance between a domain-general fac-
tor for individual object recognition and a domain-general
factor for ensemble perception of average identity (Sunday
et al., 2020). This supports the importance of controlling for
individual differences in object recognition when aiming to
interpret the correlations between different ensemble judg-
ment tasks.

We readily acknowledge the limitations of the present
work. First, we only studied judgments of average size and
variability in size, so it is imprudent to generalize to other
types of ensemble judgments. Our goal was simply to address
limitations of recent work on this topic and to raise the bar for
future claims of full independence between mechanisms.
More empirical exploration with other judgments (e.g.,
numerosity) and features (e.g., orientation) will be needed to
obtain a more complete picture of the structure of ensemble-
processing abilities. Second, our conclusions may be
constrained by some of the specific aspects of our tasks, most
notably the 700-ms exposure duration we used. That value
was selected to ensure that participants had sufficient time to
grasp the ensemble properties we were interested in (Gorea
et al., 2014; Whiting & Oriet, 2011), but it could have unwit-
tingly allowed participants to base their judgments on
individual-item processing. Importantly, this would be expect-
ed to inflate the correlation between ensemble judgments and
the single-circle-size judgments (i.e., variance controlled in
the partial correlation). However, we found that this portion
of the variance did not account for the main part of the corre-
lation between ensemble tasks. It remains to be seen whether
ensemble judgments performed with very brief exposure du-
rations tap into the same ability as that deployed with longer
duration exposures. It is also possible that a 700-ms presenta-
tion duration was sufficient for processing one property (e.g.,
average) but limited processing of another property (e.g., var-
iability), leading to the underestimation of common variance
between ensemble judgment abilities.

Studying individual differences in ensemble perception can
enrich our understanding of the extent to which this ability

represents an important precursor to object recognition
(Oliva & Torralba, 2006). Progress in this direction can ben-
efit from methods that have long been applied to the study of
intelligence or personality and are starting to deepen our un-
derstanding of visual cognition (Bollen, 2002; Richler et al.,
2019).
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