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Abstract
Mental simulation of future scenarios is hypothesized to affect future behavior, but a large and inconsistent literature means it is
unclear whether, and under what conditions, mental simulation can change people’s behavior. A meta-analysis was conducted to
synthesize the effects of mental simulation on behavior and examine under what conditions mental simulation works best. An
inclusive systematic database search identified 123 (N = 5,685) effect sizes comparing mental simulation to a control group. After
applying a multilevel random effects model, a statistically-reliable positive effect of Hedges’ g = 0.49, 95% CI [0.37; 0.62] was
found, which was significantly different than zero. Using a taxonomy to identify different subtypes of mental simulation (along
two dimensions, class [process, performance, outcome] and purpose [whether an inferior, standard, superior version of that
behavior is simulated]), it was found that superior simulations garnered more reliable beneficial effects than inferior simulations.
These findings have implications for integrating theories of howmental simulations change behavior, howmental simulations are
classified, and may help guide professionals seeking evidence-based and cost-effective methods of changing behavior.
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Imagining situations in one’s personal future is a common oc-
currence in humans (D’Argembeau et al., 2011), and recent
experiments show that mental simulation can change a range
of behaviors, including increasing fruit and vegetable consump-
tion (Knäuper et al., 2011), improving accuracy on a pointing
task (LaCourse et al., 2004), and increasing speed in a car-
racing task (Callow et al., 2013, Experiment 1). Although there

have been several attempts to review the literature on the effects
of mental simulation on behavior change (e.g., Corbin, 1972;
Driskell et al., 1994; Feltz & Landers, 1983; Richardson, 1967),
these have typically been limited to unsystematic narrative re-
views of the relatively narrow domains of “mental practice” or
“mental rehearsal” that rely on prior experience of the target
behavior, or have confounded mental simulation with other
behavior change techniques. The aims of the present systematic
review and meta-analysis are to address these limitations and
discover (a) the unique effects of mental simulation and wheth-
er these effects are robust enough to hold across a range of
domains and behavior types, and (b) under what circumstances
mental simulation works best. In this way, this research har-
nesses the meta-analytic approach to examine the cross-
disciplinary nature of a specific psychological phenomenon.

We believe there are four main reasons why this meta-
analysis may have particular significance for behavior change
research, and related fields (e.g., sports science, cognitive psy-
chology) within the current literature.

First, within the behavior change literature, mental simula-
tion has yet to be fully appreciated as a key behavior change
technique in its own right, despite continued empirical re-
search (e.g., Oh & Larose, 2015), and a recent systematic
review and meta-analysis focusing on health interventions
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(see Conroy & Hagger, 2018). It may have received little
attention because, despite some positive findings (e.g.,
Hagger et al., 2011), well-designed experiments in the field
have resulted in nonsignificant findings (e.g., Conroy et al.,
2015). This could lead to uncertainty among researchers as to
the reliability and generality of the effects, perhaps due to the
way in which mental simulation is typically conceptualized.
For instance, in a taxonomy of 93 behavior change techniques
developed by expert agreement, mental simulation was re-
duced to a subcomponent (15.2), labeled “mental performance
of successful performance” (see Supplemental Materials of
Michie et al., 2013). Although simulation of positive/optimal
performance is an important aspect of mental simulation, the
broader literature around mental simulation points to a pleth-
ora of subtypes that are used across diverse fields (i.e., inferior
and superior; see Table 1). One aim of the current meta-
analysis was to determine whether these subtypes substantial-
ly moderate the effects of mental simulation on behavior
across varied domains—a question not addressed previously,
and certainly not across a diverse range of studies.

The second reason for conducting this systematic review
and meta-analysis now is that several approaches and theories
of episodic future thinking—the cognitive ability to mentally
place oneself in a future context (see Atance & O’Neill,
2001)—have emerged in recent years. These theories draw
upon findings from cognitive and neuroscientific research
that are highly relevant to understanding the cognitive pro-
cesses underlying behavior change resulting from manipulat-
ing mental simulation (see Baumeister et al., 2016; Schacter
& Addis, 2007; Seligman et al., 2013). The current review
aims to provide initial steps toward integrating more recent
theoretical literature with meta-analyzed data, distinguishing
fine-grained subclassifications of mental simulation (see
below).

Third, the present meta-analysis improves on previous re-
views by adjusting terminology to account for more recent
literature adopting mental simulations. For example, when
Driskell et al. (1994) published their meta-analysis, most

mental simulation research emanated from the motor skill
and sports domains. Driskell and colleagues’ definition of
mental simulation was necessarily specific to these studies
(restricted to “mental practice”/“mental rehearsal”), which of-
ten had highly scripted motor tasks (e.g., pointing tasks),
physically practiced extensively before being mentally simu-
lated. Recently, the term “mental simulation” has been used to
simulate more varied behaviors relating to social behaviors
(e.g., cooperation; Meleady et al., 2013) and education (e.g.,
studying; Pham & Taylor, 1999). Here, we adopted a broader
conceptualization, defining mental simulation as mental rep-
resentations of a behavior that can be hypothetical or familiar
(practiced), and which can represent the future behavior in
different ways, but in the context of the person not physically
moving whilst simulating (Taylor et al., 1998). More specifi-
cally, we examined simulations of possible future scenarios
(cf. “episodic future thinking”; Atance & O’Neill, 2001)—
which could either be based directly upon a previous personal
physical experience (i.e., familiar) or mentally simulated
based on instructions from an experimenter, but with no direct
experience of the scenario. This definition enables a meta-
analysis such as this greater scope to capture the various ways
researchers have studied mental simulation.

Finally, our meta-analysis utilized a sophisticated hierar-
chical or multilevel approach, which is useful in meta-
analysis because, l ike with single studies (e .g. ,
D’Argembeau et al., 2011), there may be multiple experimen-
tal and comparison groups. In prior studies, this dependency
has gone untreated, simply assuming that all effect sizes were
independent in these meta-analyses (Driskell et al., 1994).
Alternatively, some have dealt with the increase in power
when assuming independence by dividing the control group
N by the number of conditions (Toli et al., 2016). However,
this can result in a misleading increase in power (as univariate
models count each study as independent). Thus, by including
multilevel data, we model the dependency (Field & Gillett,
2010), ensuring our analyses are appropriate to the structure
of the data.

Table 1 Possible subtypes of mental simulation

Classes of mental simulation

Process simulations Performance simulations Outcome simulations

Purpose Inferior Simulating a plan that is ineffective Simulating a performance that is below average Simulating an undesired or feared outcome

Standard Simulating a standard/average plan Simulating a standard/average performance Simulating a standard/average outcome

Superior Simulating a plan that is effective Simulating a performance that is above average Simulating a desired or wished-for outcome

Note. Although there could plausibly be studies involving each subtype, some have yet to be studied. Nevertheless, here, we list some examples of the
subtypes above from existing studies: superior process simulations (Pham & Taylor, 1999); inferior process simulations (no known example in existing
literature); inferior performance simulations (Alden et al., 2001); standard performance simulations (Andre & Means, 1986); superior performance
simulations (Callow et al., 2013); inferior outcome simulation (Marszał-Wiśniewska & Jarczewska-Gerc, 2016, Experiment 2); standard outcome
simulation (no known example in existing literature); superior outcome simulation (Johannessen et al., 2012).
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Types of mental simulation

In order to overcome limitations of previous mental simula-
tion reviews, we explored the various forms of mental simu-
lation in the literature. We summarize below the possible
types and provide a breakdown of these along two dimensions
(class and purpose; see Table 1). This is a conceptual structure
aimed to help understand mental simulation and reduce the
risk of confounding conceptually distinct forms of mental
simulation.

To further distinguish mental simulations, it is known that
they focus either on process, performance, or outcome.
Process simulations involve imagining the procedural steps
necessary to achieving one’s goal (e.g., “in order to run 5
miles every day, I will make sure I have the appropriate kit,
book out time in my schedule, and jog to work in the morn-
ings”; see Table 1 for a taxonomy of mental simulations). It is
hypothesized that process simulations enable people to make
concrete plans, developing a volitional action plan toward
their goal (Taylor & Pham, 1996). Performance simulations
are conducted when participants are asked to rehearse mental-
ly or mentally practice a behavior after observing or
performing that specific action (see Table 1). For example,
Pascual-Leone et al. (1995) asked participants to repeatedly
simulate a well-learnt five-finger piano sequence to improve
precision and accuracy. Thus, performance simulations in-
volve the participant mentally “running through” a specific
task in chronological order, which is then tested behaviorally
in a criterion task in identical way to the simulation. Outcome
simulations involve envisioning a desired outcome (e.g., “I
vividly imagine feeling relieved and satisfied having complet-
ed a marathon next year”), and are hypothesized to motivate
people towards achieving their goal (Hagger et al., 2011;
Pham & Taylor, 1999; Vasque & Buehler, 2007). Process,
performance and outcome simulations can be carried out in-
dividually or in any combination and one of the aims of the
present research is to tease apart in which combinations (if
any) process, performance and outcome simulations differen-
tially influence behavior. We shall call these different classes
of mental simulation (see Table 1).

In addition, mental simulations differ on another dimen-
sion; how the achievement-level of the simulated behavior is
framed—namely; (a) below-average (inferior) behavior, (b)
average/unspecified behavior, or (c) above-average
(superior) behavior. We called this the purpose of the mental
simulation. The above-average purpose of outcome simula-
tions (superior outcomes) can be manipulated through simu-
lations of successfully completed behaviors, often associated
with positive emotions and imbued with personal meaning
(for similar concepts and interventions, see approach goals:
Elliot & Harackiewicz, 1996; possible selves: Markus and
Nurius, 1986, b; fantasizing: Oettingen, 2012). In contrast,
inferior outcome simulations represent a poor outcome or

complete failure to achieve one’s goal (for a similar concept,
see feared selves: Markus and Nurius, 1986, b), but the latter
may garner a motivational “incentive” as one may want to
avoid this possible reality (see avoidance goals: Elliot &
Harackiewicz, 1996). Each variant may trigger behavior
change by highlighting discrepancies between current and
possible future selves (Markus and Nurius, 1986, b). In our
taxonomy, we define mental simulations based on what par-
ticipants are explicitly instructed to imagine.

Additionally, studies considering the purpose of perfor-
mance simulations have examined positive and negative sim-
ulations of the criterion task itself, with researchers expecting
better behavioral outcomes following superior versus inferior
performance simulations (Budney & Woolfolk, 1990;
Woolfolk et al., 1985).

To date, process simulations have been studied in an un-
differentiated way. That is, researchers define process simula-
tions as functional or beneficial steps, which make goal attain-
ment more likely (Pham & Taylor, 1999; Taylor & Pham,
1996). In Pham and Taylor’s (1999) words, “simulating the
steps to reach a goal provides information about the actions
needed to attain the goal” (p. 251). Although performance and
outcome simulations can be positive or negative, few studies
have examined steps that might be ineffective or counterpro-
ductive in goal behaviors. Nevertheless, we include superior,
standard, and inferior process simulations in our classification,
creating nine distinct potential subtypes of mental simulation
(see Table 1). The aim in developing this taxonomy was to
avoid redundancy and create orthogonal dimensions (i.e.,
class and purpose; see Hall et al., 1995, for a similar
approach). In other words, it is reasoned here that any partic-
ular class of simulation (e.g., performance) can represent the
future behavior in either a positive, neutral or negative way
(see Table 1). Although this taxonomy is based on previous
categorizations (e.g., positive versus negative outcomes;
Marszał-Wiśniewska & Jarczewska-Gerc, 2016), these fine-
grained distinctions are novel and have yet not been assessed
as moderators in a meta-analysis. Further, we did not label
inferior simulations as negative, and superior simulations as
positive to avoid possible terminological confusion with af-
fective simulations (see Gamble, Moreau, et al., 2019).

Previous reviews have tended to confound these different
subtypes of mental simulation (e.g., Driskell et al., 1994; Feltz
& Landers, 1983), thereby inappropriately aggregating vari-
ous distinct categories into one abstract phenomenon. A recent
meta-analysis has helped us to understand the effects of men-
tal simulation in the domain of health interventions (and spe-
cifically, how intervention characteristics, such as follow-up
simulations, moderate behavioral effects; Conroy & Hagger,
2018), but conceptually, simulations were only distinguished
as process or outcome simulations (thus not addressing the
effects of performance simulations). Finally, a meta-analysis
on specificity of future thinking and depression, subdivided
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mental simulations based on their affective qualities (Gamble,
Moreau, et al., 2019). We devised a taxonomy that was sim-
ilar, yet distinctive, and that incorporated two dimensions
(class and purpose; see Table 1), enabling us to incorporate
subtypes from different fields and examining methodological
characteristics involved in the effects of mental simulation.

Methodological characteristics

Measurement of task performance

Performance on any criterion task can be operationalized in
a variety of ways, whether it is the speed with which a task
is completed or how effective one is within a given time
frame. More specifically, following simulation, a person
may perform a task in a faster time, enact more behaviors
over a set time, or hit a target with precision. It is plausible
that the method of how one measures task performance
itself may alter the relation between mental simulation
and performance. Herein, these three ways of measurement
are labeled speed, frequency, and accuracy, respectively. It
is well known across psychology’s subdisciplines that
physical practice enhances later performance—conse-
quently, one will become faster on a specific task. One
may predict similar facilitatory effects after mental prac-
tice. Mental simulation may increase the frequency with
which a behavior is enacted by instantiating a “mental
set”; one might physically enact a simulated behavior ev-
ery time an appropriate opportunity arises, especially when
the physical situation shares commonalities with the simu-
lation (for a similar mechanism involving implementation
intentions, see Gollwitzer, 1999). Epitomized by the
phrase “practice makes perfect,” one may expect that sim-
ulation increases the ability to enact precise or accurate
behaviors. Critically, although previous meta-analytic re-
views (Corbin, 1972; Driskell et al., 1994; Feltz &
Landers, 1983) examined type of task (cognitive vs. phys-
ical, reactive vs. self-paced), they did not go further in
coding how behaviors are measured. Thus, our understand-
ing of how mental simulation may differentially affect be-
havior as a function of outcome type is still weak. The
current meta-analysis seeks to remedy this by examining
its possible moderating effect(s).

Dosage

One key moderator in medical trials is the frequency and du-
ration of an intervention or its dosage (Higgins & Green,
2011). Establishing the minimal requirements for an effective
mental simulation intervention is especially important here,
where the cost-effectiveness of an intervention is often para-
mount (Hagger et al., 2011). Two points concerning dosage

have emerged: Neither duration or frequency have a clear
positive relation with effectiveness of mental simulation.
First, long periods of mental simulation seem to reduce the
benefits gained, despite an overall positive effect compared
with controls (Driskell et al., 1994). The diminishing return
of administering mental simulation over a long duration has
been explained by a loss of interest (Driskell et al., 1994) and
reactive inhibition (Corbin, 1972; see Feltz & Landers, 1983,
for similar results and conclusions). Based on these findings,
Driskell and colleagues recommended that mental simulation-
based interventions be restricted to 20 minutes in duration. In
a more recent meta-analysis, Conroy and Hagger (2018)
found that, in health interventions, longer durations predicted
more positive behavioral outcomes. Plausibly, the motor skill
studies included by Driskell et al. (1994) contained studies
with tens, hundreds, or thousands of simulation trials, leading
to diminishing return effects. In contrast, health studies, the
focus of Conroy and Hagger (2018), have far fewer simulation
trials, on average (e.g., Hagger et al., 2011). Due to differences
between domains sampled in previous meta-analyses, it was
necessary to assess dosage across multiple domains here.

Concerning frequency, Feltz and Landers (1983) and
Driskell et al. (1994) found no moderating effect of mental
simulation upon the direction or size of the behavioral effect.
However, Corbin (1972) theorized that there may be an “op-
timal” amount of mental simulation trials that lead to benefits
on later behavior, after which, the beneficial effects decrease.
This is reasoned to occur on the same grounds as duration,
such as loss of interest in the simulation (after excessive num-
bers of simulation trials). However, theories of habit formation
(for a review, see Carden & Wood, 2018) would suggest that
repeated mental simulation might strengthen associations and
lead to greater behavior change. We conducted comparable
analyses of mental simulation duration and frequency in the
present, broader meta-analysis. Such analyses will be neces-
sary to infer general principles of mental simulation and pro-
vide guidance for future intervention design.

Incentive

Payment, either by cash, course credit, or voucher is a com-
mon occurrence in psychological research, yet material re-
ward is a behavior change technique in its own right (e.g.,
Michie et al., 2013) that influences performance on a variety
of tasks/behaviors (e.g., Brase, 2009; Giuffrida and
Torgerson, 1997). It would be valuable to see whether, for
example, persistence with mental simulation tasks is influ-
enced by the levels of material incentive offered for participa-
tion. This is important because payment to engagewithmental
simulation tasks would limit the widespread adoption of men-
tal simulation in the wider world (e.g., in public health
interventions).
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Delay

Delay (also termed retention interval or follow-up duration) is
defined here as the time between the last mental simulation
and the assessment of behavior. In their review, Driskell et al.
(1994) examined 62 experiments and found that the mental
simulation effect decreased linearly as the delay between the
last mental simulation and outcome measure increased.
Specifically, at 14 days, the mental simulation effect had re-
duced by half, and by 21 days it had fallen below the d < .10
typically denoting a small effect size (Cohen, 1988). Conroy
and Hagger’s (2018) analysis of 24 control-simulation com-
parisons revealed no moderating effect of delay. It should be
acknowledged that Driskell and colleagues did not include
studies in domains such as health and social psychology,
and Conroy and Hagger (2018) only assessed delay within
health/social psychology, leaving a gap in meta-analytic data
assessing across domains. We will attempt to reconcile these
different findings to the broader grouping of mental simula-
tion studies included here, while also including domain in the
analysis (see below).

Domain and behavioral task

One of the aims of the present review was to assess whether
the mental simulation effect is transferable across, or is limited
to, particular domains of study. Some authors of meta-
analyses suggest that certain subtypes of mental simulation
can enhance behavior (motor planning: Driskell et al., 1994;
health psychology: Conroy & Hagger, 2018; sports: Feltz &
Landers, 1983), whereas other studies in other domains have
yet to be assessed within a meta-analysis (e.g., the effect of
mental simulation within occupational or social domains). In
the present review, we categorized studies in terms of their
domain and examined whether each task had a largely cogni-
tive, physical, or mixed (cognitive and physical) loading (i.e.,
Driskell et al., 1994; Feltz & Landers, 1983). Previous reviews
indicated an advantage of mental simulation in more
cognitive-based tasks as compared with physical-based tasks
(see Driskell et al., 1994; Feltz & Landers, 1983).

Experimental control and design

Finally, it is now recognized that it is difficult to obvi-
ate positively biasing those randomly assigned to exper-
imental groups in psychological interventions because,
in contrast to clinical trials involving medicinal inter-
ventions, participants are required to engage in psycho-
logical techniques (Boot et al., 2013). This issue may
be prevalent in mental simulation research, as partici-
pants can reasonably “guess” they are in the interven-
tion group. To reduce such effects, studies may include
active control groups which involve a task, such as

watching a video of an upcoming task. The present
review will assess the extent of this issue by measuring
studies with passive or active control groups. This will
also address the issue of spontaneous engagement in
mental simulation in control groups. Without active con-
trols, or checks on mental activities of control partici-
pants, participants could be engaged in mental simula-
tion, possibly to an equivalent degree to those assigned
to intervention groups, thus reducing the potential ben-
efit garnered by intentional mental simulation.

Overall aims

Due to a confounded and fragmented literature, it was
clear that a reappraisal of the mental simulation literature
was warranted. This allowed a range of key moderators to
be evaluated, such as outcome type, incentive, delay, do-
main, and task type (some of which have never been
meta-analytically examined). Furthermore, as taxonomies
are important in organizing knowledge, we developed a
taxonomy of mental simulation subtypes. For the first
time, this allows subtypes of mental simulation to be com-
pared across studies in a new conceptual structure, which
(1) better reflects the mental simulation interventions
used, and (2) aids a clearer understanding of the possible
mechanisms involved in the simulation process and its
impact on behavior. It was envisioned that the present
review could inform future research in applied (e.g., life
coaching, health interventions) and scientific endeavors
(e.g., understanding processes through which behaviors
are modified): Less effective simulations can be
deemphasized and optimal simulations more thoroughly
investigated. This would have a two-pronged effect:
Mental simulations could become regarded as a collection
of behavior change techniques in applied psychology
(Michie et al., 2013), and theoretical work into how and
why mental simulation affects behavior would be ener-
gized (see Baumeister et al., 2016).

Based on previous work, we predicted that mental simula-
tions (regardless of subtype) would exert larger behavioral
effects where there is a longer intervention duration, partici-
pants were incentivized, and with shorter delay (Driskell et al.,
1994; Feltz & Landers, 1983; Michie et al., 2013). We further
explored whether subtype of mental simulation from our tax-
onomy would moderate effect sizes. Publication bias, and
study quality (including manipulations checks) were also ex-
amined to assess any systematic biases in the existing peer-
reviewed literature. The aims of the present systematic review
and meta-analysis are, for the first time, to (a) synthesize the
effects of mental simulation on behavior change across a
range of domains, and (b) discover under what conditions
mental simulation works best.
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Method

Search strategy and process

In terms of selection, a systematic search of PubMed (includ-
ing MEDLINE), PsychINFO, and Web of Science (including
Arts & Humanities index; Science Citation Index Expanded;
Social Science Citation Index) academic databases was con-
ducted of all relevant English-language peer-reviewed articles
published before May, 2020. Our definition of mental simu-
lation incorporated its various forms, while maintaining a bal-
ance between sensitivity and specificity (see Cochrane
Collaboration; Higgins & Green, 2011). The search terms
consisted of descriptors of the intervention and outcome:
(mental* AND rehears* OR simul* OR imagin* OR practi*
OR prepar* OR possible sel* OR mental contrasting1) AND
(behav* OR perform*) filtering to include peer-reviewed arti-
cles of human participants. To find randomized controlled
trials, we included the search terms random* or experim*. In
total, 4,161 articles were identified at the selection phase.

In the eligibility phase, abstracts were screened based on
the following four criteria: Included experiments had to (1)
have a between-group experimental design to which partici-
pants had been randomly allocated. Hence, only the most
rigorous experiments (randomized controlled trials) were in-
cluded, which provided a more stringent criteria than previous
reviews (Conroy and Hagger, 2018; Feltz and Landers, 1983);
(2) a control condition (passive or active) that only differed
from the experimental condition through absence of mental
simulation (e.g., mental simulation only versus passive control
group; mental simulation plus feedback versus feedback only
control); (3) an outcome measure that incorporated measur-
able behavior or performance (self-reported or objective); and
(4) include a mental simulation intervention that was related to
the main outcome measure. Studies were excluded from the
review if they involved counterfactuals (past simulations) or
memories, computer simulations, children (<18 yrs, because
mental simulation ability changes through childhood; Skoura
et al., 2009), older adults (>64 yrs, because age can affect
mental simulation capacity; Zapparoli et al., 2013), or clinical
groups (as the present review is concerned with “normal”

cognitive-behavioral processes, and clinical disorders affect
mental imagery (see Jeannerod, 1994, for a review). As we
were interested in randomized controlled trials and because
conference proceedings can introduce repeated data from var-
ious sources (andmore dependency in the data), we decided to
only include studies from peer-reviewed articles and test for
publication bias thereafter. Specifying behavior as the main
outcome measure as an inclusion criterion meant that experi-
ments assessing outcomes only (e.g., body weight) were ex-
cluded unless they also measured the component behaviors
(e.g., physical activity, avoiding snacks). In summary, our
search strategy aimed to capture experimental studies from a
variety of domains. In the abstract screening phase, the first
author included or excluded experiments for the next stage
using title and abstracts only. A subset of 10% of these were
also categorized by the second author to check for reliability.
This resulted in moderate to good agreement, as determined
by Cohen’s kappa (85% agreement, Cohen’s kappa α = .58).
All inconsistencies were resolved through discussion between
the first and second author and then if a conflict remained, the
final decision was made by a third coauthor.

Thereafter, the full text of each experiment was exam-
ined by one coauthor to establish all relevant experiments
that fit the review’s criteria (some included experiments
which were derived from the same article, see Fig. 2). At
this stage, the most frequent reason for exclusion was
either the mental simulation manipulation not being tested
uniquely (e.g., the mental simulation condition involved
other additional components such as implementation
intentions; e.g., Stadler et al., 2010) or an absence of a
behavioral measure (e.g., body weight was measured;
Lukaszewski & Jarczewska-Gerc, 2012, Experiments 5
& 6). Although fulfilling the criteria of this review, one
experiment did not have sufficient quantitative data for
inclusion in the meta-analysis (Bachman, 1990; an
attempt was made to contact the author for further
information). Finally, all coauthors agreed on the 94 stud-
ies (123 effect sizes) that were included in the following
quantitative analyses, and the methods of this meta-
analysis conformed to the PRISMA guidelines (see
Supplementary Materials). We also conducted manual
searches of the reference lists of all included articles re-
trieved from these searches to identify additional articles.
This led to four additional articles being identified (a
summary of search results is given in Fig. 1).

Data extraction

In this phase, one coauthor (all trained on the coding
extraction and mental simulation taxonomy) extracted da-
ta from included experiments included in the full text
phase. To ensure high standards of data reporting and
thoroughness, data extraction was based on guidelines

1 One type of intervention relevant here is that of mental contrasting (see
Oettingen, 2012, for a comprehensive review). This future-thinking interven-
tion involves individuals generating a positive fantasy and then contrasting
them with the present barriers to its realization. In doing so, effective plans are
devised (so long as certain preconditions are met, such as positive expectations
of success; see Oettingen, 2012). The present meta-analysis had an interdisci-
plinary focus, and thus we were not able to examine possible mediators and
moderators (e.g., expectations, attitudes) from specific domains (health and
social psychology). Nevertheless, it was expected that several studies utilizing
mental contrasting were necessarily included in this review, and could be
categorized within the aforementioned taxonomy, if they fulfilled the inclusion
criteria (e.g., behavior as the outcome variable). It will be valuable to assess
how this taxonomy maps onto other mental simulation interventions used
within the current literature.
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and a proforma by the Cochrane Collaboration (see
Higgins & Green, 2011), covering N size, sample charac-
teristics, experimental conditions, outcome variables,
quality (i.e., manipulation check of mental simulation
and control), delivery method, and control condition.
Some supplementary categories were added based on the
moderator variables described above (e.g., incentive, de-
lay between last mental simulation, behavior).

Coding the subtype of mental simulation

As per the taxonomy specified in the Introduction, in
which we identified nine distinct classes of mental sim-
ulation, varying along two dimensions; class (process/
performance/outcome) and purpose (i.e., inferior/stan-
dard/superior), each experiment was categorized into
one of these subtypes. The first author coded all studies,
and a subset (at least 10%) were agreed with a second
coder by consensus. There were no disagreements in the
reviewed subset.

Coding of the outcome variable

We also coded the outcome variable based on the assumption
that mental simulation could affect behavior three main ways,
speed (e.g., reaction time on a pointing task), accuracy (an all-
or-nothing variable involving someone meeting a target or
not; e.g., passing an exam), or frequency (the amount of times
a behavior is recorded; e.g., amount of times a target is hit,
amount of fruit consumed). For a full list of all included stud-
ies and their study characteristics, see Supplementary
Materials. To ensure consistency across coauthors, a standard-
ized form was used for all data extraction. Any disagreements
between coauthors were resolved through discussion with the
senior coauthor (C.A.) where necessary.

Study and methodological characteristics

Coding of domains

We categorized the studies into the following domains: health,
social, occupational, sports, pain, andmotor learning. For the
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purposes of the present review, studies examining the mental
simulation effect in educational contexts (e.g., Pham &
Taylor, 1999) were classified as occupational due to the oc-
cupational requirement of students to learn.

Coding type of task

As in Driskell et al. (1994), we assessed the quality of the task
employed in each study to assess whether mental simulation
was more effective for tasks with either mainly cognitive or
mainly physical attributes, or both. Cognitive tasks were de-
fined as those that required mental operations, perceptual in-
put, or decisions. Physical tasks were those that contained
strength, endurance, or coordination. Mixed tasks were those
that required both cognitive and physical components
(definitions in line with Driskell et al., 1994).

Coding of dosage

Several metrics were used to determine dosage. As dura-
tion of mental simulation was recorded in minutes—
studies in which the duration of mental simulation was
estimated as “short,” but not further specified were
assigned a value of 1 minute, except studies in which the
duration of mental simulation was calculable. All mental
contrasting interventions were given 5-minute duration by
default (based on studies in which duration was stipulated;
e.g., Marszał-Wiśniewska & Jarczewska-Gerc, 2016,
Experiment 2), unless otherwise stated. Duration was cod-
ed into three categories: Short = 1 (1–5 mins), Medium = 2
(6–20 mins), Long = 3 (21+ mins). We also assessed the
effect of frequency of mental simulation. Finally, we also
multiplied length of (a single) mental simulation (e.g., 2
min) by the total frequency of mental simulations in the
intervention (e.g., 5, thus total duration = 2 × 5 = 10).

Methodological quality

First, we coded whether mental simulation was assessed in the
control condition because without this measure, it is difficult
to know whether, or the extent to which, participants sponta-
neously adopted mental simulation, minimizing the effect of
any experimental manipulation (for example, after practicing
a task, physically, one might spontaneously engage in mental
simulation). Second, some studies ensured control participants
were prevented from using mental strategies (for example,
they were asked to carry out mental calculations or read a
section of text). Thus, the subtype of control condition was
also coded into two categories: either (a) a wait/passive con-
trol or (b) an active control that required considerable attention
(e.g., verbal tasks, mental arithmetic, writing tasks). Third,
studies were then coded for whether mental simulation was
assessed in the experimental condition, to assess whether

compliance was verifiable (e.g., reporting the contents of the
simulation: Meslot et al., 2016; measuring the subjective viv-
idness of the imagery: Kornspan et al., 2004).

Potential bias was assessed based on criteria from the
Cochrane Collaboration (Higgins & Green, 2011) and
Chambers (1990). Whether the methods incorporated (a) par-
ticipant blinding, (b) experimenter blinding, (c) true random-
ization, (d) allocation concealment, and (e) outcome conceal-
ment was assessed as yes/no. In line with recommendations by
Cochrane Collaboration (Higgins & Green, 2011), if no infor-
mation was available on these aspects of bias, a separate code
(“not described”’) was assigned. Hence, in this analysis, ks
differed considerably depending on reporting and the codes
assigned.

The first author coded all studies, and a subset (at least
10%) were agreed with a second coder by consensus. There
were no disagreements in the reviewed subset.

Meta-analytic strategy

Our meta-analysis required that we obtain a standardized
mean difference (Hedges’s g) effect size (ES) for each control
and mental simulation condition comparison. A positive ES
indicated the degree of the mental simulation effect in favor of
the experimental condition (a g of zero indicated no benefit,
and a negative g represented a detrimental effect of mental
simulation compared with a control group). As is typical in
recent meta-analyses (e.g., Harkin et al., 2016), we corrected
for small sample sizes by converting all effect sizes to
Hedges’s g (Hedges & Olkin, 1985), which was used in all
subsequent analyses.

The following descriptions apply to comparisons that had a
continuous outcome variable. Where preintervention
(baseline) and postintervention measures were reported, these
were used to calculate pre-post change scores (by subtracting
the pre from the post measure); otherwise posttest scores alone
were used. To ensure conservative estimates, where multiple
timepoints were recorded, only the farthest follow-up test was
used to calculate the effect size.

Where means and standard deviation were not reported, but
sample sizes were, we calculated Hedges’s g using the rele-
vant p or t value. Where no comparison statistics were report-
ed (such as an absence of means and standard deviations),
study authors were contacted via email (k = 13, 11% of total
studies), with three responding with data, four responding but
with unavailable data, and six not responding. With no com-
parison data, the p value was assumed to be .05 when reported
as “significantly different” and Hedges’s g = 0.00 when not
(see Harkin et al., 2016, for a similar strategy). Where depen-
dent variables were similar (e.g., binge and overall alcohol
consumption; Hagger et al., 2012), an average was calculated.
In addition, some studies measured qualitatively different out-
come measures (e.g., speed and frequency), which may react
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differently to mental simulation. Where this was the case, up
to three dependent variables (and effect sizes) were calculated
per study to assess whether mental simulation is more effec-
tive for specific outcome measures.2 Where appropriate (e.g.,
duration not on target, for frequency of errors), dependent
variables were recalculated (or reversed) so that positive effect
sizes always represented positive effects of mental simulation
upon behavior versus a control condition (e.g., duration on
target, more efficient and effective behavior). Dichotomous
data were converted into Hedges’s g by entering proportions
of the control and treatment groups successful in the task using
the online Practical Meta-Analysis Effect Size Calculator
(h t tps : / / campbe l l co l l abo ra t ion .o rg /e sca l c /h tml /
EffectSizeCalculator-Home.php [see “binary proportions”])
accompanying Lipsey and Wilson (2001). Heterogeneity of
effect sizes was determined by the Q statistic and a significant
heterogeneity indicates a need to uncover potential moderat-
ing effects.

We employed a multilevel meta-analysis to account for the
dependency between effect sizes from one or more experi-
ments from the same article (of the 94 studies included, 20,
or 21%, contributed two or more effect sizes; all other studies
contributed one effect size each). Using a univariate model
would have forced us to drop observations and aggregate to
one effect size per sample (or falsely treat each comparison as
independent), whereas the multilevel approach allows us ex-
plicitly to incorporate this dependency into the model struc-
ture. In other words, multiple experiments are often embedded
in a single study and therefore modeled as a multilevel struc-
ture using clustering through random coefficients. As appro-
priate in the social sciences due to the natural heterogeneity of
findings, we apply a mixed-effects model that incorporates
random coefficients (Overton, 1998; Viechtbauer, 2010).
Random effects models are suited to meta-analyses that aim
to generalize beyond the included studies in contrast to fixed
effect models (Field & Gillett, 2010)—an aim held at project
start. We also use inverse-variance weighting such that studies
with more precision (usually those with larger samples) re-
ceive relatively more weight.

To explore the influence of moderators on the main rela-
tionship, we break the meta-analysis down into subgroups,
including for different mental simulation subtypes and for
other variables such as; outcome type, domain and methodo-
logical characteristics of the studies. This allows us to provide
specific effect sizes for each of the subgroups and examine
whether there are (significant) differences between these sub-
groups using a multilevel meta-regression approach. We use
the metafor package for R to compute our models.

Although the protocol of this meta-analysis was not
preregistered, the analysis script and data files are accessible
via the open science framework (10.17605/OSF.IO/H2F7E)
in line with the open science agenda (Munafò et al., 2017).

Publication bias was assessed by the statistical and visual
inspection of a funnel plot (see Fig. 2). In this plot, the effect
sizes (x-axis) from the studies are plotted against their standard
errors (y-axis), and we find no evidence of asymmetry in this
plot (asymmetry is assumed to indicate publication bias,
where less precise studies—with smaller sample sizes and
larger standard error—produce more positive effects).
Additionally, we conducted an “Egger-style” analysis (Egger
et al., 1997) by including the total sample size of the effects as
a predictor in a meta-regression model. This approach allows
us to maintain the integrity of the multilevel random effects
model and still assess the influence of publication bias on our
results directly. The results show that there is no relationship
between the observed effects and the precision of the studies
as estimated by the total sample size (N of experimental group
and control group combined; β = −.001, p = .2284), and
therefore there is no evidence that publication bias poses a
major threat to the validity of our results.

Note that other, more traditional publication bias analyses
are not applicable to the multilevel multivariate meta-
regression model employed here. In particular, standard fail-
safe numbers such as Rosenthal’s (1979) do not account for
heterogeneity, and hence reflect a fixed-effect model that is
deemed inadequate across most social sciences.

Results

Characteristics of included studies

The included studies yielded 123 independent effect sizes asso-
ciated with mental simulation–control comparisons among
5,685 participants (control condition ns range 5 to 269;
experimental condition ns range 5 to 181; see Supplementary
Materials). The average age of participants was 24.97 (SD =
6.34), with the vast majority of studies using student samples

2 However, it is notable that the majority of control/mental simulation com-
parisons had only one type of outcome measure (96%), with five having two
outcome measures.
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Fig. 2 Main funnel plot for all included control-mental simulation com-
parisons (k = 123)
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(78%). The grand mean female:male participants ratio was
45:55 demonstrating a roughly even distribution across studies.
Most behaviors were measured in terms of frequency of occur-
rence (k = 84); with the next commonmeasuring speed (k = 35),
then accuracy (k = 4).

Overall effect of mental simulation on behavior

Here, and in all subsequent analyses, we applied a multilevel
random effects meta-analysis in order to account for the de-
pendency originated from several experiments conducted
within one study (observable in Table 1). The weighted aver-
age effect of mental simulation upon subsequent behavior was
Hedges’ g = 0.49 [0.37, 0.62]; k = 123 (94 studies), demon-
strating an overall medium-sized positive effect of the inter-
vention which was statistically significant, z(122) = 7.64, p <
.0001. Overall, there was significant variability in effect sizes
across the 123 comparisons (Q = 375.38, p < .001). Indeed,
although the majority of studies found small-medium positive
effects (as defined by Cohen, 1988), neutral (g = 0.00) and
negative effects were also evident (e.g., g = −2.73; Rozand
et al., 2016).3 A forest plot of all effect sizes (and the overall
effect size) is represented in Fig. 3.

Mental simulation subtypes

In coding the subtypes of mental simulation, some subtypes
were more common than others. At least one study was found
for each of the following subtypes: process (standard), per-
formance (inferior standard, superior) and outcome (inferior,
superior) simulations. Additionally, it was found that some
studies used composite subtypes, which were inferior out-
come plus process simulations and superior outcome plus
process simulations. No subtype overlapped two categories,
and no studies were found in the literature utilizing inferior
process, superior process, or standard outcome simulations.
The full list of subtypes identified (with relevant illustrative
examples) is presented in Table 2.

We report the results for the weighted effect sizes of each
mental simulation subtype separately in Table 3. When con-
sidering individual subtypes, it was found that the following
mental simulations led to positive effects significantly differ-
ent than controls: Process, standard performance, superior
performance, superior outcome and superior outcome com-
bined with process simulations. Mental simulations that in-
cluded a negative purpose (inferior performance, inferior out-
come, inferior outcome combined with process simulations)
failed to demonstrate a reliable positive effect. While some
subtypes appear to have different effects than others, an om-
nibus test of moderators shows that the effects are not statis-
tically significantly different between subtypes of mental sim-
ulation, QM(df = 7) = 10.47, p = .1636. In other words, mental
simulation appears to have a similarly large and positive effect
on task performance across various subtypes. However, note
that the number of effects included in several of these sub-
groups was very small (k), and reliable inferences cannot be
drawn from those numbers.

Exploratory analysis of mental simulation purpose

As an exploratory analysis, we conducted an aggregated anal-
ysis of purpose (inferior, standard and superior), finding that
superior and standard simulations were more effective than
inferior simulations.

Some subtypes in the original analysis had only very few
observations (inferior performance, k = 4; inferior outcome, k =
3; combined process and inferior outcome, k = 2). Here, we
explain an exploratory analysis in which, due to lack of preci-
sion when examining the effect of mental simulation subtype,
subtypes were aggregated into three instead of eight mental
simulation subtypes. Mental simulation subtypes were col-
lapsed into three main types: inferior, standard, and superior
(referring to mental simulations with an inferior purpose such
as imagining poor performance on a task; standard purpose,
where the performance within the mental simulation was not
specified; and superior purpose, in which participants are asked
to imagine a good, optimal or best performance within their
simulation).

3 The hypothesis that the degree of mental imagery would mediate the mental
simulation effect has been proposed previously (Lang, 1995; Richardson,
1967). As an exploratory measure, we aimed to identify whether mental im-
agery capacity (as an individual difference measure) mediated the relation
between mental simulation intervention and the behavioral outcome.
However, after inspecting each study for quantitative data, only six compari-
sons reported the relation between mental imagery and behavior. It was there-
fore unfeasible to carry out meta-analyses of this data (similar to Conroy &
Hagger, 2018), so we briefly summarize their results thus: Of the eight that
assessed the relation between mental imagery and behavior in simulation con-
ditions, only one reported a significant correlation—indicating a positive as-
sociation between level of mental imagery and behavior (Spearman’s rho =
.62, p < .01; Arora et al., 2011). All other studies reported no significant
relation between mental imagery and behavior (all ps > .77; Callow et al.,
2013, Exp. 1 & Exp. 3; Epstein, 1980, Exp. 1; Hayter et al., 2013; Ruffino
et al., 2017; Woolfolk et al., 1985).

�Fig. 3 Forest Plot showing all 123 effect sizes included in the meta-
analysis. Note for Figure 3: The vertical dotted line represents zero effect
(mental simulation versus control). Each effect size (Hedges' g) is
represented with a square, and all error bars represent 95% confidence
intervals. The overall effect size presented as a diamond, with the width
of the diamond referring to the 95%CI of that overall effect and the error bar
to the 95% prediction interval. All means and confidence interval values are
also presented on the right-hand side of each effect.Multiple types ofmental
simulation and dependent variables are shown independently, even if they
are from within the same study. Weights are presented on the left-hand side
of each effect, which reflect whether an effect is independent or is nested
with other effects within the same experiment. Study authors and years are
presented on the left-hand side and the type of mental simulation is repre-
sented by letters A-H (see Table 2 for descriptions of each simulation)
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Similar to the main analysis, a multilevel meta-regression
using a random effects model was applied to investigate
whether the effect of mental simulation on behavior is mod-
erated by the “purpose” of the mental simulation itself (infe-
rior, standard, superior).

The results suggest that the purpose of the simulation in-
fluences the effect is has on behavior. In particular, the meta-
regression shows that the purpose aspect of the simulation
explains part of the heterogeneity in effects (QM = 6.13, p =
.047). The effect of inferior mental simulation is indiscrimi-
nate from zero (g = 0.01, 95% CI [−0.41, 0.44, p = .94).
However, the effects of both standard and superior mental
simulations are significantly larger (and positive): standard
(β = 0.46, 95% CI [0.02, 0.91], p = .04) and superior (β =
0.53, 95% CI [0.11, 0.94], p = .014).

Outcome measures: Speed, frequency, and accuracy

As outlined in the Method, we aimed to assess whether
the type of outcome measure moderated the size of the
effects of mental simulation on behavior. It was found
that the type of outcome measurement did not significant-
ly affect the mental simulation effect size. Regardless of
whether the outcome measure was based on speed, fre-
quency, or accuracy of behavior, a positive effect signif-
icantly above zero was found. Thus, mental simulation
appears to have positive behavioral effects, regardless of
the outcome type.

Domain

The experiments were mostly derived from the motor skills
domain (k = 49), and fewer were from health (k = 26), sports (k
= 24), and occupational (k = 12) psychology. Far fewer studies
investigated the effect of mental simulation on withstanding
pain (k = 2) or social behaviors (k = 7). Domain was found not
to be a significant moderator of the mental simulation effect in
the omnibus test. Effects sizes significantly above zero were
demonstrated in almost every domain except for pain, which
did not significantly differ from zero (see Table 4). However,
the lack of a statistical significance in this type of study should
be taken with caution due to the limited amount of studies
included here (k = 2), and the effect estimate is similarly
positive.

Type of task

Experiments were divided into those that contained mainly
cognitive or physical attributes, or a combination of both, to
assess the type of the task that participants engaged with.
However, type of task was not a significant moderator of the
mental simulation effect (see Table 4).Ta
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Dosage: Duration and frequency of mental simulation

To examine the link between dosage of mental simula-
tion and the effect on behavior, we conducted a meta-
regression on two components of dosage independently;
duration and frequency of mental simulation training
(for a similar approach, see Driskell et al., 1994; Feltz
and Landers, 1983). We assessed whether each factor
significantly predicted effect sizes.

The mean duration of mental simulation was 23.59 mins
(SD = 73.02; range: 1–350 mins; median = 3), with the most
common being 1 minute (k = 36) and the next most common
being 3 minutes (k = 28), then 5 minutes (k = 17). Mental
simulation durations were converted into a categorical vari-
able, coded as either short (1–5 mins), medium (6–20 mins),
or long (21 mins+).4 It was found that effect size was not
moderated by the duration of a mental simulation.

To determine frequency of mental simulation, we recorded
the amount of mental simulations. The average amount of
simulations was 246.08 (SD= 1,680.28, range: 1–18,000, me-
dian = 3) indicating substantial variability. Meta-regression
with total amount of mental simulations established that fre-
quency of mental simulation did not moderate effect size. A
final analysis with dosage using total time (Duration ×
Frequency of Mental Simulation) similarly indicated no mod-
erating effect.

This illustrates that, typically, mental simulation interven-
tions are of a short duration and that simply increasing frequen-
cy of simulation does not systematically alter observed effects.

Delay

It is possible that delay (or time/retention interval) be-
tween the last mental simulation and the final measure
of behavior accounts for variability in the effect sizes.
Although the behavioral test was most frequently ad-
ministered on the same day as the intervention (k =
66, 59% of all 112 comparisons that reported delay),
some studies were designed with long delays, with a
maximum of 210 days delay (mean delay across studies
= 12.61 days, SD = 33.96). Nevertheless, it was found
that delay did not predict the size of the mental simu-
lation effect (see Table 4).

Incentive

Of all comparisons, only k = 49 (40%) provided enough
information to categorize the study as either offering an
extrinsic incentive (e.g., course credit, gifts, cash) or
offering none. When no incentive was provided, the
effect size was not significantly different than zero (g
= 0.06, k = 8) whereas when participants were offered a
form of incentive the effect size was 0.37 (k = 41) and
significantly different than zero. Nonetheless, the differ-
ence between this nonsignificant (no incentive) and sig-
nificant effect is not itself statistically significant (see
Table 4).

Moderation analyses: Overall summary

To briefly summarize the main results of the moderation anal-
yses (displayed in Tables 3 and 4), none of the omnibus tests
for the variables tested showed statistically significant effects
at the .05 level. Thus, our conclusions are primarily based on
identifying and comparing different levels of each variable,

4 Duration was coded as opposed to using the continuous data of minutes of
each simulation, because there were some extremely long durations (e.g.,
Pascual-Leone et al., 1995), that meant the data would be dramatically skewed.
For the sake of completeness, when minutes of each mental simulation was
used, the same result was found: That duration of mental simulation did not
significantly moderate effect size.

Table 3 Effect size and heterogeneity as a function of mental simulation subtype

Moderator k (s) g 95% CI QE QM p

Mental simulation subtype 123 (94) – – 342.25* 11.53 .12

Process (standard) 5 (5) .17 [−.09, .43] 1.64 .20

Performance (inferior) 4 (4) −.40 [−1.03, 0.22] 4.84 .20

Performance (standard) 52 (45) .48 [.31, .65] 147.41* <.0001

Performance (superior) 34 (33) .67 [.34, 1.00] 161.94* <.0001

Outcome (inferior) 3 (3) .16 [−.51 .83] 2.41 .63

Outcome (superior) 15 (15) .23 [.13, .34] 16.18* <.0001

Combined (inferior outcome +process) 2 (2) .00 [−.79, .79] 0.00 1.00

Combined (superior outcome + process) 8 (8) .61 [.40, .81] 7.83 <.0001

Note. k = number of effect size estimates; s = number of studies; g =Hedges’s standardizedmean difference; 95%CI refers to the lower and upper bounds
of the 95% confidence interval around d; QE refers to the residual heterogeneity (Cochran’s Q), with * indicating that the probability of homogeneity of
the data is less likely than p = .05; QM refers to the omnibus test of parameters for all moderators; p refers to the approximate p value of either the z value
of the individual effect (d) or to the omnibus test of moderators (QM)
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based on their Hedges’s g and whether each ES was signifi-
cantly different than zero or not. The exception was our ex-
ploratory moderation analyses which showed that purpose
(inferior, standard, superior) had a significant moderating ef-
fect on effects sizes, and specifically, that standard and supe-
rior simulations have more beneficial effects on behavior than
inferior simulations.

Methodological characteristics

Risk of bias was assessed based on five indicators (see
Method). Across each of these indicators, the majority of stud-
ies (67%–86%) did not provide enough information to classify
and meta-analyze. The resulting data were tested as modera-
tors in Table 4.

Table 4 Moderator analyses

Moderator k (s) g 95% CI QE QM p

Outcome 123 (94) – – 366.65* .47 .7890
Speed 35 (31) .373 [.137, .606] 118.77* – .0017
Frequency 84 (67) .537 [.391, .683] 243.96* – <.0001
Accuracy 4 (4) .329 [.030, .628] 3.93 – .0310

Domain 123 (94) – – 374.00* .31 .5774
Health 26 (16) .371 [.241, .502] 41.67* – <.0001
Motor learning 52 (44) .588 [.319, .856] 194.08* – <.0001
Occupational 12 (9) .701 [.113, 1.289] 62.56* – .0195
Pain 2 (1) .537 [−.551, 1.624] 2.15 – .3334
Social 7 (7) .434 [.197, .672] 10.36 – .0003
Sports 24 (17) .338 [.113, .562] 53.87* – .0032

Task 123 (94) – – 366.59* 1.04 .5934
Motor 52 (42) .425 [.279, .571] 108.25* – <.0001
Cognitive 20 (16) .313 [.161, .465] 21.99 – <.0001
Mixed 51 (45) .569 [.320, .819] 236.35* – <.0001

Duration (coded) 115 (88) – – 362.84* 0.05 .8204
Short 88 (71) .480 [.354, .607] 252.03* – <.0001
Medium 16 (11) .794 [.049, 1.539] 105.20* – .0368
Long 11 (6) .481 [.315, .647] 5.25 – <.0001

Frequency 123 (94) – – 374.75* 1.17 .2800
Total Time (Duration × Frequency) 123 (94) 374.93* 1.01 .3147
Delay 112 (87) – – 308.37* 0.08 .7679
Incentive 49 (33) – – 63.23 2.48 .1151
with incentive 41 (30) .368 [.273, .464] 62.13* – <.0001
no incentive 8 (3) .061 [−.276, .397] 1.10 – .7247

Post-only or pre–post change scores 122 (93) – – 372.35* 0.34 .5582
Change scores 43 (30) .455 [.163, .747] 173.34* – .0023
Post-only scores 79 (64) .499 [.368, .630] 199.01* – <.0001

Participant blinded 29 (26) – – 130.18* 0.53 .4673
Blinded 26 (23) .599 [.331, .868] 124.93* – <0.0001
Nonblinded 3 (3) .833 [.317, 1.350] 5.25 – .0016

Experimenter Blinded 23 (19) – – 111.71* 0.72 .3948
Blinded 14 (10) .382 [.118, .647] 36.54* – .0047
Nonblinded 9 (9) .718 [.125, 1.312] 75.18* – .0177

Randomization 41 (31) – – 175.32* 3.05 .0807
Randomized 23 (16) .612 [.276, .948] 128.01* – .0004
Nonrandomized 18 (15) .176 [−.171, .523] 47.30* .3214

Allocation Concealment 17 (13) – – 93.64* 0.06 .8044
With alloc concealment 13 (9) .727 [.124, 1.329] 84.58* – .0181
No alloc concealment 4 (4) .571 [−.059, 1.200] 9.05* – .0755
Mental imagery in control 123 (94) – – 366.28* 3.63 .1626
With imagery check 20 (16) .311 [.141, .481] 30.12 – .0003
Without imagery check 98 (77) .545 [.392, .697] 334.76* – <.0001

Mental imagery in experimental 123 (94) – – 374.06* 0.68 .4107
With imagery check 70 (51) .457 [.262, .651] 259.24* – <.0001
Without imagery check 53 (43) .482 [.351, .613] 114.82* <.0001

Note. alloc = allocation; k = number of effect size estimates; s = number of studies; g =Hedges’s standardizedmean difference; 95%CI refers to the lower
and upper bounds of the 95% confidence interval around d; QE refers to the residual heterogeneity (Cochran’s Q) with * indicating that the probability of
homogeneity of the data is less likely than p = .05; QM refers to the omnibus test of parameters for all moderators; p refers to the approximate p value of
either the z value of the individual effect (d) or to the omnibus test of moderators (QM)
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Studies using a pre–post design in which effect sizes rep-
resent pre–post change scores, typically reported more conser-
vative estimates (g = 0.46, 95% CI [.163, .747]) than effect
sizes incorporating only postintervention scores (g = 0.50,
95% CI [.368, .630]), although the difference was not statisti-
cally significant (see Table 4). In addition, studies using pre-
scores and postscores showed effects that are also more un-
certain and dispersed, as indicated by the wider ranging con-
fidence interval for this effect that approaches zero on the
lower limit.

Participant and experimenter blinding did not signifi-
cantly affect the results. While experiments in which
participants were not blinded typically reported much
larger effects (g = 0.83) than when participants were
blinded (g = .60), the difference is not significant (see
Table 4). Similarly, while studies where experimenters
were not blinded (g = .72) typically reported (much)
larger effects than when experimenters were blinded (g
= .38), the difference was not statistically significant
(see Table 4). These results, however, lack power to
detect significant differences (only 29 and 23 experi-
ments respectively) and for those that do give informa-
tion, nonblinding is rare (only three and nine experi-
ments are nonblinded to participants and experimenters,
respectively).

Finally, allocation concealment did not affect the results.
Studies in which the participants were not aware of which
condition they were allocated to typically showed slightly
larger effects (g = .72) than nonconcealment (g = .57) but
the difference is not significant (see Table 4). As there are
no studies for which we have information that the outcome
was not concealed, we cannot examine any differences for this
methodological characteristic.

Manipulation checks

As stated in the Introduction, it was important to assess
the percentage of studies that measured mental simula-
tion in the control and mental simulation conditions, to
verify fidelity to the manipulation. An assessment of all
included control–experiment comparisons established
that only 16% measured mental imagery in the control
condition to assess spontaneously used mental imagery.
However, this did not modify the effect size. As seen in
Table 4, the effect size was significantly above zero
regardless of this manipulation check. Furthermore, ap-
proximately half of the experiments (56%) employed
active control conditions, whereas the remainder utilized
a passive or “wait” control condition (active controls
may be more effective at eliminating imagery use in
control conditions). Fifty-seven percent of control–
experiment comparisons measured mental imagery to
confirm basic compliance to the intervention, but, as

Table 4 shows, this did not significantly moderate effect
size.

Discussion

In this meta-analysis, our aims were to elucidate for the first
time the unique effects of mental simulation on behavior
change across a range of domains and uncover which mental
simulations, and which intervention characteristics, moderat-
ed this effect. In brief, are there identifiable characteristics that
enhance the behavioral effect of mental simulation? To an-
swer this question, we improve on previous reviews by (1)
conducting a thorough search of all randomized controlled
studies on the mental simulation effect and (2) using multilev-
el modeling to assess the overall effect and potential modera-
tors. The following discussion considers the theoretical and
practice implications of the present findings.

We confirmed findings from previous reviews, indicating
an overall moderate positive effect of mental simulation com-
pared with nonmental simulation control conditions (Conroy
&Hagger, 2018; Driskell et al., 1994; Feltz & Landers, 1983).
In an initial meta-analysis, Feltz and Landers (1983)
established that mental simulation had a reliable moderate
effect (d = .48, 60 experimental–control comparisons) on be-
havior when compared with no practice. Driskell et al.’ (1994)
analysis replicated these results with more robust inclusion
criteria (d = .53, 62 comparisons). In a more recent meta-
analysis focusing on health studies by Conroy and Hagger
(2018), with 33 comparisons, a similar effect size was found,
showing that, on average, mental simulation substantially im-
proves behavior by approximately half of one standard devi-
ation. In the present review, we found a highly similar effect to
these reviews (g = .49, 123 comparisons) when only including
randomized controlled experiments.

The greater power (and multilevel nature) of our analyses,
based on over double the number of comparisons of previous
reviews, highlights the robustness of this effect (although we
should note that actual physical practice has been found to be
more effective than simulation; Driskell et al., 1994). That this
was consistently demonstrated across such a diverse range of
behaviors—from laboratory-based reaction time tasks to sla-
lom skiing and to social behaviors—underlines the reliability
and robustness of this effect.5 This finding corresponds well
with proposals that mental simulations can be adopted as an
effective behavior change technique that links thought or in-
tentions with action (Johnson & Sherman, 1990; Pham &
Taylor, 1999; Taylor & Pham, 1996) and validates continued

5 Note that the overall effect size is a conservative estimate of the mental
simulation effect, as only RCTs were included and analytical measures were
taken to reduce overestimation of the average effect size (see Methods: Meta-
Analytic Strategy section).
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professional applications of mental simulation in sports (e.g.,
Nicholls, 2017) and health (e.g., Hagger, 2016). The size of
the effects associated with mental simulation are much larger
than those associated with other behavior change techniques,
such as self-incentives and self-rewards (d = 0.17; Brown
et al., 2018). The implication is that mental simulation may
be a particularly potent behavior change technique that could
be a starting point for the development of more complex be-
havior change interventions.

The present review has multidisciplinary implications for
mental simulation research. Namely, unlike previous reviews,
we provide an integrative approach, and identify key classes
of mental simulations. To this end, three classes of mental
simulations were identified and compared (performance, out-
come and process simulations). This integrative approach will
enable researchers to assess which types of mental simulations
are most effective, and which are relatively inconsequential. It
also allows generalities across domains to be interpreted,
highlighting underresearched categories of simulation. For ex-
ample, this meta-analysis showed that process and outcome
simulations, but not performance simulations, have been suc-
cessfully applied in health psychology. This review also high-
lights the opportunity to develop behavioral interventions
across domains where mental simulation is in its infancy
(such as social psychology; see Meleady et al., 2013).

The multilevel meta-analytic approach employed here
allowed us to examine whether effect sizes were moderated
by the subtype of mental simulation. First, we categorized all
experimental conditions into one of the categories identified in
a taxonomy based on possible subtypes of simulation (see
Table 1). Examination of existing studies led to the addition
of composite categories (e.g., process with superior
outcomes), and reduction of others (no positive process or
inferior process simulations were found; although it remains
to be seen whether future studies utilize these). All experimen-
tal conditions identified were labeled with one of the remain-
ing eight subtypes. Although the planned omnibus test used in
the analysis did not reveal a significant effect, we examined
whether each level of the categorical moderator leads to either
a null or statistically significant positive effect, in a one-by-
one fashion, replicating a common approach (e.g., Adriaanse
et al., 2011; Conroy & Hagger, 2018). Adopting this tech-
nique, some subtypes were more effective than others. These
differences warrant interpretation and discussion.

Superior mental simulations improve targeted
behavior

One finding was clearly distinguishable and specific:
subtypes of mental simulations with positive compo-
nents (superior performance, superior outcome and su-
perior outcome combined with process simulations) con-
sistently led to reliable positive behavioral effects (see

Table 3). This was confirmed by an exploratory multi-
level meta-regression analysis of purpose (inferior, stan-
dard, superior) showing that superior simulations led to
better behavioral outcomes than inferior ones. What
mechanisms explain these effects? Here, it is important
to apply explanations to each subtype in turn as they
represent different ways humans conceptualize the future
(see Introduction and Table 1).

The effects of superior performance simulations may
be understood in terms of the idea that mental and phys-
ical practice of a specific behavior are assumed to rely on
overlapping neural correlates, dynamic qualities and tem-
poral durations (Allami et al., 2008; Decety & Grèzes,
2006; Jeannerod, 2001; referred to herein as the
overlapping systems hypothesis). If performance simula-
tions share common neuropsychological processes with
actual performance, reasonably, simulating a superior ver-
sion of that behavior should garner more beneficial chang-
es in behavior than other versions (standard, inferior).
Thus, when one imagines optimal performance on a
finger-pointing task (Debarnot et al., 2011) subsequent
behavior on the task improves, and across studies includ-
ed here, such simulations led to a large behavioral effect
compared with controls (Hedges’s g = .67).

The same logic cannot be applied to superior outcome
simulations, however, because such simulations are, by
definition, focused upon the consequences of the enacted
behavior rather than the behavior itself (i.e., if you perform
well, you will attain outcome X, such as feeling positive
and physically active; Andersson & Moss, 2011). Benefits
of superior outcome simulations are often explained by the
motivational “pull” of simulating a desired scenario
(Hagger et al., 2011; Vasque & Buehler, 2007). Superior
outcome simulations typically focus upon simulating emo-
tions, rather than action plans; they are motivational rather
than volitional (Taylor & Pham, 1996). This may be why
simply thinking about a desired future is seen as inade-
quate as a behavior change technique on its own (Pham
& Taylor, 1999; Taylor & Pham, 1996). Indeed, if the
simulation involves fantasizing, motivation may decrease
due to the individual feeling a premature sense of achieve-
ment in-the-now, reducing the drive to strive for an end
goal (Oettingen, 2012). The results of the present meta-
analysis are in line with research on possible selves
(Markus and Nurius, 1986, b)—that is, simulations of pos-
itive scenarios which increase motivation towards that
goal, breeding energization and action. Thus, it is apparent
here that simulation of superior outcomes (and positive
simulations in general) is among several beneficial mental
simulation subtypes which can be used as behavior change
techniques. However, it is important to state that the effect
of superior outcome simulations (Hedges’s g = .23) was
smaller than effects found for other subtypes—possibly
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because the effect of positive simulations are moderated by
factors such as personality type and imagery content
(Vasque & Buehler, 2007) or because these simulations
are by nature less effective.

No evidence found for an effect of inferior mental
simulations on behavior

In contrast, when including composite categories, all subtype
incorporating a negative purpose (inferior outcome, inferior
performance, process + inferior outcome) failed to show a
significant positive behavioral effect. The difference between
inferior and standard/superior simulations was also evident in
the moderation analysis of purpose. Thus, in the context of
this meta-analysis comparing only experiments on behavioral
measures in healthy population, mental simulations incorpo-
rating an inferior component (e.g., imagining not withstanding
pain: Alden et al., 2001; or gaining weight: Marszał-
Wiśniewska & Jarczewska-Gerc, 2016) do not appear to ben-
efit future behavior. With inferior outcome simulations (used
separately or combined with process simulations), one might
expect a reduction in undesirable behaviors (e.g., unhealthy
eating)—sometimes called “avoidance behaviors”—by simu-
lating the negative consequences of those behaviors (e.g.,
weight gain, see Elliot, 2006; Lang, 1995): an ironic effect.
Indeed, Taylor’s (1991) examination of the mobilization-
minimization hypothesis supports the idea that negatively
valenced information, in general, recruits stronger cognitive,
social and behavioral responses than does neutral or positive
information. However, it is important to clarify that our con-
ceptualization of inferior simulations does not have a one-to-
one mapping on to what has been termed negative or nega-
tively valenced simulations (Gamble et al., 2019).

In the context of this meta-analysis, we found that sim-
ply imagining inferior outcomes was largely inconsequen-
tial for behavior. No subtype of simulation with an inferior
component garnered reliably positive behavioral effects,
whether mapped to the actual performance or the outcomes
of behavior. Thus, by including for the first time inferior
subtypes of mental simulation in a meta-analysis (when
conceptualized differently than emotionally negative sim-
ulations; see Gamble, Moreau, et al., 2019), we present
novel evidence that disentangles effects that were previ-
ously studied homogenously.

It is clear, as anticipated by Pham and Taylor (1999) more
than 20 years ago, that more systematic examinations of pos-
itive and negative outcome simulations (and their potential
mediators) are required. Although researchers may want to
demonstrate positive behavioral effects, a nuanced under-
standing of how and why simulations affect behavior (both
negatively and positively) requires more complex experimen-
tal studies which randomize participants to superior, standard,
and inferior simulations within the same study.

The (contrasting) effects of superior and inferior simula-
tions found in this review should also be observed in the
context of detailed reviews of mental imagery emphasizing
the powerful physiological and cognitive effects of emotional
imagery (Decety & Grèzes, 2006). This is because it is likely
that superior and inferior simulations are associated with pos-
itive and negative emotions, respectively. One area that has
examined the effects of negatively emotional simulations is
clinical psychology. For example, recent studies have showed
an inverse relationship between negative simulations of goals
at baseline and goal attainment after a delay of two months
(Gamble Tippett, et al., 2019) and that highly negative emo-
tional simulations can predict or maintain clinical symptoms
(in depression: Holmes et al., 2016; bipolar disorder: Hales
et al., 2011). Nevertheless, we are cautious about
overgeneralizing the findings of this meta-analysis to other
domains, and stress that the absence of evidence (of an effect
of inferior simulations) is not evidence of absence (of an ef-
fect). Future research would benefit from determining the in-
dependent effects of emotion on effects of these types of
simulations.

Limited and equivocal evidence that mentally
simulating the process improves targeted behavior

In the present meta-analysis, when participants focused upon
instrumental plans toward one’s goal, rather than goal
outcomes—the means rather than the end6—there was a small
positive effect that did not reach statistical significance within
our multilevel moderation model. This does not therefore
clearly validate Taylor and colleagues’ (Pham & Taylor,
1999; Taylor et al., 1998) theoretical work on the effective-
ness of process simulations for subsequent behavior and self-
regulation. The benefits of process simulations are often men-
tioned (across cognitive and health psychology; Murru &
Martin Ginis, 2010; Schacter, 2012) with several authors as-
suming that such simulations are able to improve one’s
decision-making about future acts—helping one decide when,
where and how to achieve an end goal. Thus, a positive be-
havioral effect is implied. However, results from this meta-
analysis show that caution is needed in making any strong
assumptions about process simulations, at least until further
empirical research conclusively replicates positive effects fol-
lowing process simulations. It is noteworthy in this context
that the empirical study often cited (e.g., Epstude et al., 2016;
Freund & Hennecke, 2015) as key evidence supporting this
principle, Pham and Taylor (1999) failed to find a statistically
significant effect of process simulation on exam performance
(behavior) over the control group (p < .09, coded herein as d =

6 However, note that Taylor and colleagues’ comparisons between process
and outcome were based on positive outcomes, whereas we additionally com-
pare positive and negative outcomes.
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0 based on our meta-analytic strategy). Nevertheless, the small
amount of studies identified herein (k = 5, with only studies
conducted since Pham & Taylor, 1999) which fit our criteria
and focus on process simulations shows that this research is in
its infancy, and we recommend that more empirical research is
needed before claims are made about the behavioral benefits
of process simulations.

Mentally simulating performance improves behavior

The present meta-analysis found a significant and reliable ef-
fect of standard performance simulation on behavior. Also, an
exploratory analysis found that standard simulations worked
similarly to superior simulations, and outperformed inferior
ones. There are clear, well-documented streams of research
that allow explanation of the positive effects of simply imag-
ining a task one will later perform (i.e., performance
simulations). Traditional explanations of mental simulation’s
effects on behavior focused on the idea that humans can men-
tally replicate a physically practiced/modeled behavior using
similar cognitive and neurobiological processes as those nec-
essary for its physical enaction (Corbin, 1972; Feltz &
Landers, 1983). In terms of cognition, internalized represen-
tations of a specific action purportedly follow similar biome-
chanical and cognitive rules as actual behavior (Driskell et al.,
1994). Furthermore, neuroscientific findings have lent much
support to the overlapping systems hypothesis (see Decety &
Grèzes, 2006; Jeannerod, 2001, for reviews). Applying this
principle to the studies included here, through repeated mental
practice, one can “engrain” certain behavior chains (or “be-
havioral schemata”), from initiation to completion, such that
behavior chains are retrieved and enacted automatically (for
example, once a golf putt is repeatedly simulated, the same
process can be activated and enacted, relatively automatically,
when a golfer holds a starting position in an actual game;
Budney & Woolfolk, 1990).

This mechanism accords well with dual-process theories of
behavior which emphasize that behavior is coordinated via
two parallel routes; an automatic process, which is rapid and
stimulus driven, and a volitional process which relies on con-
scious intention and reflection (Strack & Deutsch, 2004, see
also Hagger et al., 2017).7 Under this framework, performance
simulations change behavior via a mostly automatic process.
In contrast, outcome simulations do not involve rehearsal of
the to-be-performed behavior, and thus cannot be explained
by the instantiation of an automatic process.

Due to their ability to explain a diverse range of psycho-
logical phenomena, dual-process models such as the one pro-
posed by Strack and Deutsch (2004) could be useful to distin-
guish the processes through which process, performance and
outcome simulations lead to changes in behavior (which may
utilize reflective and/or impulsive processes, respectively).
Applications of this dual-process model to behavior change
(such as Hagger et al., 2017), specifically concerning mental
simulations, represent a possible fruitful avenue of research
revealed by the current meta-analysis and a recent meta-
analysis by Conroy and Hagger (2018).

Combining subtypes of simulations

A sizeable minority of studies combined subtypes of simula-
tion; specifically, here we found several studies that integrated
process and outcome simulations. Within this category, the
most numerous were mental contrasting interventions—a
technique devised by Oettingen and colleagues (Oettingen,
2012) to combine volitional and motivational aspects of men-
tal simulation (typically aligned with process and outcome
simulations, respectively, yet distinct from this conceptualiza-
tion). There exists supportive evidence spanning over 15 years
showing positive behavioral effects of mental contrasting
(e.g., Oettingen & Mayer, 2002; Oettingen & Wadden,
1991; see Oettingen, 2012, for a review). Our data largely
agreed. Although not the largest, a homogenous positive ef-
fect was found when examining combined process and supe-
rior outcome simulations. On the other hand, only two studies
(both indicating null effects) were identified incorporating
process and inferior outcome simulations. Thus, here we did
not have enough data to draw firm conclusions.

Summary of effects as a function of subtypes of
mental simulation

In summary, although the present meta-analysis replicates
similar positive effects as found previously (e.g., Driskell
et al., 1994), we show that this effect depends on different
classes of mental simulation. Furthermore, these different
classes could rely on different mechanisms. This is important
for theoretical developments and practical applications of this
technique because specific classes of mental simulation could
be more appropriate for specific situations and populations
(e.g., especially clinical populations with cognitive or emotion
dysfunctions).

However, there are limits to what these data say about
“standard” mental simulations. Fundamentally, because our
types of mental simulation were based on differences in in-
struction, this opens the question of what kinds of simulation
participants engaged in when not directed to imagine either a
superior or inferior behavior (“standard” simulations; see
Table 1). Although we assumed these simulations would fall

7 Although we adopt a neuro-cognitive explanation here, it is important to note
the dearth of social/health research utilizing performance simulations (see
Supplementary Materials). Hence, it is possible that explanatory variables
typically adopted in health/social psychology (e.g., self-efficacy, Bandura,
1997; framing and self-appraisal, see Baumeister et al., 2011) may play a -
hitherto undiscovered - role in explaining performance simulations.

1531Psychon Bull Rev  (2021) 28:1514–1537



“in-between” inferior and superior simulations, it is possible
that when undirected, participants imagine idealized scenarios
(i.e., “future positivity bias”; see Berntsen & Bohn, 2010). It
would be important for future research to confirm whether
such a systematic positivity bias exists in the types of mental
simulation employed in studies included in this meta-analysis.

Do incentives moderate the mental simulation effect?

We found a significant moderating effect for incentive, a var-
iable selected for analysis for the first time based on a related
theoretical framework (Michie et al., 2013). Extrinsic incen-
tives (i.e., vouchers, money, course credit) influenced the ef-
fectiveness of mental simulation interventions such that men-
tal simulations without incentives failed to produce a signifi-
cant effect (g = .06 on average), whereas those including re-
wards garnered significant positive effects. Although based on
a small sample of studies (some with small N sizes) this rep-
resents a novel avenue to examine in the mental simulation
literature and supports our hypothesis that offering rewards
represents a behavior change technique based on increased
motivation (Brase, 2009), and would “boost” any effects of
mental simulation. Importantly, this boost was not the result of
contingencies within studies whereby the reward was tied to
the mental simulation. Indeed, in all relevant studies, incen-
tives were given independently of group assignment. This
finding raises the possibility that public health programs uti-
lizing mental simulation interventions should strongly consid-
er combining themwith extrinsic reward and indicates the that
primary research in this area would be fruitful.

Other methodological characteristics

For the remaining moderating variables (dependent variable,
domain, dosage, delay, task type, incentive, and study quality),
no moderating effects were found. It was somewhat surprising
that increased frequency and duration of mental simulation
show no impact on behavior (although see Driskell et al.,
1994, for a similar finding). It is probable that a minimal
dosage is required for interventions to be cost and time effec-
tive (the “optimal duration” was found to be 20 minutes in
Driskell et al., 1994), after which successive simulations do
not garner additional benefits. We recommend that future em-
pirical work directly tests the effect of dosage. Specifically,
well-controlled experiments manipulating the temporal spac-
ing (e.g., massed versus distributed) of mental simulation ses-
sions while holding amount of dosage constant will be re-
quired. One testable hypothesis would be that massed practice
leads to less effective outcomes than distributed practice
(Corbin, 1972)—a robust finding recently shown in studies
of learning (see Dunlosky et al., 2013, for a review).

There was also no evidence for a reduction of the mental
simulation effect over time, consistent with Conroy and

Hagger (2018; this conflicts with Driskell et al., 1994). The
lack of an effect here may be due to the fact that our delay
effect was based on the time lag between last mental simula-
tion and farthest time point measured to avoid overestimating
the mental simulation effect. In Driskell et al. (1994), it was
unclear how delay was measured and whether intermediate or
“booster” procedures were incorporated. Thus, here we show
when the final impact of the intervention is considered, the
positive effects of mental simulations are not limited by the
delay.

Limitations

Two main limitations of this meta-analysis require elabora-
tion. First, although we assessed subtype differences in a
one-by-one fashion, the reason why these apparently substan-
tial differences in effect sizes (see Table 3) did not lead to a
significant moderation effect on the omnibus test should be
considered. We note that this null effect could be due to low
power to detect large effects due to small k sizes per subtype
and small sample sizes within the included studies. This meta-
analysis also included studies using different tasks, outcome
measures, and domains. Although this allowed us to analyze
which effects stand across experimental variation, it also in-
creases the chance that some real effects, specific to certain
tasks, outcomes and domains, were masked by general meth-
odological variability (a common issue in meta-analyses;
Lipsey & Wilson, 2001).

Secondly, we restricted our search to peer–reviewed pub-
lications. The exclusion of unpublished work and the gray
literature (e.g., conference proceedings) that are sometimes
included in meta-analyses (e.g., Conroy & Hagger, 2018;
Harkin et al., 2016), probably did not affect the validity of
our findings: We did not find evidence of publication bias
(i.e., there was no relation between low precision and effect
size in the studies included; see Fig. 2).

Future directions

In future research, it will be important to expand the present
analysis of mental simulation subtypes, which was restricted
here due to the commonality of some interventions (e.g., per-
formance simulations) and the scarcity (e.g., negative process
simulations) of others. Indeed, three of the nine cells identified
in possible subtypes of mental simulation (see Table 1) could
not be examined due to lack of empirical research. This sets
the scene for new research to examine untested subtypes of
simulation, such as inferior or superior process/plans versus
an appropriate control.

Another fruitful avenue for future work would be exploring
the longitudinal effects of mental simulation. The majority of
studies included in this review assessed behavioral effects
within 1 day of the intervention, and none examined effects
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surpassing one year. Similarly, the finding that almost all stud-
ies are conducted with young student participants drives the
need for more mental simulation studies among diverse and
more inaccessible populations.

Furthermore, our analysis of domain indicated the need for
studies to examine the effect of “open” and “closed” behav-
iors. For example, one study included here examined this fac-
tor within badminton (serving = closed; returning = open;
Jeon et al., 2014), defining open skills as “generally more
variable, unpredictable and externally paced,” whereas closed
skills are “more predictable, stable and self-paced” (p. 157). It
is possible that some mental simulations (e.g., performance
simulations) might be less effective for open skills, being less
able to map directly onto the future behavior, and draw upon
the overlapping systems underlying behavior and mental im-
agery of behavior (Decety & Grèzes, 2006). Similarly, in
health psychology, researchers may require interventions that
advocate flexible, open behaviors (e.g., in selecting locations
to eat healthily), driving a need to consider whether the type of
simulation utilized for an intervention lends itself to “open” or
“closed” behaviors.

Moreover, the difference between open and closed behav-
iors links with a more conceptual issue: whether some of the
simulations can be defined as future oriented or if some are
merely reactivated memories. We outline two types of simu-
lation that may or may not be reactivations of memory. Firstly,
where a participant is asked to simulate a circumscribed fixed
pattern of behavior, they may indeed rely on a memory acti-
vation when simulating the task (e.g., a “closed” behavior; see
above). This would involve no “temporal tag” as a future
event. Secondly, where a participant must put him or herself
into a future context or where behaviors are more flexible
(e.g., “open” tasks), an explicit simulated event is required
with a future “temporal tag.” Research has shown that such
“episodic future thoughts” (Atance & O’Neill, 2001), al-
though relying on memory processes and brain structures,
involve a constructive recombination of episodic details into
a novel simulated scenario (see Schacter et al., 2012, for a
review). Current models of mental simulations do not fully
account for these differences, highlighting the need for further
theoretical work.

This meta-analysis highlighted a need for studies to sys-
tematically include a manipulation check to assess whether
participants in experimental conditions actually created a
mental image in their mind’s eye—whether that be a verbal
description of the image (Hagger et al., 2011), a rating of vivid
imagery (Andre & Means, 1986), or a judgment of imagery
duration (Debarnot et al., 2011) related to the simulation.
Furthermore, the moderation analyses herein rest somewhat
on the assumption that participants were indeed simulating in
the way they were instructed. Although there was no strong
evidence to the contrary (i.e., that participants were regularly
excluded for simulating different scenarios/behaviors), and

over half of the included studies did carry out a manipulation
check on simulation content, it would be important for reli-
ability that all future studies verify the content of the simula-
tion with such a manipulation check. Importantly, very few
studies checked whether those in the control condition en-
gaged in mental simulation (in which opportunities exist to
simulate the subsequent behavior), indicating a need for stud-
ies to include a retrospective check. Although a moderation
effect of verification was not found, if a check does not hap-
pen, the mental simulation effect may be reduced due to im-
agery use across experimental and control conditions.

Finally, according to a review of placebo effects (Boot
et al., 2013), an adequate control condition in psychological
interventions should ensure that control participants’ expecta-
tions about potential benefits of the “intervention” should
match those in experimental conditions. Although approxi-
mately half of all studies included here adopted active controls
(e.g., reading poetry), it is likely that those in the control and
experimental conditions differed on whether and how much
they expected positive behavioral effects from “interventions”
they received. For instance, those in true experimental condi-
tions may realize similarities between the simulation and task,
and guess they are in the experimental arm; those in control
conditions may, in contrast, realize the “irrelevant” nature of
the control “intervention.” This would affect expectations of
task success. This limitation of previous studies can be over-
come by measuring outcome expectations after intervention/
control (Boot et al., 2013), or by informing those in the exper-
imental group they are in the control group, and assessing
feedforward effects on behavior.8

General summary

Several authors have argued and built models around the
proposal that mental simulation is a desirable method to
increase optimal behaviors (e.g., Oettingen, 2012; Taylor
& Pham, 1996). Here, we analyzed if those benefits ex-
tended across several conditions, as defined by a taxonomy
informed by extant empirical research. We found that
across a range of behaviors, classifications identified pro-
vided a useful framework to differentiate subtypes of sim-
ulations and their effects. These findings not only have
clear implications for theoretical understanding of mental
simulation effects but may aid professionals seeking
evidence-based and cost-effective methods of changing be-
havior. It is hoped that a common language will motivate
more cross-pollination across subdisciplines. Furthermore,
new research programs will benefit from delineating not
only in which circumstances but also how mental simula-
tion changes behavior (see Michie et al., 2013). These new

8 We thank Mike Page for making the latter point.
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research programs may benefit from a variety of method-
ological approaches: incorporating individual differences,
experimental, and neuroscientific approaches. Finally, im-
portant insights may be gained by building upon effective
applications of mental simulation in the domains of psy-
chotherapy and neuropsychology (Holmes et al., 2007; Liu
et al., 2004).
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