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Abstract
Recent years have witnessed a steady increase in the number of studies investigating the role of reward prediction errors (RPEs)
in declarative learning. Specifically, in several experimental paradigms, RPEs drive declarative learning, with larger and more
positive RPEs enhancing declarative learning. However, it is unknown whether this RPE must derive from the participant’s own
response, or whether instead, any RPE is sufficient to obtain the learning effect. To test this, we generated RPEs in the same
experimental paradigmwhere we combined an agency and a nonagency condition.We observed no interaction between RPE and
agency, suggesting that any RPE (irrespective of its source) can drive declarative learning. This result holds implications for
declarative learning theory.
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Traditionally, long-term memory is divided into two major
memory systems: declarative and nondeclarative memory
(Doll et al., 2015; Poldrack & Gabrieli, 1997; Squire, 2004;
Squire & Dede, 2015). Nondeclarative memory encompasses
several subtypes of memory, one of which is procedural mem-
ory, or the memory for skills and actions. In contrast with
declarative learning, procedural learning is characterized by
a slow process requiring repeated practice (e.g., learning how
to ride a bicycle). Declarative memory instead refers to factual
knowledge, experiences, and concepts that are accessible
through conscious recall (Squire, 2004, 2009). Here, memo-
randa are learned fast, often after a single encounter
(Eichenbaum, 2004; Shohamy & Adcock, 2010). The process
of acquiring such memories is referred to as declarative
learning.

One important framework to understand learning and
memory is reinforcement learning (RL). Here, learning is
guided by the experience of reward prediction errors (RPEs;
i.e., mismatches between reward outcome and reward
expectation; Sutton & Barto, 2018). Indeed, nondeclarative
learning and memory formation have long since been

associated with RPEs. These RPEs are thought to originate
from the dopaminergic midbrain and project to cortical and
subcortical (e.g., striatal) pathways to support learning
(Schultz et al., 1997). Recent work, however, also demonstrat-
ed an important role for RL and RPE in declarative learning
and memory (Calderon et al., 2021; Davidow et al., 2016;
Gershman & Daw, 2017; Jang et al., 2019; Mattar & Daw,
2018; Rouhani et al., 2018; Rouhani et al., 2020).

RPEs in declarative learning have been studied with two
main approaches (Ergo et al., 2020b). In the multiple-
repetition approach, the same stimuli are presented multiple
times, and participants have to estimate their probability of
success based on their certainty and the feedback they
receive. For instance, in Butterfield and Metcalfe (2001) par-
ticipants answered general information questions from a wide
variety of topics, rated their confidence after each answer,
after which they received (corrective) feedback. Perhaps coun-
terintuitively, stimuli accompanied with large absolute RPEs
(i.e., high-confidence errors) were better remembered; a phe-
nomenon referred to as the hypercorrection effect (HCE). The
HCE has been found after both immediate and delayed
(re)testing (Butterfield & Mangels, 2003; Eich et al., 2013;
Metcalfe & Eich, 2019; Metcalfe & Finn, 2012). Given that
making (unexpected) mistakes might be accompanied by a
sense of surprise, one possible explanation for the HCE has
been attributed to attentional capture due to surprise
(Butterfield & Metcalfe, 2006; Fazio & Marsh, 2009). In the
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RL framework, surprise can be conceptualized as a prediction
error, which is known to guide attention.

A second way of generating and measuring the effect of
RPEs is the reward-prediction approach. Here, participants
learn declarative information while reward is sampled from
a statistical distribution that must be estimated by the partici-
pant. For example, in Jang et al. (2019), participants were
given the opportunity to gamble on each trial. On each trial,
a potential reward was shown, followed by an image indicat-
ing the reward probability of a correct gamble, with different
images inducing different reward probabilities. Based on these
two pieces of information (potential reward and reward prob-
ability), participants could compute their reward expectation
(reward prediction) on that trial. After making their choice,
they were given reward feedback (reward outcome); thus,
the participant could compute the RPE (i.e., RPE = reward
outcome − reward prediction), and different images thus led
to different RPE values. Performance on the subsequent rec-
ognition test was enhanced with increasing RPEs. Similarly,
using the recent variable-choice experimental paradigm, we
have repeatedly shown that RPEs boost declarative learning
on both behavioral and neural levels (Calderon et al., 2021; De
Loof et al., 2018; Ergo et al., 2019; Ergo, De Loof, Debra,
et al., 2020a). In one version of this paradigm, participants
learned Dutch–Swahili word pairs. Different Dutch words
were associated with a different number of Swahili options
to choose from (in a multiple-choice format), and thus with
different RPEs. Throughout multiple experiments, we repeat-
edly found a signed RPE (SRPE) effect. Specifically, the larg-
er and more positive the RPE, the better subsequent memory
performance was. RPEs may thus be fundamentally important
in the formation of new declarative memories.

In all results discussed thus far, the RPE was the result of
participants’ own actions. It is unclear whether RPEs elicited
without the participant’s active contribution (i.e., without
agency) would also facilitate declarative learning. Agency is
defined as the perceived control over learning and the oppor-
tunity to make choices (Murty et al., 2015). This feeling of
control is considered valuable (Fujiwara et al., 2013; Leotti
et al., 2010), increases engagement with the material, and
facilitates declarative learning (Markant et al., 2016). In addi-
tion, evidence suggests that the opportunity to choose is in-
herently rewarding itself and modulates mesolimbic dopami-
nergic (Leotti & Delgado, 2011) and striatal (Leotti &
Delgado, 2014; Wang & Delgado, 2019) pathways. In
Murty et al. (2015), participants were presented with trial-
unique objects hidden behind two occluders. Enhanced mem-
ory performance for the memoranda was observed when par-
ticipants had the opportunity to choose which occluder to
remove, compared with computer choices. Memory perfor-
mance was correlated with stronger functional connectivity
between the striatum and hippocampus during encoding.
This connectivity was more pronounced for participant

choices compared with computer choices. Using a similar
paradigm, DuBrow et al. (2019) replicated the finding that
the opportunity to choose increased memory for the chosen
item. In addition, preference increased for chosen items com-
pared with yoked items. In another study investigating the
effect of active versus passive choices on memory, Rotem-
Turchinski et al. (2019) showed participants video clips where
they had the opportunity to either choose themselves (active
condition) or let the computer (passive condition) choose how
the video clips ended. Participants were then tested on details
conveyed in the video clips and the choice that was made (by
themselves or by the computer) after either a 2-day or a 1-
week delay. The opportunity to choose the outcome of the
video clips positively influenced recognition memory, even
when tested after a significant delay. Moreover, even being
able to choose the order and the timing of item presentation,
has been associated with increased memorization in both adult
(Markant et al., 2016) and child (Ruggeri et al., 2019) learners.
Overall, evidence suggests that being in control of one’s own
learning experience by having the opportunity to choose is
critical for successful declarative learning (but see Katzman
& Hartley, 2020, and the Discussion section).

Despite the evidence that both RPE and agency improve
declarative memory and are associated with dopaminergic ac-
tivity in the midbrain, their mutual relation remains unclear.
Knowledge of this interaction would, however, clarify the
nature of RPE in declarative learning. Specifically, in RL the-
ory, a fundamental distinction concerns learning about states
(i.e., the environment) versus learning about one’s own ac-
tions (Sutton & Barto, 2018). Traditionally, RPEs have been
associated with learning about one’s own actions (as is usually
the case in procedural learning). For example, in operant (or
instrumental) conditioning paradigms, RPEs are utilized to
learn stimulus–action associations (Skinner, 1990;
Thorndike, 1932). However, RL models suggest that RPEs
may also be used to learn about states (including in
declarative memory; Rouhani et al., 2018; Rouhani et al.,
2020), in which case they are referred to as state prediction
errors (Mattar & Daw, 2018). Historically, state prediction
errors were studied in classical (or Pavlovian) conditioning
paradigms (Pavlov, 1902). From this perspective, an RPE ef-
fect in declarative learning may occur either because the agent
learns about an action (e.g., I choose this Swahili word), or it
may occur because RPEs also drive learning about states (e.g.,
this Dutch word translates into that Swahili word). Neurally,
these two learning signals are known to coexist within the
human brain (Gläscher et al., 2010).

Unfortunately, earlier RPE declarative learning paradigms
could not disentangle these two theoretical possibilities.
However, it is possible to do so with an experimental design
where agency and RPE are crossed. Specifically, if an RPE in
declarative memory only helps because one is learning about
one’s own actions, the RPE effect should only occur in an
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agency condition—that is, in a condition where one chooses
(acts) oneself. It should not have an effect in a nonagency
condition. In this case, an interaction effect is expected be-
tween RPE and agency. In contrast, if an RPE effect in declar-
ative memory also helps for learning about states (such as a
Dutch–Swahili word pair), then the RPE should also have a
beneficial effect in a nonagency condition (e.g., when the
computer chooses a word, rather than the participant). In the
latter case, no interaction effect is expected between agency
and RPE.

To address this issue, we used a variable-choice paradigm
where participants learned 84 Dutch–Swahili word pairs.
Each word pair was associated with a unique RPE value.
Half of the trials were assigned to an agency condition, while
the remaining trials were assigned to a nonagency condition.
We expected to replicate our previous finding of RPEs driving
declarative learning. More specifically, we anticipated that
large, positive RPEs would lead to increased memory perfor-
mance. In addition, we sought to evaluate whether RPE inter-
acts with agency or not.

Methods

Participants

All participants were recruited through Ghent University’s
online recruitment platform. We tested a total of 37 partici-
pants. One participant was removed from further analysis due
to below-chance-level performance (<25%) on the recogni-
tion test (33 females, range: 18–40 years, M = 19.5 years,
SD = 4.5 years). Participants were given partial course credit.
Before partaking in the study, participants signed an informed
consent form. No participant had prior knowledge of Swahili.
The participant with the best performance in the recognition
test was additionally rewarded with a gift voucher worth €20.

Material

A total of 420 words (84 Swahili words and 336 Dutch words;
see Tables 1 and 2 in Appendix A) were used. The experiment
was programmed in PsychoPy2 (Peirce, 2007).

Procedure

Familiarization task

To familiarize participants with the stimuli used in the exper-
iment and to control for the novelty of the Swahili words, a
familiarization task was included at the start of the experiment.
All words (N = 420) were randomly presented for 2 seconds.
Participants were instructed to press the space bar only when a
Dutch word was presented.

Acquisition task

Participants learned Swahili translations of 84 Dutch words.
On each trial, one Dutch word was presented on top of the
screen together with four Swahili translations below, of which
only one was the correct translation (see Fig. 1a). After four
seconds, a cue was presented on top of the screen indicating
whether the participant (agency condition; “You choose”) or
the computer (nonagency condition; “Computer chooses”)
had to make a choice. As an additional cue, the color of the
Dutch word changed to cyan or magenta (counterbalanced
across participants). In addition, frames surrounded either
one, two, or four Swahili translations. These frames indicated
which Swahili translations were eligible as the translation for
the Dutch word. In the one-option condition, only one Swahili
translation was framed and the probability of being correct
was 100%. In the two-option condition, two Swahili transla-
tions were framed and there was a 50% probability of
obtaining reward. This probability of being correct was re-
duced to 25% when presented with the four-option condition
in which all four Swahili translations were framed. Each
Swahili translation was assigned one response key (‘f’, ‘v’,
‘n’, or ‘j’) and participants had to respond with the middle and
index finger of the left and right hand, respectively. For par-
ticipant choices, there was no time limit to respond, while the
response time for computer choices was drawn from a uniform
distribution between 1 and 4 seconds. After a choice was
made (by the participant [agency condition] or the computer
[nonagency condition]), feedback was presented in which the
to-be-learned Dutch–Swahili word pair was shown for 5 sec-
onds. The Dutch word, an equation sign, and its Swahili trans-
lation appeared on the screen. Participants were instructed to
use this time to encode the word pair as they knew their mem-
ory for all 84 word pairs would be tested in a subsequent
recognition test. If the chosen Swahili translation was
rewarded, a green frame was presented around the Dutch–
Swahili word pair. Alternatively, if the chosen Swahili trans-
lation was unrewarded, a red frame appeared around the (to-
be-learned) Dutch–Swahili word pair. Each trial ended with a
reward update for 2 seconds. Participants received 1 point on
rewarded trials (in agency and nonagency conditions), while
no points were added on unrewarded trials (in agency and
nonagency conditions). The participant with the highest num-
ber of points was rewarded a gift voucher worth €20. In Fig.
1a, the two-option condition with rewarded choice is
illustrated.

Design For each participant, agency was manipulated by ran-
domly assigning half of the trials (N = 42) to the agency
condition and the other half of the trials (N = 42) to the
nonagency condition (see Fig. 1b).

RPE magnitudes were parametrically modulated by a
priori determining the number of options (one, two, or
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four options) as well as the reward (reward/no reward) on
each trial. By doing so, an RPE for each cell of the design
could be computed (see Fig. 1b) . Note that by
predetermining reward feedback at each trial, participants
did not necessarily learn the real Swahili translations of
the Dutch words. For example, if a trial was rewarded,
participants received positive feedback irrespective of
their choice (but this choice then became their to-be-

learned translation of the Dutch word). Participants were
debriefed about this manipulation afterward. For rewarded
trials, reward outcome was equal to one, whereas reward
outcome was equal to zero for unrewarded trials. Reward
probability was determined by the number of eligible op-
tions (one, two, or four options). RPEs were obtained by
subtracting reward probability (which in this case equals
reward prediction) from reward outcome.

Fig. 1 Overview of the (a) Experimental Trials and (b) Experimental
Design. a In the acquisition task, the participant (agency condition) or
computer (nonagency condition) chose between one, two, or four Swahili
translations. An acquisition trial is illustrated from the “2 options,
rewarded choice” cell in the experimental design, and the participant/
computer chose ‘nyota’ as the translation for ‘wolf’. Hence the word pair
to encode was ‘wolf = nyota’. If the participant/computer would alterna-
tively have chosen ‘mfupa’, the feedback would again (by design) have

been positive, but in this case, the word pair to encode would have been
‘wolf = mfupa’. After the 84 acquisition trials, the recognition test was
performed immediately after the filler task. b The 2 (agency/nonagency)
× 2 (obtained reward) × 3 (number of options) experimental design,
including the number of trials and associated RPE. RPEs were calculated
by subtracting the probability of reward from the obtained reward
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Filler task

To avoid recency effects, participants performed a magnitude
comparison task immediately after the acquisition task. A total
of 400 digits ranging from 1 to 9, with the exclusion of 5, were
sequentially presented on the screen. Participants pressed ‘f’
for digits smaller than 5 and ‘j’ for digits larger than 5.

Recognition test

Participants were again presented with the 84 Dutch–Swahili
pairs from the acquisition task. On each trial, the Dutch word
appeared on top of the screen together with the same four
Swahili translations from the acquisition task (see Fig. 1a).
To avoid that participants would choose solely based on spa-
tial location, the position of the Swahili translations was ran-
domized. This time, no frames surrounded the Swahili trans-
lations. No time constraint was imposed. Participants made
their choice by pressing one of the four designated response
buttons (‘f’, ‘v’, ‘n’, or ‘j’). After they made their choice,
participants were asked how certain they were of their answer:
‘very uncertain’, ‘rather uncertain’, ‘rather certain’, or ‘very
certain’ (measured on a scale from 1 = ‘very uncertain’ to 4 =
‘very certain’).

Data analysis

All behavioral data were analyzed using the linear
mixed-effects framework in R software (R Core Team,
2014). For continuous dependent variables (e.g., certain-
ty ratings in the recognition test), linear mixed-effects
models were used, while for categorical dependent var-
iables (e.g., recognition accuracy), generalized linear
mixed-effects models were applied. A random intercept
for participant was included in each model. All (fixed
effects) predictors were mean centered. RPEs were treat-
ed as a continuous predictor, allowing the inclusion of
all 84 trials per participant to estimate its regression
coefficient. Nonagency trials on which a button press
was made by the participant were removed from further
analysis, resulting in a loss of 3% of the total number
of trials. While building our statistical models, we used
a bottom-up modeling approach to control the risk of
Type I errors and to verify the validity of adding ran-
dom slopes. This approach allowed us to leave out in-
significant random slopes from the start. In general, this
modeling process involved four steps: (1) We evaluated
the fixed effects and their random slopes by fitting four
models. The first model was the baseline model with
only the random intercept for participant. The second
model additionally had a fixed effect for one of the
variables of interest (e.g., reward). The third model
had again a random intercept for participant, no fixed

effect, but a random slope for the same variable of
interest. Finally, the fourth model had both a fixed
and a random slope for this variable (and again, a ran-
dom intercept for participant). Next, we compared all of
these models to test whether adding the random slope
and/or fixed effect made the model significantly better.
The significant random and fixed effects of the first
predictor remained in the model. We then added in a
second predictor (e.g., number of options), again
checking whether the random and fixed effects of the
second predictor were significant. This continued until
all predictors had been tested. (2) Here, we only fitted
fixed effects. We started with the most significant pre-
dictor (as determined in Step 1) and kept on adding
weaker (i.e., less statistically significant) predictors until
we ran out of (significant) predictors. The goal of this
series of models was to check whether we obtained
similar p values as in Step 1 without the random slopes.
If this was the case, we could leave out the random
slopes from the model. (3) We then moved on to the
interactions. To fit the interaction effects, we started
with all predictors in a huge interaction model, and then
gradually removed the predictors that were not involved
in any statistically significant interactions. Note that we
only tested for interactions in the fixed effects, not in
the random slopes. (4) In the end, we combined all the
effects that we found in one model: The significant
random slopes that could not be avoided because they
would otherwise cause a Type 1 error in the fixed ef-
fects obtained from Step 1, the significant fixed main
effects from Step 2, and the significant interactions from
Step 3. The four steps described above were performed
for all the dependent variables of interest. We reported
the χ2 statistics from the ANOVA Type III tests.

In addition to frequentist statistics, we also reported
Bayesian repeated measures analyses of variance
(ANOVAs) that were performed in JASP (Version 0.13;
JASP Team, 2020). In Bayesian ANOVAs, recognition accu-
racy and certainty ratings were analyzed as a function of
SRPE and agency. Bayes factors (BFs) quantify the evidence
in favor of the null hypothesis (BF01; e.g., agency does not
influence memory performance) or the alternative hypothesis
(BF10 = 1/BF01; e.g., agency influences memory perfor-
mance). BF01 was reported when the Bayesian analysis pro-
vides relatively more evidence for the null hypothesis; BF10

was instead reported when the analysis provides relatively
more evidence for the alternative hypothesis. As a test on
the robustness of our findings, we also investigated the effect
of the prior specification (specifically, the Cauchy distribution
scale parameter) for all analyses (see Rouder et al., 2012). All
priors were centered around zero. Jeffreys’ benchmarks
(Jeffreys, 1961) were used to determine the strength of evi-
dence, with BFs corresponding to anecdotal (0–3), substantial
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(3–10), strong (10–30), very strong (30–100), or decisive
(>100) evidence.

Results

Recognition accuracy

Our bottom-up modeling approach revealed that no random
slopes were necessary for the models described below. We
first examined the effect of reaction times (RTs) in the acqui-
sition task (i.e., how much time participants spent making
their choice) on recognition accuracy. We found that partici-
pants spent more time in the nonagency condition (M = 2.84
seconds, SD = .19 seconds, range: 2.49-3.24 seconds) com-
pared with the agency condition (M = 1.73 seconds, SD = .76
seconds, range: .57-4.24 seconds). To investigate whether RT
could thus be a confound, we verified whether RT in the
nonagency condition affects recognition accuracy, which
turned out not to be the case χ2(1, N = 36) = .17, p = .68.
The effect of RT in the agency condition is harder to interpret,
given that it may correlate with number of options.
Nevertheless, for completeness, we checked the effect of RT
in the agency condition as well, and observed no effect, χ2(1,
N = 36) = .05, p = .82. Hence, we did not add RT as a con-
found regressor to the model.

The data revealed a significant main effect of reward, χ2(1,
N = 36) = 16.16, p < .001. Recognition accuracy was lower for
unrewarded choices (M = 55.2%, SD = 14.0%, range: 31%–
90%) compared with rewarded choices (M = 61.1%, SD =
13.4%, range: 33%–86%). Furthermore, recognition accuracy
increased with number of options, χ2(1, N = 36) = 12.21, p <
.001 (one-option: M = 55.1%, SD = 19.2%, range: 17%–
100%; two-option: M = 57.2%, SD = 15.5%, range: 25%–
88%; four-option: M = 58.8%, SD = 13.7%, range: 35%–
88%). Finally, the interaction between reward and number
of options was not significant, χ2(1, N = 36) = .03, p = .86.

Next, we analyzed whether recognition accuracy lin-
early increased with SRPEs. The data revealed a signif-
icant positive effect of SRPE, χ2(1, N = 36) = 24.36, p
< .001, with larger and more positive SRPEs leading to
increased recognition accuracy (see Fig. 2a–b; see
Table 3 in Appendix B for mean accuracies for each
SRPE and agency condition). To make sure that the
observed SRPE effect was not a mere reward effect,
we reran the analysis for number of options, separately
for rewarded versus nonrewarded trials. There was a
main effect of number of options for both rewarded,
χ2(1, N = 36) = 8.02, p = .005, and for unrewarded,
χ2(1, N = 36) = 4.67, p = .031, trials. Additionally, we
also reran the analysis including both rewarded and un-
rewarded trials with a reward and SRPE regressor. This
revealed similar results. There was still a main effect of

SRPE, χ2(1, N = 36) = 10.69, p = .001; interestingly,
there was no effect of reward, χ2(1, N = 36) = 2.87, p
= .090. Together, these results suggest that our effect
was indeed driven by SRPE, not by mere reward.

There was a main effect of agency on recognition
accuracy, χ2(1, N = 36) = 13.01, p < .001 (agency:
M = 62.7%, SD = 15.5%, range: 36%–95%, nonagency:
M = 53%, SD = 13.6%, range: 26%–81%). The interac-
tion between SRPE and agency was, however, not sig-
nificant, χ2(1, N = 36) = 1.67, p = .20. SRPEs did not
influence accuracy differently on agency versus
nonagency trials. Additionally, we verified whether
SRPE increased declarative learning within each condi-
tion. To do so, we reran the analyses separately for the
agency and nonagency conditions. The data revealed
that SRPE drives declarative learning in both the agen-
cy, χ2(1, N = 36) = 19.42, p < .001, and nonagency
condition, χ2(1, N = 36) = 6.74, p = .009.

Bayesian repeated-measures ANOVAs provided substan-
tial evidence for an agency effect (BF10 = 7.94, compared with
the null model). The data were about 8 times more likely
under the alternative hypothesis than under the null hypothe-
sis. The evidence for the SRPE effect was decisive (BF10 >
100, compared with the null model). In addition, there was
strong evidence against the interaction of SRPE and agency
(BF01 = 19.33, compared with the two-main-effects model).
Importantly, Bayes factor robustness checks showed that the
results yielded strong evidence for an SRPE effect and against
an interaction effect of SRPE and agency over a wide range of
prior scales (see Figs. 3a–c, and 4a in Appendix C).

Certainty ratings

Our bottom-up modeling approach revealed that no random
slopes were necessary in the models. For the certainty ratings
there was a significant main effect of recognition accuracy,
χ2(1,N = 36) = 823, p < .001, indicating that participants were
more certain of correctly recognized word pairs (Fig. 2c–d).
There was also a main effect of agency, χ2(1,N = 36) = 8.16, p
= .004. Participants were more certain on agency versus
nonagency trials. The interaction between recognition accura-
cy and SRPE was also significant, χ2(1, N = 36) = 8.51, p =
.004. Follow-up analysis revealed that SRPE only influenced
certainty for correctly recognized word pairs, χ2(1, N = 36) =
1.63, p = .001, but not for incorrectly recognized word pairs,
χ2(1, N = 36) = 823, p = .20.

A Bayesian repeated-measures ANOVA revealed strong
evidence for an agency effect (BF10 = 27.32, compared with
the null model). For the SRPE effect, the evidence was deci-
sive (BF10 > 100, compared with the null model). We also
found strong evidence against the interaction of SRPE and
agency (BF01 = 17.35, compared with the two-main-effects
model). Crucially, Bayes factor robustness checks revealed
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strong evidence for the null hypothesis of our effect of interest
(i.e., the interaction effect SRPE × Agency) across a wide
range of priors (see Figs. 3d–f, and 4b in Appendix C).

Discussion

In the current study, we investigated whether agency influ-
enced the RPE effect in declarative learning. To do so, we
used a variable-choice paradigm in which participants learned
84 Dutch–Swahili word pairs. In half of the trials, participants
made a choice themselves (i.e., agency condition), whereas in
the other half of the trials, the computer chose for them (i.e.,
nonagency condition). We replicated our previous finding of
SRPE-driven declarative learning, with increased word pair
recognition for large, positive RPEs. In line with earlier stud-
ies (DuBrow et al., 2019; Murty et al., 2015; Rotem-
Turchinski et al., 2019), we found a main effect of agency,
with increased recognition on trials where participants chose
themselves, compared with computer choices. As an impor-
tant extension to the previous line of studies discussed, we

combined RPEs and agency within the same experiment.
The interaction between agency and RPE was not significant
(and Bayesian statistics provided strong evidence against an
interaction), indicating that the RPE effect on declarative
learning is not modulated by agency. This finding can be
interpreted within an RL framework, according to which cog-
nitive agents utilize RPEs to collect knowledge about states in
their environment and their own actions. Traditional empirical
work in procedural learning has focused on actions only; the
absence of a significant interaction between agency and RPE
in the current study indicates that participants use RPEs to
learn about both states and their own actions while performing
a declarative learning task (see also Rouhani et al., 2018;
Rouhani et al., 2020).

Surprisingly, in contrast to the current and earlier studies
where a mere effect of agency was found (DuBrow et al.,
2019; Murty et al., 2015; Rotem-Turchinski et al., 2019),
Katzman and Hartley (2020) argued that agency itself is not
sufficient to enhance memory. In their experiment, partici-
pants performed a memory task where the utility of agency
(i.e., the degree to which participants’ choices were rewarded

Fig. 2 Behavioral Results. a–b Recognition accuracy as a function of
SRPE for the agency and nonagency trials, respectively. Recognition
accuracy increased linearly with larger and more positive SRPEs in
both trial types. The interaction between agency and SRPE was not
significant, indicating that SRPEs drive declarative learning irrespective

of its origin (i.e., coming from the participant’s own action or the
participant’s environment). c–d Certainty rating for the agency and
nonagency trials, respectively. SRPE significantly predicted certainty
for correctly recognized word pairs, but not for incorrectly recognized
word pairs on both trial types
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or not) was manipulated. On each trial, participants were first
given a context cue (i.e., which galaxy they were in), followed
by an agency cue (i.e., the computer makes a choice
[nonagency] versus the participant makes a choice [agency]
about what planet to travel to). Different planets were associ-
ated with different reward probabilities. After a choice was
made, theywere shown a trial-unique image followed by feed-
back (i.e., reward; implemented by whether the inhabitants of
the planet considered the trial-unique image treasure or trash).
Agency was manipulated in such a way that three learning
environments could be distinguished: A nonlearnable,
nonagency environment, and two learnable environments
where there was no and high utility of agency, respectively.
Participants performed old/new judgments on the images after
a 1-day delay. The data revealed that the high-utility but not
the no-utility agency condition increased memorization rela-
tive to the nonagency condition. Interestingly, this result con-
tradicts our (as well as earlier studies’) finding of a main effect
of agency in declarative learning, irrespective of its utility.

Indeed, in our experiment, agency had no utility (i.e., reward
rates were exactly equal for agency and nonagency conditions
in the current experiment). However, in which circumstances
agency improves memory, remains to be investigated more
systematically.

Incidentally, our study ruled out a potential confound in the
variable-choice design. Specifically, in this design, higher
RPE values necessarily derive from word pairs with a larger
number of eligible options. In principle, it is possible that with
more eligible options, there is a higher probability of choosing
an intuitively attractive word-word association. So, one could
argue that the advantage for a higher number of options does
not derive from its relation with RPE, but simply because
more choice options are associated with a higher probability
of an attractive word-word association. The current data
allowed addressing this hypothesis because this argument
could only work if participants chose themselves; not in the
nonagency condition, in which there were simply no choice
options. Therefore, if this alternative hypothesis were true, the

Fig. 3 Bayes factor robustness checks. Bayes factor (BF) robustness
checks for all predictors of interest. In general, the results remained
roughly the same over a wide range of Cauchy priors with scale
parameter r ranging from 0 to 2. We reported BF10 for the main effects
of SRPE and agency (higher BF is more evidence for the alternative
hypothesis), while for the interaction effect SRPE × Agency, BF01 is
reported (higher BF is more evidence for the null hypothesis). a BF10

robustness check for the effect of SRPE on recognition accuracy. b BF10

robustness check for the effect of agency on recognition accuracy. c BF01

robustness check for the interaction effect of SRPE × Agency on
recognition accuracy. d BF10 robustness check for the effect of SRPE
on certainty. e BF10 robustness check for the effect of agency on
certainty. f BF01 robustness check for the interaction effect of SRPE ×
Agency on certainty
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data should have revealed a significant interaction be-
tween agency and RPE. More specifically, under the
confound hypothesis, the RPE effect should have disap-
peared on nonagency trials, as participants did not have
the opportunity to choose themselves between the eligi-
ble options. Instead, the RPE effect should have ap-
peared on agency trials, as participants made active
choices themselves on these trial types. The data re-
vealed no significant interaction between agency and
RPE, demonstrating that the RPE effect in our experi-
ment was not merely driven by the number of eligible
options participants could actively choose from.

Whereas RPEs were mainly studied within procedural
learning, which naturally focuses on learning from actions,
recent studies have shown a role for RPEs in declarative
learning as well. Here, we speculate about the potential
mechanism underlying the effect of RPEs in declarative
learning. Neurally, RPEs are computed in the dopaminer-
gic midbrain (i.e., ventral tegmental area [VTA] and
substantia nigra [SN]) and are projected to various brain
regions, including the hippocampus (Shohamy & Adcock,
2010) and ventral striatum (Watabe-Uchida et al., 2017).
Midbrain VTA activation (triggered by RPEs) plays a sig-
nificant role in RL (Montague et al., 1996) and has been
associated with increased declarative learning (Calderon
et al., 2021; Gruber et al., 2016; Wittmann et al., 2005).
According to the neoHebbian framework (Lisman et al.,
2011), dopaminergic RPEs promote declarative memory
by increasing synaptic learning efficiency directly during
the acquisition process. Alternatively, RPEs may modulate
learning during off-line hippocampal replay (Skaggs &
McNaughton, 1996; Wilson & McNaughton, 1994).
During hippocampal replay, neural activity patterns
(representing environmental states) in hippocampal pyrami-
dal neurons (e.g., place cells) that occurred during activity,
are sequentially reactivated. Hippocampal replay can take
place during sleep and/or (off-line) wakefulness (Pfeiffer,
2020) and has been evidenced in nondeclarative learning
(Momennejad et al., 2018). However, to efficiently learn
from replay, the brain has to decide which memories to
replay. Hippocampal replay is sometimes considered to be
modulated by unsigned RPEs (URPEs) where the absolute
value of an RPE is computed (e.g., Khamassi & Girard,
2020; Momennejad et al., 2018; Roscow et al., 2019).
However, some computational models argue for the im-
portance of SRPE in hippocampal replay instead. For ex-
ample, Mattar and Daw (2018) proposed that prioritization
of which memories to replay is facilitated by SRPEs.
More precisely, stimuli associated with large SRPEs are
placed higher on the priority list. As a consequence, these
highly prioritized stimuli are replayed more often and thus
better remembered. Moreover, evidence suggests that hip-
pocampal replay is sensitive to VTA signaling (Gruber

et al., 2016; Ólafsdóttir et al., 2018; Tompary et al.,
2015). One possibility to investigate the importance of
RPE-based replay at the behavioral level is by manipulat-
ing the subject’s activity in the retention interval.
Specifically, using our variable-choice paradigm, one could
compare a condition where participants are subjected to a
filler task in one condition, but no filler task in the other
condition (similar to Dewar et al., 2014), who obtained a
wakeful-rest versus filler task advantage for unintentionally
studied words). This would allow explicitly testing wheth-
er cognitive processes occurring during off-line (but wake-
ful) periods (such as replay), boosts the RPE effect in
declarative learning.

The current study has some limitations. First, al-
though we found a main effect of agency on memory,
it remains possible that the agency effect was driven by
the fact that participants only had to press a button on
agency trials and not on nonagency trials. In Yebra
et al. (2019), action trials where participants made but-
ton presses, consistently led to better memory perfor-
mance. A possible follow-up study would be to let par-
ticipants also make a button press on nonagency trials
after the computer has made its selection. Note, howev-
er, that this confound does not influence our primary
effect of interest—namely, the interaction between agen-
cy and RPE. Indeed, if there is no interaction in the
current design, there will presumably also not be an
interaction in an experiment where the agency and
nonagency conditions are even more tightly matched.
Second, even though participants were aware that they
would be tested on all 84 word pairs, they might have
paid less attention to the word pairs presented in the
nonagency condition. One way of objectively measuring
this would be by using an eye tracker, to verify whether
participants pay equal attention to word pairs presented
in agency versus nonagency trials. Finally, another lim-
itation of the current design is the limited range of
RPEs that is probed. Specifically, RPEs ranged from
minimally −.5 to maximally .75 (hence higher in abso-
lute value). This asymmetry might have biased our re-
sults into finding an SRPE rather than a URPE pattern;
indeed, a URPE effect has also been documented in the
declarative learning literature (Rouhani et al., 2018).

In conclusion, the current results add to the growing
body of evidence that RPE (independent of its source:
stemming from the participant’s own actions or coming
from the states in a participant’s environment) enhances
declarative learning. In addition, we showed that the
RPE effect cannot be solely explained by the number
of eligible options. Introducing agency in the context of
RPE and declarative learning, provides novel insights
into declarative learning theory, with potential implica-
tions in applied psychology.
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Table 2 Stimulus material: 336 Swahili words

adhabu adui afya aibu akili

almasi amani anga ardhi asili
askari bafuni bahari baiski barua
basi bata bega bendi buli
bullet bunifu chaki chanzo cheo
chombo choori chui chuma chumvi
chungu chupi chura dafu daima
dakika dama damu daraja darasa
dari dizeli dubu duka elfu
enzi farasi fedha funzi fupi
furaha fuvu gari garisi geza
godoro goti gugu gundi guruwe
habari haki hamsi hasira hatari
hatua hawk hazini hekalu hewa
hofu homa hukumu ijayo imani
ingi ishara ishiri jangwa jani
jansa jeraha jibini jibu jikoni
jino jipu jirani jiwe jokofu
joto juisi jumatu juuya kaburi
kahawa kalamu kamba kamwe katika
kaya kazi kelele kemia kesho
kiatu kibodi kichwa kidole kifua
kihozi kijiko kijivu kikapu kike
kilima kimysa kinywa kioo kisiwa
kisu kitabu kiti kito kitovu
kofia koleo kondoo kovuli kuacha
kubale kubeba kubwa kuhesa kuku
kumba kununa kunywa kupima kuruka
kuzama kweli leso loma lugha

Table 1 Stimulus material: 84 Dutch words

agent appel augurk auteur badjas

ballon bezem bloem borst brief

brood cactus cadeau dakpan dief

doos draad eend eiland emmer

ezel fiets gebouw geit gelaat

hamer heuvel insect kaars kaas

kajuit kikker kist klok knie

kogel kooi lamp lawine lepel

long majoor mand naald natuur

neus oase oceaan olijf oven

paard parfum peer plank poort

raam riem rijst schaar schip

sigaar sjaal slang spade spin

steen ster stoel strand tempel

tomaat touw traan trein varken

vinger voet vork walvis wiel

winkel wolf worm zuil

Table 2 (continued)

adhabu adui afya aibu akili

mafuta mageho maisha maji mali
mamba mapafu mashua maua mavazi
maziwa mbali mbao mbegu mbolea
mboo mbuzi mbwa mchawi mchezo
mchuzi mdomo mdudu mekno meli
mende meza mfalme mfano mfuko
mfupa mguu miaka minyoo miwani
mizizi mkanda mkasi mkate mkoba
mkono mkuu mlango moshi moyo
mpira mpishi mraba msitu mtawa
mtirka mtoto mungu mvua mvuke
mwanga mwezi mwili mwizi mzungu
nafaka nafasi nakala nanga nchi
ndege ndevu ndizi ndogo ndoora
ndugu neno ngamia ngao ngazi
ngombe ngome ngono ngozi nguo
nopya nyange nyasi nyeusi nyoka
nyota nyumba nyundo nyundu nzuri
onyo orodha osha paka panya
pazia petye picha piga pigo
pole pombe pote punda pwani
pweza radi rafiki rangi rombus
ruka sabuni sahani sakafu samaki
sauti sayari sehemu seri shairi
shamba shida shingo shule siagi
simu skrini soko somo surali
suti swali tafuta taifa tamaa
tanuri tatizo tatu tausi tawi
tembo trekta twai uadui ufagio
ugomvi uhuru ukame ukanda ukimya
ukuta ukweli umeme umri unga
uongo upepo upya usiku uteo
uyoga uzio viatu vifaa vyeo
wadudu wakala wakati washia watoto
waya wazo welder wema wimbo
wingi wingu wizi yake yangu
yatima ziwa

Table 3 Mean Accuracy for each SRPE and Agency Condition

Agency Nonagency

SRPE Mean SD Mean SD

-0.5 54.11% 25.05% 48.97% 24.86%

-0.25 61.78% 20.12% 51.06% 15.88%

0 57.44% 21.22% 52.75% 25.00%

0.5 68.97% 20.32% 56.97% 20.82%

0.75 72.75% 20.36% 58.28% 19.78%
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