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Abstract
Estimating the reliability of cognitive task datasets is commonly done via split-half methods. We review four methods that differ
in how the trials are split into parts: a first-second half split, an odd-even trial split, a permutated split, and a Monte Carlo-based
split. Additionally, each splitting method could be combined with stratification by task design. These methods are reviewed in
terms of the degree to which they are confounded with four effects that may occur in cognitive tasks: effects of time, task design,
trial sampling, and non-linear scoring. Based on the theoretical review, we recommend Monte Carlo splitting (possibly in
combination with stratification by task design) as being the most robust method with respect to the four confounds considered.
Next, we estimated the reliabilities of the main outcome variables from four cognitive task datasets, each (typically) scored with a
different non-linear algorithm, by systematically applying each splitting method. Differences between methods were interpreted
in terms of confounding effects inflating or attenuating reliability estimates. For three task datasets, our findings were consistent
with our model of confounding effects. Evidence for confounding effects was strong for time and task design and weak for non-
linear scoring. When confounding effects occurred, they attenuated reliability estimates. For one task dataset, findings were
inconsistent with our model but they may offer indicators for assessing whether a split-half reliability estimate is appropriate.
Additionally, we make suggestions on further research of reliability estimation, supported by a compendium R package that
implements each of the splitting methods reviewed here.
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Introduction

Recently, it was suggested that a range of cognitive tasks may
reliably measure group differences but not individual differ-
ences (Hedge et al., 2018). As cognitive tests are commonly
used to make inferences about individuals, it seems a worth-
while pursuit to improve the reliability with which individual
differences are assessed using these tests. To judge the success
of such pursuits, accurate estimates of reliability are required.
Reliability can be estimated via a range of coefficients, such as
Cronbach’s alpha for questionnaire data. Traditionally, alpha
is estimated by fitting a model of essential tau-equivalence on
item-level data; each item has the same loading on the true
score but has a unique mean and error variance (Cortina,
1993). The same approach may not translate well to cognitive
tasks, due to their designs and scoring algorithms. For in-
stance, task designs may contain random sequences of trials
and repetitions of the same trial, while task-scoring algorithms
may selectively exclude trials and apply non-linear transfor-
mations to trial scores. Instead, one could estimate reliability

* Thomas Pronk
t.pronk@uva.nl

1 Faculty of Social and Behavioural Sciences, Department of
Psychology, University of Amsterdam, P.O. Box: 15969, 1001
NL Amsterdam, The Netherlands

2 Faculty of Social and Behavioural Sciences, Behavioural Science
Lab, University of Amsterdam, Amsterdam, The Netherlands

3 Open Science Tools (PsychoPy) Lab, School of Psychology,
University of Nottingham, Nottingham, United Kingdom

4 Faculty of Social and Behavioural Sciences, Department of
Psychology, Addiction Development and Psychopathology
(ADAPT) lab, University of Amsterdam,
Amsterdam, The Netherlands

5 Center for Urban Mental Health, University of Amsterdam,
Amsterdam, The Netherlands

https://doi.org/10.3758/s13423-021-01948-3

/ Published online: 7 June 2021

Psychonomic Bulletin & Review (2022) 29:44–54

http://crossmark.crossref.org/dialog/?doi=10.3758/s13423-021-01948-3&domain=pdf
http://orcid.org/0000-0001-9334-7190
mailto:t.pronk@uva.nl


via a test-retest approach. However, administering the same
task twice may not always be appropriate due to feasibility
constraints or the task score varying over test-retest time
frames, for example, due to learning effects.

An alternative approach that has been popular with cogni-
tive tasks is split-half reliability. Trials are distributed across
two parts, a score is calculated per part, and a two-part reli-
ability coefficient, such as a Spearman-Brown adjusted
Pearson correlation, is calculated between the two sets of part
scores. Because split-half reliability is estimated via scores of
aggregates of trials, practical issues with models for individual
trials can be sidestepped. However, is the coefficient obtained
an accurate estimate of reliability? One factor that may affect
the accuracy of split-half reliability estimates is the method by
which the task is split. A variety of methods have been pro-
posed and applied to cognitive task data. To the best of our
knowledge, these splitting methods have not yet been com-
prehensively reviewed nor systematically assessed, so we
aimed to conduct such an examination.

In the remainder of the Introduction, we review four
splitting methods, and a stratification approach, each hav-
ing been used in the cognitive task literature. We evaluate
each method on its ability to control for four possibly con-
founding effects. Based on our review, we make a theory-
based recommendation as to which splitting method(s) may
be considered most robust. In the empirical application, we
estimated the reliabilities of four cognitive task datasets and
associated scoring algorithms by systematically applying
each splitting method. We compared estimates between
splitting methods and tasks, to examine which confounding
effects likely occurred.

Confounds with time

The first effect we review is time: This effect can manifest,
for example, when participants learn or become fatigued
throughout a task. First-second halves splitting assigns
trials to each part based on whether they belonged to the
first or second half of the sequence administered to a
participant. Since first-second splitting assigns early trials to
one part and late trials to the other, first-second splitting is
confounded with time effects. This confound has been used
to argue against first-second splitting (Webb et al., 2006).
Time effects have also been used to explain comparatively
low reliability estimates found with first-second splitting of a
Go/No-Go (GNG) task (Williams & Kaufmann, 2012), a
Wisconsin Card Sorting Test (Kopp et al., 2021), and a com-
parable splitting method of a learning referent task (Green
et al., 2016). Time effects can be controlled by balancing early
and late trials between parts, which can be achieved by split-
ting trials based on whether their position in the sequence was
odd or even.

Confounds with task design

While odd-even splitting controls well for time, it can be con-
founded with task design. For instance, if a task features an
alternating sequence of conditions, such as target and attribute
trials in an Implicit Association Task (IAT) (Greenwald et al.,
1998), an odd-even split would exclusively assign target trials
to one part and attribute trials to the other. To demonstrate this
effect, Green et al. (2016) stratified splits such that they were
either confounded with task conditions (split by name) or
balanced between task conditions (split by equivalence). It
was shown that the split by equivalence yielded higher reli-
ability estimates than the split by name. These relatively high
estimates were accepted as most accurate. In contrast, com-
paratively high reliabilities of odd-even splits were found on
scores of a Stop Signal Task (SST). These relatively high
reliabilities were rejected as inaccurate for being an artifact
of the task’s tracking procedure (Hedge et al., 2018). Hence,
confounds between task design and odd-even splitting have
been used to argue that odd-even splits can yield both overes-
timations and underestimations of reliability.

Both overestimation and underestimation of reliability can
occur depending on how such confounds violate the measure-
ment model assumed by a reliability coefficient. For instance,
in a model of essential tau equivalence, correlated errors may
inflate reliability while unequal loadings of trials on a true
score may attenuate it (Green et al., 2016). Regardless, we
assume that any splitting method that controls for task design
yields a more accurate reliability estimate, and that confounds
between task design and splitting method may yield either
overestimations or underestimations in a given task dataset.
We conceptualize controlling for task design by balancing
conditions between parts as stratified splitting: strata are con-
structed from the trials that belong to each condition. Each
stratum is then split into two parts by applying another split-
ting method. This approach ensures that strata are balanced
between parts and allows direct comparison of splitting
methods that are confounded with task design and spitting
methods that are not confounded with task design.

Confounds with trial sampling

Each of the splitting methods reviewed so far (first-second and
odd-even in combination with stratification) constructs a sin-
gle pair of parts for each participant. Regarding this pair as a
sample, we will collectively refer to these methods as single-
sample methods. Single-sample splits have been popular, per-
haps in part for being relatively easy to perform. However,
besides that they may be confounded with time and task de-
sign, they can also be subject to trial-sampling effects; any
single split may yield anomalously high or low reliability es-
timates, purely by chance. In contrast, resampling methods
estimate reliability by averaging multiple coefficients
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calculated from parts that are composed of randomly sampled
trials. Some of these coefficients may yield overestimations of
reliability and some underestimations. On the aggregate level,
trial sampling effects are attenuated by averaging coefficients
from each random sample of trials. Resampled splitting may
benefit less from stratification than single-sample splitting
since anomalously high or low reliability estimates that are
an artifact from a confound between one particular split and
the task design are already averaged out. However, stratifica-
tion could still benefit resampled splitting by making splits
more equivalent.

We distinguish two resampling methods, which differ in
whether they construct parts by randomly sampling with or with-
out replacement. The latter has been known variously as random
sample of split-halves (Williams & Kaufmann, 2012), random
splitting (Kopp et al., 2021), and bootstrapped splitting (Parsons
et al., 2019). We use the term permutated splitting to emphasize
that this method samples without replacement. Reliability coef-
ficients calculated frompermutated splits have a statistical quality
that facilitates their interpretation: for coefficients such as the
Spearman-Brown-adjusted Pearson correlation and two-part
Cronbach’s alphas, if trial scores meet the measurement model
assumptions, the mean coefficient of all possible splits approxi-
mates the test-retest correlation (Novick & Lewis, 1967;
Warrens, 2015). In turn, this can be approximated by a large
number of permutated splits. Parsons et al. (2019) recommended
a minimum of 5,000 replications.

Averaging resampled coefficients may attenuate confound-
ing effects, but their distributions may be useful to identify
issues with a task dataset. Williams and Kaufmann (2012) sug-
gested that wide and platykurtic resampled distributions may
indicate trials that are poor quality, heterogeneous, or tapping
multiple constructs. We have not formulated any guidelines nor
hypotheses on the shapes of the distributions. This is in part
because we are unsure how to interpret these distributions in
terms of confounding effects. Additionally, we expect variation
in width and skew of distributions as a function of reliability,
because reliability coefficients have an upper bound of 1.

However, acknowledging that resampled distributions can be
informative, we have made an explorative assessment of their
range, skew, and kurtosis. Additionally, we explored whether
reliability estimates of resampled coefficients varied as a function
of stratification. We have used the distributions of permutated
coefficients to qualify reliability estimates of single-sample split-
ting methods. The percentile of a reliability estimate of a single-
sample splitting in the empirical cumulative distributions of non-
stratified permutated coefficients indicates how extreme that es-
timate is compared to any random splitting method.

Confounds with non-linear scoring

Continuing to sampling with replacement, we first note that
each splitting method reviewed above constructs parts that are

half of the length of the original task. Reliability coefficients
estimate the reliability for the full-length task based on half-
length scores and certain measurement model assumptions.
An assumption shared by various reliability coefficients is a
linear relation between task score and trial scores. Linearity is
assumed by alpha (Green et al., 2016), Spearman-Brown-
adjusted intraclass correlation coefficient (de Vet et al.,
2017; Hedge et al., 2018; Warrens, 2017), and Spearman-
Brown-adjusted Pearson correlation (Abacioglu et al., 2019;
Chapman et al., 2019; Cooper et al., 2017; de Hullu et al.,
2011; Enock et al., 2014; Lancee et al., 2017; MacLeod
et al., 2010; Schmitz et al., 2019; Waechter et al., 2014).
However, task-scoring algorithms may apply a range of non-
linear transformations, thereby being incompatible with these
coefficients by design.

Williams and Kaufmann (2012) proposed a splitting pro-
cedure that could be more robust with non-linear-scoring al-
gorithms. This procedure constructs two parts of the same
length of the original task by randomly sampling with replace-
ment. As the two parts are full-length tasks, reliability can be
estimated via a test-retest approach by correlating scores of
these parts. Williams and Kaufmann (2012) referred to this
method as aMonte Carlo alpha-like coefficient,which we will
abbreviate to Monte Carlo splitting. This splitting method
makes relatively weak assumptions about the relationship be-
tween trial and task scores, such as linearity. Hence, it could
provide a more accurate reliability estimate of scores calculat-
ed via non-linear algorithms. Regardless, in a Go/No-Go
(GNG) dataset scored via d’, Pearson correlations calculated
fromMonte Carlo splits yielded similar reliability estimates to
Spearman-Brown-adjusted Pearson correlations calculated
from permutated splits (Williams & Kaufmann, 2012).

Interim summary

In summary, we reviewed four effects that may confound
splitting methods and so affect the accuracy of split-half reli-
ability estimates: time, task design, trial sampling, and non-
linear scoring. We listed two splitting methods that produce a
single sample of parts based on trial sequence (first-second
and odd-even) and two that randomly resample parts
(permutated andMonte Carlo). A fifth method, stratified split-
ting, balances conditions between parts by constructing strata
that are next split with one of the other methods. We have
argued that confounding effects are likely to interact with
splitting methods as follows: Time is confounded with first-
second and controlled for by odd-even. Task design can be
confounded with single-sample splitting and controlled for by
stratification. Resampled splitting controls for confounds by
averaging them out. Non-linear scoring is confounded with
first-second, odd-even, and permutated splitting, and con-
trolled for by Monte Carlo splitting. Hence, based on our
theoretical review, Monte Carlo splitting, perhaps stratified
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by task design, could be considered as most robust against the
four confounding effects that we listed.

To examine to what degree interactions between confound-
ing effects and splitting methods affected reliability estimates,
we systematically applied each splitting method to four differ-
ent cognitive task datasets. Datasets were selected from three
published studies in the fields of gambling-related cognitive
processes (Boffo et al., 2018), ethnic stereotypes (Abacioglu
et al., 2019), and executive functioning (Hedge et al., 2018).
Each dataset was scored with a different non-linear algorithm,
commonly used in that literature. Task datasets were from four
different paradigms: Approach Avoidance Task (AAT),
GNG, IAT, and SST. We compared reliability estimates be-
tween splitting methods and task datasets to assess to what
degree confounding effects of time, task design, and non-
linear scoring were likely to be present.When a splitting meth-
od that was confounded with time, task design, or non-linear
scoring yielded a different reliability estimate than a splitting
method that controlled for these effects, we considered that
evidence for the presence of that confounding effect. Note that
our hypotheses are non-directional; we did not expect any
reliability estimate to be larger or smaller than another esti-
mate, but only expected differences being present between
reliability estimates. Exploratively, we examined the combi-
nation of resampled splitting and stratification, as well as the
shapes of the distributions of the coefficients from resampled
splits.

To the best of our knowledge, this is the first paper that
comprehensively reviews splitting methods used in the cogni-
tive task literature. Additionally, this is the first study that
systematically applies each method. Results can inform re-
searchers which confounding effects may inflate or deflate
reliability estimates.

Methods

Datasets and scoring algorithms

Table 1 gives an overview of the cognitive task datasets and
associated scoring algorithms that we reanalyzed. In all cases,
except for the IAT, the number of participants corresponded to
those included in the published study. For the IAT, we only
included participants who completed this task. Also,
conforming to the improved d-score algorithm, we only in-
cluded participants for whom 10% or less of their responses
had a response time (RT) below 300 ms. The implementations
of the scoring algorithmswere based on the following sources:
double difference of median RTs was based on Heuer et al.
(2007); d’ was based on the psycho R-package (Makowski,
2018), correcting for extreme values via the log-linear ap-
proach (Hautus, 1995); improved d-score was based on
Greenwald et al. (2003); and Stop-Signal Reaction Time Ta
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integration method was based on an R-script provided by
Craig Hedge (Hedge et al., 2018).

Table 1 also shows task conditions for which summary
statistics are calculated as part of the task-scoring algorithm
(scoring conditions) and task stimuli. The table lists any scor-
ing conditions or stimuli that interacted with first-second or
odd-even splitting at design interactions. There were four such
interactions: Stimuli of the GNG interacted with first-second
splitting because each of the five stimuli was presented in
sequences of 120 trials. For the IAT, scoring conditions
interacted with first-second splitting, because practice and test
trials were administered in sequence. Also for the IAT, stimuli
interacted with odd-even splitting, because target and attribute
categories alternated. Scoring conditions of the SST interacted
with odd-even splitting, because the task’s tracking procedure
incremented or decremented stop-signal delay by 50 ms based
on whether the previous response was correct or incorrect,
respectively.

Design

We applied first-second, odd-even, permutated, and Monte
Carlo splitting to each task dataset. For permutated and
Monte Carlo splits, 10,000 replications were conducted and
the resulting coefficients averaged via a simple mean. For
first-second, odd-even, and permutated splits, reliability was
estimated via Spearman-Brown-adjusted Pearson correla-
tions. For Monte Carlo splits, reliability was estimated via
Pearson correlations. While not hypothesized, we found that
reliability estimates for the AAT could be negative.
Spearman-Brown adjustment disproportionally inflates nega-
tive values, so for the AAT, we reported and interpreted split-
half correlations instead. As aMonte Carlo equivalent of split-
half correlations, we sampled with replacement two parts of a
half-length instead of full-length.

Each splitting method was conducted with three levels of
stratification: no stratification, stratified by scoring conditions,
and stratified by each combination of scoring condition and
stimulus. With two exceptions, coefficients could be calculat-
ed for each combination of splitting method, stratification lev-
el, and task: the SST could not be stratified by scoring and
stimuli because there was no variation of stimuli within scor-
ing conditions. D-score could not be calculated for the IAT
split first-second without stratification, as this method
assigned all practice trials to the first part. Hence, in the second
part, no summary statistics could be calculated for two of the
scoring conditions. Two other exceptions occurred in tasks
that sequentially administered an even number of conditions.
In such cases, an odd-even split assigned the same trials to
each part as an odd-even split stratified by these conditions
did, so both splitting methods yielded equivalent results. This
applied to the GNG stratified by scoring and stimuli, and IAT
stratified by scoring.

Reliability estimates obtained via single-sample splitting
methods were qualified as follows: we conceptualized the
empirical distributions of non-stratified permutated coeffi-
cients as the universe of all possible ways to split a task into
two halves. Hence, the percentile of a single reliability esti-
mate in this distribution represents how high or how low this
estimate is compared to any random split-half. Similarly, the
difference between the percentiles of two reliability estimates
represents how much they differ in magnitude, compared to
any random split-half. Reliability estimates obtained via
resampled splitting methods were qualified by their 95%
highest density interval (Kopp et al., 2021). The difference
between two distributions of resampled coefficients was qual-
ified by their degree of disjointedness. Disjointedness was
calculated as 1 minus the Bhattacharyya coefficient
(Bhattacharyya, 1943) so that 0 represented perfectly overlap-
ping distributions and 1 represented perfectly non-
overlapping distributions. To illustrate how the magnitude of
disjointedness could be interpreted, consider two normal dis-
tributions with equal standard deviations (SDs), but different
means. Differences between these two distributions that cor-
respond to a small (0.2), medium (0.5), and large (0.8)
Cohen’s d correspond to disjointedness values of 0.08, 0.20,
and 0.31, respectively (Grice & Barrett, 2014).

Software

Executing each splitting method for each cognitive task
dataset and scoring algorithm was not trivial. Hence, we de-
veloped an R package, splithalfr, that expands on the func-
tionality provided by existing R packages, such as multicon
(Sherman, 2015), psych (Revelle, 2018), and splithalf
(Parsons, 2017, 2021). Unique features of the splithalfr are
support of Monte Carlo splitting, researcher-provided stratifi-
cations and scoring algorithms, nonparametric bias-corrected
and accelerated bootstrap confidence intervals (Efron, 1987;
Efron & Narasimhan, 2018), and the option to match trials
across participants. Each of the cognitive task datasets
reanalyzed in this paper has been included in this R package,
together with vignettes that serve as tutorials and as a means to
replicate the reanalysis. The splithalfr can be installed via
CRAN, while its source code is available at https://github.
com/tpronk/splithalfr.

Results

Table 2 displays coefficients for each splitting method, strat-
ification, and task dataset. Below, we report per task how
reliability estimates were affected by hypothesized confound-
ing effects. The pattern of GNG, IAT, and SST reliability
estimates was consistent with our model of confounding ef-
fects, but the AAT was not. Hence, one sub-section
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summarizes the results of the GNG, IAT, and SST in unison,
followed by a second sub-section that summarizes the results
of the AAT. Based on our findings in the previous two sub-
sections, we examined the stability of reliability estimates
with decreased numbers of participants and trials in a third
sub-section. In a fourth sub-section, we examine the distribu-
tions of reliability estimates of resampled splits and how
resampled splits were affected by stratification.

GNG, IAT, and SST reliability estimates

Examining confounds with time, reliability estimates of GNG,
IAT, and SST, split first-second without stratification fell in
the lowest 0.58%. Stratified first-second splits yielded higher
estimates for GNG (increasing from 0.84 to 0.91) and IAT
(increasing from 0.68 to 0.75), though none exceeded
17.69%. In contrast, estimates from odd-even splits were at
least 11.54% without stratification to at least 59.71% with
stratification. Hence, confounds with time yielded compara-
tively low reliability estimates of first-second splitting and this
confound could be controlled for via odd-even splitting.

Secondly, we examined confounds with task design. Each
case where there was a confound with task design and a
single-sample splitting method, we stratified that splitting
method so that the confound was controlled for increased
reliability estimates. This was the case for GNG split first-
second stratified by scoring and stimuli, IAT split odd-even
stratified by scoring and stimuli, and SST split odd-even strat-
ified by scoring. In terms of coefficient values, stratification
increased estimates by 0.07 to 0.13. For the IAT and SST,
stratification increased the reliability estimate by 83.47 and
80.66 percentile points, respectively. For the GNG, stratifica-
tion increased the reliability estimate by only 17.69 percentile
points. The latter increase was low percentile-wise, but high in
terms of coefficient values because the non-stratified estimate
obtained via first-second splitting was an extremely low out-
lier (0.00%). Hence, confounds between splitting method and
task design yielded low reliability estimates and this confound
could be controlled for via stratification.

Thirdly, we examined confounds with non-linear scoring.
For the GNG and SST, Monte Carlo estimates were at most
0.01 higher than permutated estimates, which corresponded
with the distributions of coefficients being disjoint by at most

Table 2 Coefficients per splitting method, stratification level, and task dataset

Method Stratification AAT GNG IAT SST

% Coef % Coef % Coef % Coef

First-second None 94.20 0.20 0.00 0.84 0.29 0.74

First-second Scoring 99.67 0.40 0.00 0.84 0.58 0.68 0.25 0.74

First-second Scoring and Stimuli 89.94 0.15 17.69 0.91 6.02 0.75

Odd-even None 23.90 -0.24 73.00 0.94 11.54 0.76 18.71 0.88

Odd-even Scoring 54.19 -0.08 59.71 0.93 -- -- 99.37 0.96

Odd-even Scoring and Stimuli 89.94 0.15 -- -- 95.01 0.89

Permutated None -0.10 0.92 0.82 0.90

[-0.45, 0.27] [0.89, 0.96] [0.73, 0.90] [0.83, 0.96]

Permutated Scoring -0.11
[-0.46, 0.26]

0.93
[0.89, 0.96]

0.83
[0.74, 0.91]

0.90
[0.83, 0.96]

Permutated Scoring and Stimuli -0.12
[-0.49, 0.24]

0.93
[0.89, 0.96]

0.83
[0.75, 0.91]

Monte Carlo None 0.20
[-0.17, 0.57]

0.93
[0.90, 0.96]

0.86
[0.78, 0.93]

0.91
[0.84, 0.96]

Monte Carlo Scoring 0.21
[-0.17, 0.58]

0.93
[0.90, 0.96]

0.86
[0.79, 0.93]

0.91
[0.84, 0.96]

Monte Carlo Scoring and Stimuli 0.35
[-0.03, 0.70]

0.93
[0.90, 0.96]

0.88
[0.81, 0.94]

AAT Approach Avoidance Task, GNG Go/No-Go, IAT Implicit Association Task, SST Stop Signal Task

For the AAT, split-half Pearson correlations are shown, while for the other tasks, split-half Spearman-Brown-adjusted Pearson correlations are shown.
The column Coef contains the value of the coefficient, while the column % shows the percentile of this value in the cumulative empirical distribution of
non-stratified permutated coefficients. Below each coefficient obtained via resampled splitting, the 95% HDI is shown in italics. Coefficients that could
not be calculated are left empty, while coefficients of splitting methods that are equivalent to the splitting method above them are indicated by dashed
lines (–)
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17% and 8%, respectively. For the IAT, Monte Carlo esti-
mates were 0.04 to 0.05 higher, which corresponded with a
disjointedness of 35–47%. Hence, controlling for confounds
of non-linear scoring via Monte-Carlo splitting increased reli-
ability estimates, but only substantially so for the IAT.

Finally, we examined the combination of resampling and
stratification. Stratified coefficients were higher than non-
stratified coefficients. For the GNG and SST, this difference
was negligible, being at most 0.01, which corresponded with a
disjointedness of at most 5% for the GNG and 1% for the SST.
For the IAT, the difference was slightly larger. Stratification
could increase permutated coefficients by 0.01, which
corresponded to 10% disjointedness. When split Monte
Carlo, reliability estimates stratified by scoring and stimuli
were 0.02 higher than non-stratified estimates (corresponding
to 20% disjointedness), as well as 0.02 higher than estimates
stratified by scoring conditions (corresponding to 15% dis-
jointedness). For the IAT, both for permutated and Monte
Carlo coefficients, higher estimates of stratified splits
corresponded with slightly narrower HDIs. Hence, across
the GNG, SST, and IAT, differences between stratifications
of resampled coefficients were modest at most.

AAT reliability estimates

For the AAT, time interacted with splitting method, but this
affected coefficients differently than expected. First-second
splitting yielded relatively high correlations, all of which were
89.94% or higher. In contrast, odd-even correlations were
lower, even reaching negative values. Hence, confounds with
time appeared to have yielded high reliability estimates in-
stead of low estimates.

Secondly, we examined confounds with task design. AAT
scoring conditions and stimuli were administered in a random
order, so no confounds with any splitting method and task
design were expected. Nevertheless, stratifications affected
reliability estimates in different ways depending on the split-
ting method. When split first-second, stratification by scoring
increased split-half correlations, but stratification by scoring
and stimuli decreased them. When split odd-even, stratifica-
tion increased split-half correlations, ranging from negative
without stratification to positive with stratification by scoring
and stimuli. Hence, we conclude that some confoundwith task
design may have been present, but was not well controlled for
by our stratification approach.

Thirdly, we examined confounds with non-linear scoring.
Permutated coefficients were negative while Monte Carlo co-
efficients were positive. Hence, non-linear scoring decreased
reliability estimates.

Finally, we examined the combination of resampling and
stratification. With permutated splits, stratification increased
coefficients by 0.02 at most, corresponding to a disjointedness
of 4%. With Monte Carlo splits, stratification increased

coefficients by 0.15 at most, corresponding to a disjointedness
of 31%.

Distributions of resampled coefficients and means of
stratified resampled coefficients

The shapes of distributions of resampled coefficients varied
between task datasets. Within tasks datasets, shapes were sim-
ilar between permutated and Monte Carlo splitting, as well as
between stratifications.

For the AAT, GNG, and IAT, distributions were approxi-
mately Gaussian. For these task datasets, across permutated
and Monte Carlo splitting, combined with any stratification,
skewness ranged from -0.71 to -0.17, while excess kurtosis
ranged from -0.34 to 0.79. For the SST, distributions were
left-skewed (skewness ≤ -1.43) and leptokurtic (excess kurto-
sis ≥ 3.33). SDs were 0.19 to 0.2 for the AAT, 0.04 to 0.05 for
the IAT and SST, and 0.01 to 0.02 for the GNG. Figure 1
shows the distributions of non-stratified coefficients per re-
sampling method and task dataset.

Discussion

We reviewed four methods for splitting data of cognitive tasks
into two parts. Two methods yield a single sample of parts by
distributing trials based on their position in sequence admin-
istered to the participant (first-second and odd-even). Two
methods resample parts by randomly drawing without re-
placement (permutated) and with replacement (Monte
Carlo). Each of these methods can be stratified by task design
so that conditions and stimuli are balanced between parts. We
reviewed four effects that may confound with splitting
methods, thereby affecting the accuracy of split-half reliability
estimates. These confounding effects are time, task design,
trial sampling, and non-linear scoring.

We systematically applied each single-sample and resam-
ple splitting method with different levels of stratification to
four cognitive task datasets. Each task had a different design
and non-linear-scoring algorithm. These tasks were an AAT
scored via double difference of medians; a GNG scored via d’,
an IAT scored via d-score, and an SST scored via SSRT inte-
gration method.We interpreted differences between reliability
estimates in terms of which effects were likely confounding
with a splitting method. Exploratively, we examined distribu-
tions of resampled estimates.

The pattern of reliability estimates of the GNG, IAT, and
SST could be interpreted in terms of hypothesized confounds.
These findings are discussed next in unison. We follow with a
discussion of the AAT dataset, which had a pattern of results
that was more difficult to interpret. However, AAT results
could provide indicators for situations in which our model of
confounding effects was not applicable. Finally, we propose
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some future avenues of research into the estimation of the
reliability of cognitive task datasets.

For the GNG, IAT, and SST we found confounds between
time and first-second splitting. In line with Green et al. (2016),
Kopp et al. (2021), Webb et al. (2006), and Williams and
Kaufmann (2012), this confound resulted in low reliability
estimates for all three tasks. Odd-even splitting controlled
for time, resulting in high estimates. For all three tasks, we
also found confounds between task design and single-sample
splitting methods. Stratifications that controlled for task de-
sign resulted in higher estimates. Our findings on task design
are in line with the findings of Green et al. (2016), but go
against the explanation put forth by Hedge et al. (2018). The
latter authors explained high reliability estimates found with
the SST as an artifact of the task’s tracking procedure. Our
findings indicate that such an artifact resulted in low reliability
estimates because stratifying odd-even splits by tracking con-
ditions yielded higher estimates. We found confounds with
non-linear scoring, with Monte Carlo estimates being higher
than permutated estimates. Only for the IAT was the latter
difference substantial.

Exploratively, we examined the combination of stratifica-
tion and resampling. Stratifying resampled splits yielded
slightly higher estimates, most notably for the IAT, split
Monte Carlo, stratified by scoring conditions and stimuli.
Higher estimates from stratified resampled splits
corresponded with a slightly narrower HDI. These findings
could imply that resampled splits can be made more equiva-
lent by stratifying them both by task design elements that are
part of a task’s scoring algorithm and task design elements that
are counterbalanced. However, given that we only found such
differences in a limited number of cases, and differences were
relatively small, our empirical evidence for the benefits of
stratifying resampled coefficients is modest at best.

For the AAT, some split-half correlations were nega-
tive. Negative reliabilities can be an artifact due to high

correlations between scoring conditions, which could be
expected to be averaged out to zero across samples
(Parsons et al., 2019). In our results, they did not, even
though our resampling procedure had a relatively large
number of replications (10,000). Alternatively, the neg-
ative correlations may have been caused by multiple
negatively correlated dimensions underlying task scores
(Cronbach & Hartmann, 1946). As Spearman-Brown ad-
justment inflates negative correlations, we analyzed cor-
relations instead.

Compared to the GNG and SST, the AAT and IAT showed
larger variability within and between splitting methods. This
may in part be explained due to the AAT having a relatively
small number of trials and the IAT having a relatively small
number of participants. A method that could be used to exam-
ine such explanations more closely is used in the supplemen-
tary materials of Hedge et al. (2018). They examined the reli-
ability of artificially shortened tasks constructed by subsam-
pling trials (i.e., sampling without replacement). In a similar
vein, smaller samples could be constructed by subsampling
participants. While beyond the scope of this paper, we hope to
facilitate such examinations, by offering both subsampling
methods in our compendium R-package.

An explanation for the particularly unstable reliability esti-
mates of the AAT could be that it was an irrelevant-feature
task. Note that the AAT can be used both in a relevant-feature
version and in an irrelevant feature version. In a relevant-
feature version, participants are explicitly instructed to ap-
proach the focal category in one block and to avoid it in an-
other block (here: approach gambling, avoid other stimuli and
avoid gambling, approach other stimuli), structurally similar
to the IAT. Here an irrelevant-feature version was used: par-
ticipants have to make their decision to approach or avoid the
stimulus on a characteristic unrelated to the contents of the
picture (e.g., approach pictures tilted to the left, avoid pictures
tilted to the right). While irrelevant feature versions have their

Fig. 1 Histograms of coefficients calculated via permutated and Monte
Carlo splitting without stratification. For the Approach Avoidance Task
(AAT), coefficients are Pearson correlations, while for the Go/No-Go

(GNG), Implicit Association Task (IAT), and Stop Signal Task (SST)
they are Spearman-Brown-adjusted Pearson correlations
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advantages (they are more implicit because there is no explicit
instruction relating to the category of interest and the assess-
ment task can be modified into a modification task), the reli-
ability is lower for irrelevant feature versions compared with
relevant feature versions (e.g., Field et al., 2011).

The pattern of split-half correlations of the AAT across
splitting methods was not consistent with our model of con-
founding effects for both time and task design. We consider
this evidence against the generality of our model of confound-
ing effects. Hence, for the AAT, we do not consider any of the
splitting methods that we examined as robust. We do recom-
mend comparing the consistency across splitting methods for
diagnosing whether there may be an issue with split-half reli-
ability estimation. Based on our AAT results, we propose the
following indicators: negative reliability estimates, exception-
ally high estimates with first-second splitting, low estimates
with odd-even splitting, finer stratifications not consistently
increasing estimates, and estimates of Monte Carlo splitting
showing a large difference with estimates from permutated
splitting. When assessing a negative reliability estimate, we
endorse Parsons and colleagues’ (Parsons et al., 2019) recom-
mendation to treat them as zero, and so essentially consider
the corresponding measurement as unsuitable for measuring
individual differences.

Exploratively, we examined the distributions of resampled
coefficients. Williams and Kaufmann (2012) suggested that
wide and platykurtic distributions may indicate issues with
trial quality. Based on the findings above, we consider the
AAT the only task dataset that had issues with trial quality.
In line withWilliams and Kaufmann's (2012) suggestions, the
range of resampled coefficients for the AAT was relatively
high. In contrast with Williams and Kaufmann's (2012) sug-
gestions, the distribution of the AAT was not platykurtic. For
the SST, which we deem did not have issues with trial quality,
the distribution of resampled coefficients was narrow, skewed
to the left, and leptokurtic. Note that the skewness may well
have been a ceiling effect due to the reliability estimates of the
SST being close to 1. Hence, we found evidence for Williams
and Kaufmann’s (2012) suggestion that wide distributions of
resampled coefficients may indicate issues with trial quality,
but no evidence that the same held for platykurtic distribu-
tions. Alternatively, a different method of averaging than a
simple mean may be more suitable for averaging resampled
reliability estimates that have a non-Gaussian distribution,
such as a Fisher z-transformation (Waechter & Stolz, 2015)
or averaging via the median (Kopp et al., 2021). For an over-
view of different averaging methods that may be suitable, see
Feldt and Charter (2006).

In summary, we found strong evidence for effects of time
and task design, which yielded relatively low reliability esti-
mates when confounded with a splitting method. We found
weak evidence for confounds with non-linear effects, which
could be controlled for via Monte Carlo splitting. Coefficients

of resampled splits were only modestly affected by stratifica-
tion. Based on our theoretical model, we have recommended
stratified Monte Carlo splitting as being most robust against
the confounding effects that we hypothesized. Based on the
confounding effects for which we found evidence in our em-
pirical analysis, we add that in most of the datasets studied
here, resampled splitting via permutation or resampled split-
ting without stratification were similarly robust. We also
found evidence that our model of confounding effects did
not apply to all task datasets, in which case we do not endorse
any splitting method. We listed some indicators for when a
dataset may not meet model assumptions.

To the best of our knowledge, this is the first comprehen-
sive review and empirical study of splitting methods that have
been used for cognitive tasks. Given the focus of this paper, a
range of other aspects that are relevant to reliability estimation
were not covered. Below, we list four aspects and make some
suggestions on how to proceed.

Firstly, reliability is not only a function of task and popu-
lation sample but also of scoring algorithms. In the present
study, each task dataset was scored with a different scoring
algorithm, selected for having been applied to their corre-
sponding task in the literature. Within a task and sample, the
methods we outlined could be used to compare scoring algo-
rithms, similar to Glashouwer et al. (2013). Secondly, we used
Spearman-Brown-adjusted Pearson correlations for being the
most common reliability coefficient in the cognitive task lit-
erature. Alternative coefficients may be useful in particular
cases. For instance, alpha could be applied in cases where
splitting into more than two parts is desired (Green et al.,
2016) and Angoff-Feldt when the number of trials varies be-
tween each part (Feldt & Charter, 2003; Walker, 2005). An
Intraclass Correlation Coefficient (ICC) could be calculated
for assessing consistency and absolute agreement between
scores (Koo&Li, 2016; Shrout & Fleiss, 1979). A third aspect
is that we did not explicitly review measurement models of
reliability coefficients beyond linear and non-linear transfor-
mations. One measurement model that is interesting in this
light is an application of classical test theory models to reac-
tion time data (Rouder & Haaf, 2019). A fourth aspect con-
cerns methods for assessing the magnitude of reliability esti-
mates and differences between reliability estimates. We ap-
plied descriptive statistics of percentages, where single-
sample reliability estimates were assessed via their percentiles
in permutated distributions and resampled reliability estimates
were compared via their degree of disjointedness between
empirical distributions. While we deem this method as robust
against non-linearity and more comprehensive than a signifi-
cance test, it might be less informative when comparing rela-
tively high reliability estimates.

In conclusion, we return to the issue prompting our exam-
ination of methods for estimating reliability, which was the
low reliability with which individual differences could be
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measured by several cognitive tasks (Hedge et al., 2018). The
primary method for assessing reliability used by Hedge and
colleagues was test-retest reliability. We focused on split-half
reliabilities for their suitability in cases where multiple admin-
istrations of a task are not feasible or a score may vary over
test-retest timeframes. In our empirical analyses, we examined
whether splitting methods that were more robust against hy-
pothesized confounding effects would yield different reliabil-
ity estimates. For cases where our model of confounding ef-
fects applied, more robust splitting methods yielded higher
reliability estimates than less robust splitting methods.
Reliabilities estimated via splitting methods we deemed as
most robust were strikingly high, exceeding 0.82 for the IAT
and 0.90 for the GNG and SST. Hence, we conclude that for
the datasets included in our reanalysis, cognitive tasks may
well have been able to measure individual differences, but that
these differences may be relatively unstable over time (Kopp
et al., 2021). In practice, this may make cognitive tasks suit-
able for cross-sectional research of individual differences, but
not for longitudinal research. A more thorough assessment
could involve replicating this finding across a larger number
of task datasets. In support of such a venture, all splitting
methods described in this paper are available in the R package
that serves as a compendium to this paper.
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