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Abstract
Researchers sometimes use informal judgment for statistical model diagnostics and assumption checking. Informal judgment
might seemmore desirable than formal judgment because of a paradox: Formal hypothesis tests of assumptions appear to become
less useful as sample size increases. We suggest that this paradox can be resolved by evaluating both formal and informal
statistical judgment via a simplified signal detection framework. In 4 studies, we used this approach to compare informal
judgments of normality diagnostic graphs (histograms, Q–Q plots, and P–P plots) to the performance of several formal tests
(Shapiro–Wilk test, Kolmogorov–Smirnov test, etc.). Participants judged whether or not graphs of sample data came from a
normal population (Experiments 1–2) or whether or not from a population close enough to normal for a parametric test to bemore
powerful than a nonparametric one (Experiments 3–4). Across all experiments, participants’ informal judgments showed lower
discriminability than did formal hypothesis tests. This pattern occurred even after participants were given 400 training trials with
feedback, a financial incentive, and ecologically valid distribution shapes. The discriminability advantage of formal normality
tests led to slightly more powerful follow-up tests (parametric vs. nonparametric). Overall, the framework used here suggests that
formal model diagnostics may be more desirable than informal ones.

Keywords Signal detection theory . Statistical inference . Judgment and decision-making . Normal

Statistical models are sometimes judged informally. For exam-
ple, distributional assumptions might be judged by considering
a histogram; homoscedasticity might be judged by examining a
plot of the residuals across a regression line; two variations of a
model might be judged holistically by comparing several pieces
of information, such as measures of complexity-corrected fit,
out-of-sample prediction error, and/or other graphical or numer-
ical information. Such judgments matter, as different statistical
models of the same data set could lead to substantially different
conclusions (e.g., Silberzahn et al., 2018). The primary goal of
this paper is to compare the effectiveness of informal and

formal judgments of statistical models, and specifically judg-
ments that are often referred to as model diagnostics,
misspecification tests, or assumption checking.

For several reasons, we focus primarily on the judgments of
normality. Normality assumptions are common, as they appear
in the general linear model, and by extension, in all models of
this type (e.g., ANOVAs, t tests). Various normality assump-
tions also underlie other commonly used statistical procedures,
ranging from simple bivariate correlations to structural equation
models. When normality assumptions are violated, the general
linear model and other commonly used tests can produce inflat-
ed Type I and Type II errors, as well as other undesirable prop-
erties (Bishara & Hittner, 2012; Kelley, 2005; Levine &
Dunlap, 1982; Sawilowsky & Blair, 1992; West, Finch, &
Curran, 1995). Such violations may be common because
nonnormality is common in psychological and educational data
sets (Blanca, Arnau, López-Montiel, Bono, & Bendayan, 2013;
Cain, Zhang, & Yuan, 2017; Micceri, 1989).

Incorrect normality assumptions can cause problems even
in large samples. For instance, when a confidence interval is
constructed using a method that incorrectly assumes normal-
ity, as sample size increases, confidence interval coverage can
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actually decrease (e.g., Bishara, Li, & Nash, 2018).
Furthermore, as n increases, even though parametric models
sometimes become robust in terms of Type I error, other
models may still be preferable (see Sawilowsky & Blair,
1992). For example, consider the power of an independent-
samples t test as compared with its nonparametric analog, the
Mann–Whitney–Wilcoxon (MWW) test, also known as the
ranked-sums test. As shown in Fig. 1, as n increases from 5
to 200, the power of an independent-samples t test will some-
times increase at a slower rate than that of the MWW test. In
other words, a large sample size does not guarantee that a
model which assumes normality will be preferable to one that
does not.

Unfortunately, though, there is no single agreed-upon
method for judging normality; there are numerous methods
belonging to one of two families. One family involves infor-
mal judgment, often using histograms, Q–Q plots, or P–P
plots. A second family involves formal statistical methods,
such as the Kolmogorov–Smirnov test, the Shapiro–Wilk test,
and many others. How well do these methods distinguish
between nonnormal and normal? Relatedly, how well do they
distinguish between nonnormal and approximately normal—
that is, normal enough for a parametric model to have higher
power to detect a true nonzero effect without increasing the
Type I error rate?

Informal versus formal diagnostic decisions The two families
of normality judgment can be viewed as belonging to two

more general strategies for diagnostic decisions. One general
strategy is to rely on informal intuitive judgment, perhaps of
an expert. A second strategy is to rely on a formal, mechanical
decision rule, often involving a formula with numeric cutoff
values that determine the decision. A large body of empirical
work has shown that the second strategy can often outperform
the first—that is, formal decision rules can often match or beat
informal judgments, even those of experts (Dawes, Faust, &
Meehl, 1989; Meehl, 1954; Swets, Dawes, & Monahan,
2000). In one meta-analysis, informal judgments of medical
and psychological experts were, on average, outperformed by
formal decision rules when making predictions about diagno-
ses, prognoses, and personalities (Grove, Zald, Lebow, Snitz,
& Nelson, 2000). Additionally, experts’ informal judgments
are sometimes outperformed by relatively simple decision
rules—even rules created to mimic those same experts in their
use of cues—partly because such decision rules are more con-
sistent than are informal human judgments (Camerer, 1981;
Dawes, 1971; Karelaia & Hogarth, 2008). The superiority of
formal decisions rules often occurs in situations where experts
do not receive immediate or clear feedback about their deci-
sions (Kahneman & Klein, 2009; Shanteau, 1992), although it
sometimes occurs even despite such feedback (e.g., Goldberg,
1968). In short, the broader literature on diagnostic decision-
making suggests that formal judgments often do as well as or
better than informal ones.

Much of the above-described research pertains to diagnos-
tic decisions about human behavior or disease, but what of
decisions about data patterns? Researchers commonly make
decisions about data by informally judging a graph, and it is
customary to do so in single-case experimental designs
(Skinner, 1956). For such designs, empirical studies have
shown that expert judgments of graphs sometimes have high
interrater reliability (Kahng et al., 2010), but not always
(Parker & Brossart, 2003). Unfortunately, expert judgments
sometimes lead to excessive Type I and Type II errors
(Matyas & Greenwood, 1990). Perhaps because of these find-
ings, in single-subject designs, the focus has been shifting
toward more formal statistical analyses (Fisch, 2001;
Manolov, Gast, Perdices, & Evans, 2014; Smith, 2012), or
at the very least toward formal quantifications of visual depic-
tions (Lane & Gast, 2014).

Especially pertinent to normality judgment is the informal
judgment of scatterplots. With scatterplots, a pattern of dots
close to a positively sloped line indicates a strong positive
correlation. Many visual depictions of normality involve a
similar principle. For example, with Q–Q plots and P–P plots
(see Fig. 2), dots close to the positively sloped reference line
indicate an approximately normal distribution. Empirical re-
search on judgments of scatterplots has shown that human
judges are sensitive to correlations depicted in them, albeit
not perfectly (Rensink, 2017). For instance, human judges
tend to overemphasize the distance between the dots and the

Fig. 1 As n increases, the power of nonparametric tests (e.g., Mann–
Whitney–Wilcoxon test [MWW]) sometimes increases at a faster rate
than that of parametric ones (independent-samples t test). As one
example, this figure shows power to detect a difference between two
means in an independent-groups design,with both groups drawn from
skewed populations (χ2 with df = 1, and population effect size d = .5).
In other situations (not shown here) where populations are approximately
normal, the t test generally has higher power than MWW. In still other
situations, the t test has higher power with small ns, but MWWhas higher
power with large ns. Power was estimated through 10,000 Monte Carlo
simulations at ns ranging from 5 to 200. The 95%CI of each plotted point
is less than ±.010. Though not shown here, neither test exceeded a Type I
error rate of .060 (which would be significantly greater than .050). The
equal-variance t test is shown, but Welch’s unequal-variance t test had
similar power, also below that of MWW
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reference line, and underemphasize other cues, such as slope
and scale (Lane, Anderson, & Kellam, 1985). Additionally,
there is error in informal human estimates, and the error tends
to increase as r approaches zero (Doherty, Anderson, Angott,
& Klopfer, 2007).

Unfortunately, the existing literature offers no empirical
studies of informal judgments of normality. That is, there is
no direct empirical evidence to indicate the superiority of
some informal methods over others, or to compare informal
judgments to formal hypothesis tests. In the absence of direct
empirical evidence, researchers might instead rely on the ad-
vice of authorities.

Review of popular statistics textbooks

To gauge the current advice about normality judgments, we
reviewed 20 of the most popular statistics textbooks, operation-
ally defined here as the Top 10 Amazon Best Sellers in the
Statistics category and by the Top 10 library holdings as indi-
cated by the WorldCat database (see references with † or ‡,
respectively; for details, see Supplement 1). Unsurprisingly,
most textbooks included basic definitions of normal distribu-
tions, as well as curve and/or histogram depictions of them.

However, only 8 textbooks offered specific recommendations
for judging whether normality had been adequately satisfied or
not.

Of these eight books, all recommended at least one visual
inspection method, most commonly Q–Q plots (6), followed
by histograms (4), and P–P plots (3), with some textbooks
recommending more than one type of graph. Q–Q plots, in ad-
dition to being mentioned by several books, were treated as
essential in some. For example, the most popular book from
the Amazon Best Seller set (Triola, 2012) suggested that bell-
shaped histograms alone could not assure normality, and so Q–
Q plots must also be used. Additionally, a text with especially
comprehensive coverage of normality (Field, 2013) suggested
that Q–Q plots would be easier to interpret than P–P plots, at
least in large samples. Thus, among visual inspection methods,
popular textbooks showed a preference for Q–Q plots.

Regarding formal statistical tests to evaluate normality, on-
ly five books described at least one statistical test, most com-
monly the Kolmogorov–Smirnov test (3), followed by the
Shapiro–Wilk, Anderson–Darling, Pearson χ2, and Ryan–
Joiner test, and also tests of skewness and kurtosis values
(one book each). Additionally, one book encouraged compar-
ing the correlation of Q–Q plot coordinates to critical correla-
tion values (Sullivan, 2017; see Looney & Gulledge, 1985), a
method similar to the Shapiro–Francia test. Although the most
commonlymentioned test was the Kolmogorov–Smirnov test,
the books did not specifically endorse this test as preferred.
Indeed, one book noted that it was less powerful than the
Shapiro–Wilk test (online supplement of Field, 2013; for
evidence, see Shapiro, Wilk, & Chen, 1968; Thode, 2002).
Table 1 provides a summary of the major normality tests ex-
amined in the present research. These tests were chosen be-
cause they were well-known (Kolmogorov–Smirnov), well-
supported in the simulation literature (Shapiro–Wilk,
Shapiro–Francia, Anderson–Darling), somehow analogous
to informal graph judgments (Pearson χ2, Shapiro–Francia),
or because of some combination of these reasons.

A paradox of formal assumption tests

Interestingly, some popular textbooks expressed concerns
about formal normality tests (Field, 2013; McClave, Benson,
& Sincich, 2014). Formal tests may produce significant results
(“nonnormal” decisions) too easily, and so they may be too
sensitive to tiny deviations from normality in the data. The
problem becomes worse with larger samples, where formal
tests reject the null of normality for vanishingly small devia-
tions from it as n increases. That is, in large samples, a formal
normality test may lead a researcher to adopt a nonparametric
test evenwhen a parametric test would bemore powerful. This
concern is paradoxical because large samples are thought to be

Fig. 2 Examples of graphs used in experiments here. In each case, the
green reference curve/line shows what is expected if the sample is per-
fectly normal, whereas bars/dots show the actual sample. Q–Q (quantile–
quantile) plots show the observed scores on the y-axis and the theoreti-
cally expected quantiles derived from a normal distribution on the x-axis.
The first Q–Q plot row has the reference line drawn through the first and
third quartiles of the data (the default in the software R). The stable Q–Q
plot involves a fixed scale and a reference line along the diagonal, so that
the reference line remains stable across different data sets. P–P (percent–
percent) plots show the observed versus theoretically expected scores on
the scale of percentiles. Q–Q plots tend to magnify the deviations from
the normal distribution in the tails, whereas P–P plots tend to magnify the
deviations in the center
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more problematic than small ones, a pattern opposite that of
most other statistical situations.

This paradox matters, as it often leads to the encourage-
ment of informal judgment and discouragement of formal
tests. This paradox appears not only in popular texts but also
in websites that offer statistical advice.1 Furthermore, this par-
adox generalizes beyond normality assumption tests to other
model diagnostics. For example, many models rely on equal
variance assumptions (homoscedasticity, and relatedly, homo-
geneity of variance). Formal tests of these assumptions have
equal variance as the null hypothesis. Therefore, large samples
cause equal variance to be rejected for even trivial variance
differences. The paradox can even arise with Bayesian
models. For instance, if n is large, posterior predictive checks
can produce small p values for trivial differences between
empirical and posterior predictive distributions.

We suggest that this paradox can be resolved via signal
detection theory, and even via a simplified version of it that
only makes use of receiver operating characteristics (ROCs;
Peterson & Birdsall, 1953). The paradox reflects a problem
not with formal judgments per se, but rather with the criterion
used in them. The typical criterion is determined by setting
alpha to some fixed value (.05), which may lead to too many
decisions in one direction rather than another. Of course, the
criterion can be easily adjusted simply by changing the alpha
level. To examine all possible criterion settings, it is useful to
plot ROCs, which illustrate trade-offs between true positives

(y-axis) and false positives (x-axis; for a review, see
Macmillan & Creelman, 2004). ROCs have proven useful
for a diverse array of problems in psychological research
(McFall & Treat, 1999; Swets et al., 2000; Wixted &
Mickes, 2014; for a history see Wixted, 2020), but ROCs
can be especially useful for assessing statistical hypothesis
tests, where the true positive rate is equivalent to power,
and the false positive rate is equivalent to the Type I error
rate.

Consider, for example, a hypothetical formal test of nor-
mality (perhaps the Shapiro–Wilk test in a particular situation)
that produces power of .70 with a Type I error rate of .05. That
is, it has a 70% chance to correctly label a sample
“nonnormal” when it truly came from a nonnormal popula-
tion, and a 5% chance to incorrectly label it “nonnormal”
when it truly came from a normal population. This situation
is illustrated by Point A in Fig. 3.

Other methods for assessing normality might produce
different combinations of power and Type I error rate.
Point B illustrates a different method that yields higher
power (.90), with the same Type I error rate as Point A.
The curves show how the two methods that produced
Points A and B would perform at all possible criterion
settings—that is, alpha settings. These curves illustrate a
clear advantage for Method B over Method A. At any giv-
en criterion, Method B results in higher power, lower Type
I error rate, or both. In signal detection terms, Method B
has higher discriminability. That is, Method B is better
able to distinguish between normal and nonnormal distri-
butions. Generally, higher discriminability is more desir-
able, and is represented by a curve closer to the upper left
corner of the ROC plot. Discriminability is often measured

Table 1 Summary of formal hypothesis tests of normality examined here

Type Test To summarize, this test is a function of the:

Categorical
(binned data)

Pearson χ2

(Pearson, 1900)
frequency of scores at various ranges of data compared to the frequency expected

under normality. This is related to a comparison between observed histogram bar
heights and those expected if normality were true.

Empirical
Distribution
Function

Kolmogorov–Smirnov (Kolmogorov, 1933;
Lilliefors, 1967; Smirnov, 1948)

absolute difference between normal cumulative distribution function and the empirical
distribution function (i.e., for the observed data).

Anderson–Darling
(Anderson & Darling, 1952, 1954)

squared difference between the normal cumulative distribution function and the
empirical distribution function.

Correlation Shapiro–Francia (Shapiro & Francia, 1972) squared Pearson correlation coefficient between the observed order statistics and those
expected under normality. This measures the linearity of the Q–Q plot, as its test
statistic, W', is equal to the r2 of the Q–Q plot points.

Shapiro–Wilk
(Shapiro & Wilk, 1964, 1965)

sum of the observed order statistics weighted by a function of their expectations and
covariances under normality. The Shapiro–Wilk test statistic, W, is also a measure
of linearity of the Q–Q plot, except with different weights applied to points.
The Shapiro–Francia test is a simplified version of this test.

Note. For all formal tests, the null hypothesis is that the population has a normal distribution. Therefore, significant results indicate a rejection of the null
of normality, and a decision that the sample comes from a nonnormal population (see Supplement 2 for details).

1 For some discussions and illustrations, consider https://stats.stackexchange.
com/questions/2492/is-normality-testing-essentially-useless, and http://www.
statisticalmisses.nl/index.php/frequently-asked-questions/77-what-is-wrong-
with-tests-of-normality (retrieved 8/21/2020).
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as the proportion of the graph area under the curve (AUC).
An AUC of 1.0 would indicate perfect discriminability. In
Fig. 3, Method B has a higher AUC (.97) than Method A
(.89). AUC can be interpreted as the probability that stim-
uli from two different populations will be correctly ranked.
For example, the AUC of the Shapiro–Wilk test represents
the probability that a randomly chosen sample from a
nonnormal population has a smaller p value on the
Shapiro–Wilk test than does a randomly chosen sample
from a normal population.

Although the above-discussed Methods A and B could
represent formal hypothesis tests, they could also represent
informal judgments. Informal judgments of normality produce
power and Type I error rates that may be better or worse than
those of formal tests. Additionally, informal judgments can
also be made at different criterion levels, or thresholds of
confidence. For example, Point A might represent an extreme
level of confidence: “definitely not normal.” In contrast, Point
“a”might represent a different threshold, the sum of “definite-
ly not normal” and “probably not normal” judgments. The
more relaxed criterion in “a” yields higher power, but also a
higher Type I error rate.

Using ROCs to examine all possible criterion settings,
do formal judgments still appear to be problematic, as the
paradox suggests they are? Or, as suggested by the litera-
ture on diagnostic decision-making, could formal judg-
ments perform as well as informal ones, or perhaps even
better? In Experiments 1–2, the primary goal was to iden-
tify the most discriminating informal judgment type by
comparing performance across different types of graphs
(histograms, Q–Q plots, and P–P plots). Additionally, even
in these early experiments, informal graph judgments were

compared with formal hypothesis tests on the same data
sets. Experiments 3–4 relied on the most discriminating
graph type identified in earlier experiments, using this
graph type to compare informal and formal judgments in
more ecologically valid contexts. Experiments 3–4 also
examined whether informal or formal judgments would
lead to higher statistical power of follow-up tests, tests
chosen based on these normality judgments.

Experiment 1: Histograms and Q–Q plots

In the absence of existing data on informal judgments of nor-
mality, a reasonable starting point would be to test the com-
mon textbook advice that Q–Q plots are easier to judge than
other graphs. So, participants were randomly assigned to
make judgments of either Q–Q plots or of the second most
commonlymentioned graph: histograms. On each trial, a sam-
ple of 60 values was simulated from either a normal or
nonnormal population. A graph of this sample was presented
on a computer screen, and participants judged it on a 6-point
scale ranging from “Definitely Normal” to “Definitely NOT
Normal.” To explore the potential for learning in this task,
participants judged 80 graphs without feedback, then 320 with
feedback, and finally 80 without. Feedback consisted of an
indication of the correct answer (“Normal” or “NOT normal”)
after each response.

Method

Participants

A total of 46 participants were recruited through an introductory
psychology course participant pool, and they participated indi-
vidually in private laboratory rooms. Three participants did not
complete the study due to a program or scheduling error. Based
on preliminary analyses (all blind to graph condition to avoid
bias), we decided to exclude any participant with a median
response time of less than 500 milliseconds or accuracy less
than .40 during any stage of the experiment (pretraining, train-
ing, or posttraining). These restrictions excluded only one par-
ticipant. The final data set had 42 participants (31 females).
Participants were compensated with course credit.

Design and materials

The experiment had a 2 (graph type: histogram vs. Q–Q plot)
× 6 (trial block) factorial design, with graph type between
subjects and trial block within subjects. Each participant was
randomly assigned to view histograms (n = 24) or Q–Q plots
(n = 18). There was one pretraining block, followed by four

Fig. 3 The hypothetical receiver operating characteristics (ROCs) indi-
cate that Method B is better able to discriminate between two types of
stimuli (e.g., normal versus nonnormal) than Method A. Methods A and
B could be formal hypothesis tests or informal human judgments. The
curves indicate all possible combinations of power and Type I error rate
that could be achieved for each method by adjusting the criterion (alpha
for formal tests, confidence threshold for informal judgments)
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training blocks, and then one posttraining block. Only the
training blocks provided feedback.

All graphswere generated in the programming languageR (R
Core Team, 2016). Histograms were generated using the default
“hist()” function (for binning details, see Sturges, 1926). For
reference, a green normal bell curve appeared on each histogram.
Q–Q plots were generated using the “qqnorm()” function and a
reference line (also in green) created by the “qqline()” function.
By default, this line passed through the 1st and 3rd quartiles of
the data. All graphs omitted axis labels so that participants could
focus on data shapes and feedback while learning. See the first
two rows of Fig. 2 for examples.

Each graph had a sample size of 60 drawn from either a
normal or nonnormal population. There were four different
types of nonnormal populations: (a) no skewness and negative
kurtosis, (b) no skewness and positive kurtosis, (c) positive
skewness and positive kurtosis, and (d) negative skewness and
positive kurtosis. To define these, let the kth central population
moment be:

μk ¼ E x−μð Þk
h i

; ð1Þ

where μ with no subscript is the population mean.
Population skewness and kurtosis are then defined, respective-
ly, as:

γ1 ¼
μ3

σ3
; ð2Þ

γ2 ¼
μ4

σ4
−3; ð3Þ

where σ is the population standard deviation. In a normal
population, γ1 = γ2 = 0. There were four nonnormal popula-
tions used here: (a) γ1 = 0, γ2 = −1, (b) γ1 = 0, γ2 = 10, (c) γ1

= 2, γ2 = 8, and (d) γ1 = −2, γ2 = 8. These values were chosen
in an attempt to make the nonnormal situations equally diffi-
cult, at least for visual inspection methods. Nonnormal distri-
butions were generated using the fifth-order polynomial fam-
ily (Headrick, 2002), with approximate densities shown in
Fig. 4.

There were 64 samples generated from each the 4 types of
nonnormal population, and 256 normal samples, for a total of
512. Of these 512 samples, the first 480 were used as critical
stimuli (counted in the analyses) and the last 32 were reserved.
From this reserve set, 3 relatively average stimuli were chosen
as instruction examples by selecting the median Shapiro–Wilk
test p-values from “normal” and “not normal” categories. The
480 critical stimuli were assigned to the 6 blocks (80 stimuli
per block). Assignment was random for each participant with
the constraint that each block contained half normal and half
nonnormal stimuli. Presentation order within blocks was ran-
domwith the constraint that each 8-trial sub-block contained 4
normal and 4 nonnormal stimuli (with 1 of each of the types of
nonnormal). The experiment was programmed in E-Prime.

Technical details of graphs and normality tests can be found
in Supplement 2, and all materials and code to generate them
can be found at https://osf.io/msv72.

Procedure

Participants first answered demographic questions. Next, the
researcher read aloud instructions adapted from Triola (2012,
pp. 57, 297). In the histogram condition, participants were told
that the graph was not normal if it had “rectangles that depart
dramatically from the bell-shaped curve.” In the Q–Q plot
condition, they were told that the graph was not normal if
the “circles do not lie reasonably close to a straight line, or
the circles may show some systematic pattern that is not a
straight-line pattern.”

Next, participants placed their middle three fingers of each
hand on the six keys from “c” to “,” on the computer key-
board. The six keys had colored stickers corresponded to a
color-coded, 6-point Likert scale that was visible on the
screen. The colors from left to right were light green, green,
dark green, dark red, red, light red. The Likert scale from left
to right was “Definitely Normal,” “Probably Normal,” “Guess
Normal,” “Guess NOT Normal,” “Probably NOT Normal,”
“Definitely NOT Normal” (see Supplement 3). Participants
were encouraged to use the whole range of this scale and were
informed that they would have 10 seconds to decide for each
graph. They were also informed that each graph would have
an equal chance of being normal or not.

The pretraining block consisted of 80 trials without feed-
back, where each button press led to the next stimulus being
presented. Next, there were four training blocks with 80 trials
each. During these blocks, after either a button was pressed or

Fig. 4 Approximate densities of populations used in Experiment 1. n =
normal; a = no skewness and negative kurtosis; b = no skewness and
positive kurtosis; c = positive skewness and positive kurtosis; and d =
negative skewness and positive kurtosis (see Design and Materials for
details)
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10 seconds had elapsed, the screen indicated that the correct
answer was either “normal” or “NOT normal,” in light green
or light red font, respectively. This feedback remained on the
screen for 3.5 seconds before the next trial. Finally, there was
a posttraining block of 80 trials without feedback. At the end
of the experiment, participants were asked to estimate their
percentage of accurate decisions for the experiment as a whole
(all six blocks), and for the posttraining block in particular (see
Supplement 4 for details).

Data analysis

The experiments here were intended to inform decisions about
which statistical models to use. However, we must choose
which statistical models to use to analyze data from these
experiments. To avoid circularity, we decided ahead of time
to use procedures that are usually robust to nonnormality and
other typical assumption violations. First, all reported confi-
dence intervals were constructed using bootstrapping with bi-
as correction and acceleration (BCa; via Kirby & Gerlanc,
2013). Second, the measure of discriminability was computed
without making distributional assumptions for signal and
noise. In other words, discriminability was computed by the
empirical ROCs rather than by curve-fitted ROCs. Third, in all
analyses of variance (ANOVAs), df with decimals indicates
that a significant violation of sphericity occurred and the
Greenhouse–Geisser correction was applied. Fourth, for
two-sample t tests, df always have decimals because
Welch’s unequal variance version was routinely applied with-
out a precursor assumption test (see Moser & Stevens, 1992;
Zimmerman, 2004).

Results and discussion

As shown in Fig. 5, accuracy increased across blocks, and was
higher for Q–Q plots than for histograms. Accuracy was cal-
culated by collapsing across confidence level. For example, if
the graph showed a sample from a normal population, any of
the “normal” confidence responses (“definitely,” “probably,”
or “guess”) was considered accurate; any of the “nonnormal”
confidence levels was considered inaccurate. A 2 (graph type)
× 6 (trial block) ANOVA showed that accuracy was signifi-
cantly higher for Q–Q plots than for histograms, F(1, 40) =
7.36, p = .01, ηp

2 = .16, a medium effect. There was also a
significant effect of trial block, F(3.87, 154.7) = 10.5, p <
.001, ηp

2 = .21, a medium effect. Finally, the interaction be-
tween trial block and graph type was not significant, F(3.87,
154.7) = .45, p = .77, ηp

2 = .01. Of most importance, though,
is performance posttraining, when feedback was no longer
available, just as in realistic situations. Posttraining accuracy
was significantly higher for Q–Q plots (.80) than for histo-
grams (.73), and with a large effect, t(32.7) = 2.74, p = .010,

d = .878, 95% CI [.114, 1.619]. However, most formal hy-
pothesis tests were more accurate (range: .78–.93) than infor-
mal judgments, except for the Pearson χ2 test, which was
similar to judgments of Q–Q plots, especially in later blocks.

Accuracy scores neglect differences among confidence
levels in informal judgments, and likewise, different possible
alpha levels that could be used in formal tests. To consider the
whole range of confidence levels and alpha levels, Fig. 6
shows the ROCs of formal tests and mean informal judgments
(for pretraining and posttraining blocks). As shown in Fig. 6,
for a given Type I error rate, the Shapiro–Wilk test typically
had higher power than any other method, whether formal test
or informal judgment of a graph. One can also see that Q–Q
plot performance tended to be better than histograms perfor-
mance, but worse than formal tests.

To confirm previously established accuracy patterns, but
with the ROCs, we examined area under the curve (AUC),
which is simply the area between the curve and the bottom
and right borders of the graph expressed as a proportion of the
total graph area (Ag in Macmillan & Creelman, 2004).
Confirming the accuracy analyses, posttraining Q–Q plot
judgments had significantly higher AUC (.826) than
posttraining histogram judgments (.749), again with a large
effect, t(30.1) = 2.86, p = .008, d = .931, 95%CI [.181, 1.715].
Nevertheless, posttraining Q–Q plot AUC was still signifi-
cantly lower than the AUC of all formal tests, as is shown in
Table 2.

Overall, for informal judgments, discrimination between
normal and nonnormal populations was better with Q–Q plots
than with histograms, and this performance improved across
blocks of the experiment. However, formal tests performed
better than informal judgments, and this was especially true
for the Anderson–Darling, Shapiro–Francia, and Shapiro–
Wilk tests.

Experiment 2: Q–Q plot variants

It is possible that the Q–Q plot used in the previous experi-
ment might be improved upon, especially considering re-
search on the closely related issue of scatterplot judgments.
Such research has shown that scatterplot interpretation can be
improved by making constant the shape and size of the plot
(Doherty &Anderson, 2009). Such research also suggests that
graph judgments could be improved by making the reference
line constant, as is the default in some software packages (e.g.,
SPSS,Minitab). To examine this possibility, participants were
randomly assigned to judge one of three types of graphs: Q–Q
plots used in the previous study, stable Q–Q plots, or P–P
plots (see Fig. 2). Both stable Q–Q plots and P–P plots have
reference lines that are consistently on the diagonal, as well as
fixed ranges of the x-axis and y-axis. These properties could
make stable Q–Q plots and P–P plots easier to judge.
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Method

Only differences relative to the previous experiment are re-
ported here and in subsequent Method sections.

Before conducting the experiment, to estimate a target sam-
ple size, a power analysis was conducted using the effect size
for the accuracy difference between histograms and Q–Q plots
posttraining (d = .88). To achieve .95 power to detect a

comparable difference between two independent sample
means would require approximately 35 participants per con-
dition (using R’s “pwr” package, pwr::pwr.t.test(d=.88, pow-
er=.95, type=“two.sample”, alt=“two.sided”); Champely,
2020).

In Experiment 2, 117 participants completed the experi-
ment, but three were excluded by the same criteria as in
Experiment 1. The remaining 114 participants were, by ran-
dom assignment, in either the Q–Q plot (n = 37), stable Q–Q
plot (n = 39), or P–P plot (n = 38) condition.

For the Stable Q–Q plot condition, the x-axis and y-axis
used the same range (the minimum of x and y plotting coor-
dinates combined up to the maximum of x and y plotting
coordinates combined). The reference line was set to have a
y-intercept of 0 and slope of 1, resulting in a consistent diag-
onal line.

Whereas Q–Q plots show actual versus expected points
on the scale of z scores (or similarly, raw scores), P–P
plots show actual versus expected points on the scale of
percentiles. Because percentiles are a non-linear transfor-
mation of z scores, the placement of dots is different. The
reference line was identical to that of the Stable Q–Q plot
condition.

In Experiment 1, one nonnormal type (γ1 = 0, γ2 = 10)
was harder to visually discriminate than others, adding an
unintended source of noise. To address this issue, this

Fig. 5 Proportion of decisions that were accurate in Experiment 1. Black
lines (Q and H) indicate accuracy of informal human judgments, where
any “normal” response (“definitely,” “probably,” or “guess”) was
considered accurate for normal trials, and any “NOT normal” response
was considered accurate for nonnormal trials. Colored lines indicate
accuracy of formal hypothesis tests using α = .05 as the criterion.
Because the same samples were used to generate stimuli for all

participants, and a formal test is consistent each time it is used on the
same sample, the formal tests are shown as constants. Random
assignment of samples to blocks created a trivial amount variability in
formal test accuracy (e.g., Shapiro–Wilk test accuracy ranged from .925
to .935 across blocks). Kolm.-Smir. (L) = Kolmogorov–Smirnov
(Lilliefors version), Pears. = Pearson

Fig. 6 In Experiment 1, power of hypothesis tests across all possible
alpha levels, and power of human decisions across all possible
confidence thresholds. Kolm.-Smir. (L.) = Kolmogorov–Smirnov
(Lilliefors version)
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nonnormal type was changed to γ1 = 0, γ2 = 20 in
Experiment 2.

Participants completed the experiment in groups of up to
11 at a time in a computer classroom. To ensure comprehen-
sion of instructions, instructions were followed by a multiple-
choice test. If a participant did not achieve 100% correct on
this test, the instructions and test repeated until he/she did so.
Instructions for all three conditions were identical to those in
the Q–Q plot condition of the previous experiment (for details,
see https://osf.io/msv72).

Results and discussion

As with Experiment 1, formal hypothesis tests tended to out-
perform informal graph judgments, with the Shapiro–Wilk
test showing the highest mean performance levels. As shown
in Table 2, informal judgments of any graph type (even
posttraining) had significantly lower discriminability as com-
pared to any formal hypothesis test.

To further examine informal judgments, a 3 (graph type) ×
2 (trial block: pretraining vs. posttraining) ANOVA was con-
ducted on AUC. There was a significant main effect of graph
type, F(2, 111) = 9.60, p < .001, ηp

2 = .15, qualified by a
significant Graph Type × Trial Block interaction, F(2, 111)
= 7.25, p = .001, ηp

2 = .12, both medium effects. As shown in
Fig. 7, at pretraining but not posttraining, Q–Q plots had lower
discriminability than Stable Q–Q and P–P plots. That is, at
least before training, it was easier to judge plots when they

had a stable, consistent reference line, a finding consistent
with data on judgments of scatterplots (Doherty &
Anderson, 2009), F(2, 111) = 15.23, p < .001, ηp

2 = .22, with
Tukey’s HSD showing significantly lower AUC for Q–Q than
stable Q–Q and P–P plots, ps < .001, but no significant differ-
ence between Stable Q–Q and P–P plots, p = .75. However,
after training, performance was similar across the three graph
types, suggesting that the choice of particular Q–Q and P–P
plots may have little impact, F(2, 111) = 1.64, p = .20, ηp

2 =

Table 2 Posttraining discriminability as measured by area under the curve (AUC) for all experiments (1–4)

Experiment condition Human judgments Formal hypothesis tests

Mean [95% CI] Pearson χ2 Kolm.-Sm.-L. Anderson–Darling Shapiro–Francia Shapiro–Wilk

Exp. 1

Histogram .749 [.717, .773] .893 .941 .980 .978 .982

Q–Q .826 [.774, .862]

Exp. 2

Q–Q .834 [.803, .858] .910 .948 .986 .982 .991

Stable Q–Q .861 [.845, .876]

P–P .838 [.810, .860]

Exp. 3

Small sample .779 [.750, .808] .865 .876 .910 .919 .919

Large sample .822 [.794, .843] .891 .921 .917 .946 .927

Exp. 4 (Range)

Small sample .817 (.725–.900) .865 .876 .910 .919 .919

Large sample .844 (.775–.931) .891 .921 .917 .946 .927

Note. Numbers show the proportion of area under the ROC curve, with higher numbers indicating better discriminability. Because formal test results are
constants, human judgments are significantly different from a formal test result whenever the 95% CI does not overlap with the formal test number. All
95% confidence intervals (CIs) were estimated via bootstrapping with bias-correction and acceleration (BCa). In Exp. 4, ranges are listed instead of CIs
because there were only three experts (participants). Formal hypothesis tests had identical results across Exps. 3 and 4 because the same stimuli sets were
used. Kolm.-Sm.-L. = Kolmogorov–Smirnov (Lilliefors version)

Fig. 7 In Experiment 2, power of hypothesis tests across all possible
alpha levels, and power of human decisions across all possible
confidence thresholds. Kolm.-Smir. (L) = Kolmogorov–Smirnov
(Lilliefors version)
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.03. Stable Q–Q plots had the highest mean performance of
the three graphs, and so these plots were used in all remaining
experiments.

Experiment 3: Ecological validity

The previous experiments suggested that several formal hy-
pothesis tests of normality perform better than informal judg-
ments. Do such findings generalize to more realistic situa-
tions? Experiment 3 involved several modifications to address
this question.

Researchers often wish to judge normality to inform deci-
sions about other routine hypothesis tests, such as whether two
or more means differ in a population. In such a situation, the
decision about normality is intended to improve the more
important decision about whether the means are equal. So,
the goal is not to determine whether the population is exactly
normal or not. Rather, the goal is to determine whether the
population is close enough to normal for one test—often a
parametric test—to produce fewer errors (Type I and/or II)
than an alternative.

To represent such a real-world decision, in Experiment 3,
participants made decisions about whether a sample came
from an approximately normal distribution or not. In particu-
lar, approximately normal was operationally defined here as
any population distribution shape close enough to normal for a
common parametric test to produce more power than its non-
parametric analog. Conversely, “not normal” was defined as
any population shape different enough from normal that the
nonparametric test was more powerful than the parametric
one. Specifically, the parametric test here was an
independent-samples t test, and nonparametric test was the
MWW test. These tests were chosen for two reasons. First,
these tests are used for one of the simplest and most common
experimental designs—a two-condition between-participant
experiment, frequently used for comparison of a treatment
group to a control group. Second, both the independent-
samples t and MWW tests have acceptable Type I error rates
under the conditions studied here, and so their performance
can be compared solely on the basis of power (i.e., 1–Type II
error probability). So, in addition to discriminability, we also
examined the power implications of both informal and formal
judgment, that is, how normality judgments would lead to
more or less powerful tests of equal means.

To further mimic real-world decisions, in Experiment 3,
distribution shapes for stimuli were generated by stratified
sampling of combinations of skewness and kurtosis observed
in actual psychological and educational data (via Cain et al.,
2017). Figure 8 shows the resulting combinations of skewness
and kurtosis, along with the distinction between approximate-
ly normal (green) and not (red).

Additionally, because researchers have incentives to reach
valid, replicable conclusions, in Experiment 3, participants
were provided with a tangible incentive for performance.
Participants bet points on normality judgments, with the num-
ber of points bet indicating confidence. The participant who
achieved the highest number of points at the end of the exper-
iment was awarded a $75 bonus.

Finally, in many real-world settings, researchers judge nor-
mality across various sample sizes. To provide at least some
semblance of this real-life complexity, in Experiment 3, each
participant judged stimuli of two different sizes (small: n = 30,
and large: n = 120). It was expected that both participants and
formal hypothesis tests would perform better in the large sam-
ple condition, where more information was available. Of pri-
mary interest, though, was whether the advantage of formal
tests over informal judgment would remain in an experiment
that better resembled realistic situations

Method

Participants

Initially, 39 participants were recruited from introductory un-
dergraduate statistics courses in the Math department. No par-
ticipant met the a priori exclusion criteria described in
Experiment 1. One participant fell asleep during the experi-
ment, and so his data were excluded, resulting in a final sam-
ple of n = 38. Participants were compensated with course extra
credit, and the best-performing participant also received $75.

Design

Stimulus sample size was manipulated within-participants
such that half of the trials showed a stable Q–Q plot with a
small sample (30 dots) and half with a large sample (120 dots).
To give participants a greater chance of matching or beating
the performance of formal tests, the pretraining block was
replaced with a training block (80 trials with feedback).

Materials

Population distributions for stimuli were based on Cain et al.
(2017). Cain and colleagues contacted 503 researchers who
had published in the flagship journal of either the Association
for Psychological Science (Psychological Science) or the
American Educational Research Association (American
Educational Research Journal). They requested, among other
information, the univariate skewness and kurtosis of all con-
tinuous variables used in each publication. Their request
yielded 1,567 cases. We excluded 26 cases due to missing
values, and seven due to mathematically impossible combina-

tions of skewness and kurtosis (γ2 < γ21−2 ). In pilot

1173Psychon Bull Rev  (2021) 28:1164–1182



simulations, some extreme combinations of skewness and
kurtosis produced tied observations, which led to problems
with power calculations. To avoid these problems, we exclud-
ed 65 cases where pilot simulations produced more than 10%
ties, leaving 1,469 remaining cases.

For each remaining case, first, a super-sample of n =
1,500,000 was generated from a standardized population
with that case’s skewness and kurtosis values. This was
accomplished via the Pearson distribution family and the
PearsonDS package in R (Becker & Klößner, 2016). Next,
this super-sample was then divided into 10,000 samples of
size n = 30, and 10,000 samples of size n = 120. Each
sample was then subdivided into two groups of equal size,
representing two independent-samples (ns = 15, and ns =
60, respectively). To make the alternative hypothesis true,
one of the two groups had d = .5 added to each observation.
Power of the t test was estimated as the proportion of the
10,000 samples that produced a t-test p value less than .05.
Power was estimated accordingly for the MWW test. We
verified that the Type I error rate was approximately .05 by
also conducting these tests where the null was true (i.e., d =
0). All tests showed an estimated Type I error rate less than
.06, which is expected, as the simulation margin of error
for the proportion was ±.010. However, in 1.7% of cases,
the Type I error rate was lower than .04, and this was more
common for t tests (1.5%) than for MWW (.2%). These
cases were all in the small sample size (n = 30) condition,
and they appeared to be outliers because the average Type I
error rate was similar for two tests, and even slightly higher
on average for t (M = .049) than MWW (M = .047).
Nevertheless, with exceptionally low Type I error rates,

one could adjust alpha above .05 to achieve higher power
while keeping the Type I error rate below .05. We exam-
ined this possibility through 10,000 simulations with the
outlying cases. Adjusting alpha upward to achieve a Type I
error rate of .05 usually improved power for both t tests
and MWW, but in no case did it change which test had the
highest power. In other words, adjusting alpha in these
outlying cases does not change which procedure—t versus
MWW—was preferable.

For cases where MWW had higher power, the correct an-
swer was defined as “not normal”; for cases where a t test had
higher power, the correct answer was defined as “normal.”
The results are summarized in Fig. 8. (The greater advantage
of the MWW test in the large sample condition occurred be-
cause increasing sample size increased the power of the
MWW test at a faster rate than that of the t test).

To generate stimuli, 140 cases were randomly sampled
from each of the four combinations of sample size and
power advantage (t test vs. MWW), for a total of 560 stim-
uli. Borderline cases, where the power difference was less
than the simulation margin of error (±.010), were excluded
from this sampling process (see Fig. 8, gray circles).
Stimuli were generated without adding a constant to one
group (without adding d = .5) so that the stimuli represent-
ed residuals, which are typically evaluated rather than raw
data. Of the 560 stimuli, a random sample of 480 was used
as critical stimuli, and the remaining were reserved for
instruction examples. Presentation order was random with
the constraint that each combination of conditions (sample
size and normal versus not) was equally represented during
each 16 trial subblock.

Fig. 8 Experiments 3 and 4 used skewness and kurtosis combinations
reported in the literature. Green (+) indicates approximately normal
combinations, with higher power for an independent-samples t test. Red
(▽) indicates not normal combinations, with higher power for a Mann–
Whitney–Wilcoxon (MWW) test. Gray (•) indicates less than .01

difference in estimated power. Lower case letters indicate combinations
used in Experiment 1 (e.g., n = normal). Gray curves show the boundary
for mathematically possible combinations. Figure scales were trans-
formed (Yeo & Johnson, 2000) so outliers would be visible
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Procedure

Participants were told that “graphs may have small or
large sample sizes (few or many dots).” They were also
warned that they might need to be more or less lenient
about their decision based on the sample size. On each
trial, “Large Sample” or “Small Sample” appeared to
the left of the graph.

At the start of the first block, the upper right-hand corner
showed “Score: 200.” The Likert scale from left to right was
“Normal Wager 3,” “Normal Wager 2,” “Normal Wager 1,”
“NOT Normal Wager 1,” “NOT Normal Wager 2,” “NOT
Normal Wager 3,” where numbers represented the points
bet. Participants were allowed up to 12 seconds to respond.
After each response in the training block, “Normal” or “NOT
normal” appeared below the graph for 4 seconds.
Additionally, in the last 1 second, the change in score ap-
peared below the current score. For example, if a participant
chose “Normal Wager 2” but the correct answer was NOT
normal, “−2” would appear below the current score total.
The next trial would then show the updated current score
(e.g., 198). During the posttraining block, no feedback infor-
mation (including the score and score changes) was shown
(for details, see https://osf.io/msv72).

Data analysis

We also examined how informal versus formal decisions
could lead to power differences not just in tests of nor-
mality, but also in the power of a follow-up test to detect
a difference between means. Specifically, for each stimu-
lus, we know (i) the power of an independent-samples t
test, and (ii) the power of a MWW test, and hence, which
test will have the higher power to detect a difference be-
tween means. We also observe (iii) the informal human
decisions of normality, and (iv) the formal normality test
decisions of normality. We sought to determine if using
the formal approach (iv) to select between (i) and (ii)
would lead to higher power to detect a difference between
means than using the informal approach (iii) to select
between (i) and (ii). Additionally, we analyzed the pro-
portion of correction decisions—that is, how often a de-
cision (from iii or iv) led to the more powerful follow-up
test (i vs. ii). For formal tests, we report a low discrimi-
nation test (Pearson χ2) and high discrimination test
(Shapiro–Wilk) to highlight the range of results.

These power and proportion correct analyses require a de-
cision criterion, a threshold between normal and nonnormal
decisions. For informal human judgments, we used the thresh-
old between “Normal Wager 1” and “NOT Normal Wager 1”
response options. Unfortunately, for formal normality tests,
the threshold is more arbitrary, so we examined three: the
traditional α = .05, a more stringent α = .005 (Benjamin

et al., 2018), and an optimal alpha. Optimal alpha was esti-
mated as the one that maximized power in the long run to
detect a difference between means, optimized for this partic-
ular set of critical stimuli, where half of stimuli had higher
power for a t test, and the other half higher power for a
MWW test. Optimal alphas were estimated as .197 and .019
for the Pearson χ2 small and large sample conditions, respec-
tively, and .027 and .0002 for the Shapiro–Wilk test (see
Supplement 5 for details).

Results and discussion

As shown earlier in Table 2, it was easier to discriminate ap-
proximately normal from nonnormal when the stimuli had a
larger sample size (i.e., more dots). A paired t test of the AUC
showed that stable Q–Q plot judgment of large sample stimuli
was significantly higher than that of small sample stimuli (M =
.822 and .779), t(37) = 2.11, p = .04, η2 = .11, a medium effect.

More importantly, though, the advantage of formal tests
over informal judgment remained despite the more realistic
decision context. As shown in both Table 2 and Fig. 9a–b,
regardless of the stimulus sample size, stable Q–Q plot dis-
criminability was significantly lower than that of all formal
hypothesis tests. One-sample t tests confirmed that small sam-
ple stimuli discriminability of stable Q–Q plots (M = .779, SE
= .015) was significantly lower than that of every formal test
(range: .865–.919), all ps < .001. The same was true for large
sample stimuli (stable Q–Q plot:M = .822, SE = .013; formal
test range: .891–.946), all ps < .001. The best performing tests
were the Shapiro–Francia and Shapiro–Wilk tests. Although
the Shapiro–Francia test is a simplified version of the
Shapiro–Wilk test, the former had higher discriminability than
the latter. This pattern could be due to the decision involving
approximate rather than strict normality (a judgment that these
tests were not specifically designed for), or perhaps to the
particular combinations of the skewness and kurtosis com-
monly found in psychology and education data.

The discriminability advantage of formal normality tests
led to follow-up tests (t vs. MWW) that were more powerful,
though this power advantage was small and not as robust as
other patterns. As shown in Table 3, for small samples, human
judgment power (M = .345, SE = .003) was nonsignificantly
lower than formal test power (range: .342–.350), .11 < ps <
.54. For large samples, human judgment power (M = .827, SE
= .002) was significantly lower than the power of most formal
testing approaches (range: .829–.833), ps < .05, except for the
Pearson χ2α = .005 and the Shapiro–Wilkα = .05, which human
judgment was nonsignificantly lower than, p = .05 and .57,
respectively.

As shown by proportion correct in Table 3, formal normal-
ity tests usually led to choosing a more powerful follow-up
test than human judgments did. For small samples, human
judgment proportion correct (M = .743., SE = .016) was
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significantly lower than formal test proportion correct (range:
.796–.867), ps < .002. For large samples, human judgment
proportion correct (M = .789, SE = .014) was significantly
lower than most formal tests’ proportion correct (range:
.733–.867), ps < .003, with the exception of Shapiro–Wilkα
= .05, which had significantly lower proportion correct than
human judgment, p < .001.

Experiment 4: Experts

Previous experiments involved visual judgments from rela-
tively novice participants—undergraduates from introductory
psychology and introductory statistics courses. Could formal
hypothesis tests beat the performance of expert participants?
On the one hand, expertise may aid judgments, as experts may
have had years of experience, experience immeasurably great-
er than that obtained through a few hundred trials with feed-
back. Indeed, there is some evidence that seasoned graduate
students and faculty can discriminate scatterplot patterns more
accurately than can novices (Lewandowsky & Spence, 1989).
On the other hand, though, for judgments of normality, the

type of feedback that experts receive is often ambiguous.
Researchers almost never see the true shape of the population
from which their samples were drawn. Feedback may consist
of proxies for this true shape, such as normality test statistics
or p values, but even with such proxy feedback, the researcher
could, at best, learn to match the performance of formal tests.
Because of such limited feedback, experts may still be unable
to beat the performance of formal hypothesis tests of normal-
ity (see Karelaia & Hogarth, 2008; Shanteau, 1992). To ad-
dress this issue, Experiment 4 was conducted largely as a
replication of Experiment 3, but with a small sample of ex-
perts (n = 3) who had doctoral degrees in relevant subjects.

Method

Participants

One participant had a PhD in psychometrics and quantitative
psychology; one in mathematics (this participant specialized
in statistics); and one in measurement, evaluation, and re-
search methodology. Participants were recruited via emails
to the APA Division 5 (Quantitative and Qualitative

Fig. 9 In Experiments 3 and 4, power of hypothesis tests across all
possible alpha levels, and power of human decisions across all possible
confidence thresholds. Experiment 3 (a–b) shows performance of

undergraduates. Experiment 4 (c–d) shows performance of PhD-
holding experts. Kolm.-Smir. (L) = Kolmogorov–Smirnov (Lilliefors
version)
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Methods) LISTSERV and to local experts. Participants were
not authors of this paper, nor were they aware of the results of
previous experiments. Participants were paid $75 each, plus a
$75 bonus for the participant with the highest final score.

Design and materials

Experiment 4 was programmed with jsPsych (de Leeuw,
2015) to allow web-based participation. Critical stimuli were
randomly assigned to either the block of 400 training stimuli
or the block of 80 posttraining stimuli, but with the constraint
that each combination of conditions (sample size, and normal
versus not) was equally represented during each of these
blocks.

Procedure

Participants took the experiment using a web browser on a
desktop or laptop computer. Touch-input devices (e.g., iPad,
smartphones) did not function on the website. Participants
were instructed beforehand to select a quiet time and place
to avoid distraction. We arranged an agreed-upon time with
each participant so that we were on-call in case of questions or
problems.

The instruction screens noted that the experiment was
adapted from one used with undergraduates, and so some
parts of the experiment might seem obvious or might seem
like a game. After receiving instructions from Experiment 3,
additionally, participants were given the definition of approx-
imately normal: “For the purposes of this study, an approxi-
mately normal population is defined as one where it is reason-
able to use a two-sample t test rather than a nonparametric
analog, the Mann–Whitney U test, because the t test tends to
be more powerful. Conversely, a nonnormal population is
defined here as one where the Mann–Whitney U test tends
to be more powerful.” (For details, see https://osf.io/msv72.)

Data analysis

CIs for each individual subject’s discriminability (AUC) were
estimated through bootstrapping with 10,000 stratified repli-
cates (see Robin et al., 2011).

Results and discussion

As shown in Fig. 9c–d, the average expert judgment appeared
to have less discriminability than most formal tests. Perhaps
due to the small number of experts, one-sample t tests showed
that human discriminability of small samples (M = .817, SE =

Table 3 Power and Proportion Correct in Experiments 3–4

Experiment Human judgments Formal hypothesis tests

Outcome Pearson χ2 Shapiro–Wilk

Condition Mean [95% CI] α = .05 α = .005 α = opt. α = .05 α = .005 α = opt.

Exp. 3

Power

Small sample .345 [.338, .351] .347 .342 .348 .349 .347 .350

Large sample .827 [.823, .831] .832 .831 .832 .829 .832 .833

Proportion correct

Small sample .743 [.712, .772] .838 .796 .808 .838 .850 .867

Large sample .789 [.761, .814] .833 .842 .846 .733 .833 .867

Exp. 4

Power (Range)

Small sample .325 (.324–.328) .347 .342 .348 .349 .347 .350

Large sample .829 (.819–.840) .832 .831 .832 .829 .832 .833

Proportion correct

Small sample .792 (.725–.825) .838 .796 .808 .838 .850 .867

Large sample .800 (.775–.850) .833 .842 .846 .733 .833 .867

Note. Power shows the probability that the follow-up test (t test or MWW) would correctly detect a difference between means when that follow-up test
was chosen using either human judgments of stable Q–Q plots or formal hypothesis tests of normality. Proportion correct shows how often the normality
decision led to the more powerful follow-up test. Because formal test results are constants, human judgments are significantly different from a formal test
result whenever the 95% CI does not overlap with the formal test number. All 95% confidence intervals (CIs) of the mean were estimated via
bootstrapping with bias-correction and acceleration (BCa). In Exp. 4, ranges are listed instead of CIs because there were only 3 experts (participants).
Formal hypothesis tests had identical results across Exps. 3 and 4 because the same stimuli sets were used. Opt. = Optimal. MWW = Mann–Whitney–
Wilcoxon
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.051) and large samples (M = .844, SE = .046) were not sig-
nificantly lower than the discriminability of formal tests (small
sample range: .865–.919, large sample range: .891–.946), ps >
.15. As shown by the parentheses in Table 2, there was a wide
range of performance among the three experts, but even the
best-performing expert had lower discriminability than the
Shapiro–Francia test for both sample sizes, and lower than
most hypothesis tests (Anderson–Darling, Shapiro–Francia,
and Shapiro–Wilk) for the small sample size. For small sam-
ples, discriminability of individual experts (.725, .826, .900;
individual 95% CIs [.600, .850; .704, .925; .786, .985])
corresponded to the 28.9, 68.4, and 86.8 percentiles of non-
experts (Experiment 3) in the same condition. For large sam-
ples, discriminability of individuals experts (.775, .826, .931;
individual 95% CIs [.650, .900; .684, .945; .851, .985])
corresponded to the 21.0, 47.4, and 100 percentiles of nonex-
perts. The best-performing expert was a different individual
across the two sample sizes.

As shown in Table 3, small sample human judgment power
(M = .325, SE = .001) was significantly lower than formal test
power (range: .342–.350), ps < .004. For large samples, hu-
man judgment power (M = .829, SE = .006) was not signifi-
cantly different from formal test power (range: .829–.833), .59
< ps < .89. For small samples, human judgment proportion
correct (M = .792, SE = .033) was nonsignificantly different
from formal test proportion correct (range: .796–.867), .15 <
ps < .91. Likewise, for large samples, human judgment pro-
portion correct (M = .800, SE = .025) was not significantly
different from formal test proportion correct (range:
.733–.867), .12 < ps < .31.

General discussion

Overall, informal graph judgments tended to be inferior to
formal hypothesis tests. Indeed, even the Pearson χ2 test,
which is one of the oldest and least powered tests of normality,
was usually preferable to informal judgment. The inferiority
of informal human judgment occurred despite giving partici-
pants several crutches, crutches that are rarely if ever available
in real-world settings. First, participants were trained with
hundreds of examples with feedback, feedback that is almost
never available in real life because the researcher rarely gets to
see the population fromwhich the sample was drawn. Second,
participants were informed that each sample would have an
equal chance of coming from a normal population or not. This
kind of base-rate information is rarely known in actual re-
search. Third, participants were shown, at most, two different
sample sizes (Experiments 3–4), whereas in actual research
the sample sizes can vary considerably from study to study,
and even from variable to variable within study. In actual
research, informal judgment would have to be calibrated to
numerous different samples sizes, making learning even more

challenging. For these reasons, the human performance ob-
served in the present experiments is likely an overestimate
of that achievable in realistic settings.

Three formal tests showed relatively strong performance:
Shapiro–Wilk, Shapiro–Francia, and Anderson–Darling tests.
These tests performed well not only when the decision was
between “normal” versus “not normal” (Experiments 1–2),
but also when the decision was between “normal enough for
a parametric test” versus not (Experiments 3–4). Likewise,
these tests performed well regardless of whether the true pop-
ulation distribution (the alternative hypothesis) consisted of a
variety experimenter chosen shapes (Experiments 1–2) or of
realistic skewness and kurtosis combinations commonly ob-
served in psychological and educational data (Experiments 3–
4). The generality of these results suggests that the Shapiro–
Wilk, Shapiro–Francia, and Anderson–Darling tests are all
defensible choices (also see Gan & Koehler, 1990; Shapiro
& Wilk, 1965; Thode, 2002).

Receiver operating characteristics were crucial for compar-
ing different approaches to assessing normality. They were
crucial because overall accuracy is influenced both by a
criterion/confidence threshold, which is easy to change, and
by each approach’s ability to discriminate (approximately)
normal from nonnormal, which is not. By illustrating all pos-
sible criteria/confidence thresholds, ROCs showed a clear ad-
vantage in discriminability of several formal tests over infor-
mal judgments. However, if one were to use a dependent
measure other than discriminability, the advantages of formal
tests might be obscured. For example, using proportion of
correct judgments as the dependent variable could produce
an apparent advantage for informal judgments, at least if one
sets the alpha level for formal tests to be too high or too low.
Indeed, with certain alpha levels, proportion correct could
even suggest an apparent advantage of small samples over
large ones (see Anderson, Doherty, Berg, & Friedrich, 2005).

ROCs provide a resolution to the sample size paradox that
troubles various formal model diagnostics, including normal-
ity tests. Rather than treating large ns as worse than small ns,
ROCs illustrate that larger sample sizes encourage better dis-
criminability. Larger sample sizes are not problematic in and
of themselves; the problem arises if the chosen criterion (α) is
too high, allowing too many “not normal” decisions. That is,
the real problem that the paradox points to is that the optimal
criterion is unclear. However, switching from formal to infor-
mal judgment does not solve this criterion problem—it merely
hides it. For example, when judging a Q–Q plot, one must still
make an arbitrary decision about how close to the reference
line is “close enough.” Formal hypothesis tests make this cri-
terion setting explicit, but informal judgment still relies on
some criterion, whether explicit or not.

An additional concern with informal judgment of graphs is
that those judgments create additional researcher degrees of
f reedom. Researchers could be biased , perhaps

1178 Psychon Bull Rev  (2021) 28:1164–1182



unintentionally, to use these degrees of freedom to produce
results that are publishable, but not replicable (John,
Loewenstein, & Prelec, 2012; Simmons, Nelson, &
Simonsohn, 2011). For example, if a primary test of interest
produced nonsignificant results, a researcher may then be
tempted to scrutinize the model for assumption violations,
using even small deviations from a reference line to justify
one or more additional statistical procedures. The same re-
searcher might not have examined model assumptions, or per-
haps would have done so with different informal criteria, if the
primary test had produced a significant result. If the researcher
instead used a formal hypothesis test for model diagnostics,
both the test and criterion could be explicitly decided upon
beforehand.

While the discriminability advantage of formal tests was
clear, the power advantage was more subtle. This could be due
to the similar power of the independent-samples t test and
MWW test for the stimuli used in Experiments 3 and 4, as
the mean absolute power difference was only .086. More sub-
stantial differences in power or other outcomes could arise
when choosing among more distinct statistical models, or re-
latedly, when the choice depends on combinations of assump-
tion violations (normality, homoscedasticity, and/or indepen-
dent observations). The experiments here focused on just a
simple decision involving similar models and only one possi-
ble assumption violation.

More generally, the current work suggests that formal ap-
proaches to model diagnostics might be more fruitful than pre-
viously thought. Unfortunately, there could be several barriers
to their use. One barrier may be amisconception that parametric
tests are, in general, immune to the effects of assumption vio-
lations, so long as n is greater than ___ (readers may fill in the
blank with 30, 100, 120, or some other rule of thumb).
Unfortunately, even with relatively large samples, a simple
parametric test can be underpowered relative to an alternative
(e.g., Sawilowsky & Blair, 1992). Large samples may also fail
to help with confidence intervals or other estimates of interest
(e.g., Bishara et al., 2018). In other words, it would be an
oversimplification to declare parametric tests robust in general
(Bradley, 1978). A second barrier may be the worry that as-
sumption tests increase study-wise Type I error by increasing
the number of tests. However, a Type I error on an assumption
test is different from one on the test of primary interest (e.g., a t
test), and an error on one need not lead to an error on the other.
Indeed, the situations that are ambiguous enough to lead to an
error on an assumption test are also the situations where as-
sumption violations, if any, are likely to be subtle, and therefore
have little impact on the test of interest.

It is more difficult to overcome a final barrier: What is an
optimal criterion for an assumption test? One possible ap-
proach to the criterion problem would be to sidestep it, and
simply use robust methods. To avoid circularity, we took that
approach here, for example, by using bootstrapped confidence

intervals for the major effects of interest. However, using
models with more detailed assumptions can provide more
accurate inference and estimation, or at least when those as-
sumptions are met. An alternative approach would be to iden-
tify some function to estimate an optimal alpha or other crite-
rion. Such a function may depend on a variety of factors,
including the primary hypothesis test of interest (e.g.,
ANOVA, t test), the alpha level of that test of interest, how
well other assumptions are satisfied, the relative sample sizes
in multiple group designs, and even on combinations of these
factors. It is an open question as to whether these numerous
factors could be incorporated into a function simple enough
for practical use.

Limitations

First, our conclusions should not be oversimplified to suggest
that all graph judgment or all informal judgment is undesir-
able. After all, our conclusions were reached by both formal
methods (e.g., p < .05) and informal ones (ROC plot judg-
ment). Whether a formal decision rule is superior to informal
judgment is an empirical question, and one that should be
addressed for the particular statistical task of interest (e.g.,
Coulson, Healey, Fidler, & Cumming, 2010; Fidler &
Loftus, 2009).

Second, our experiments and simulations used samples
drawn from continuous population distributions. Caution
should be used when data consist of short-range Likert scale
ratings or other situations where ties are frequent. Frequent ties
can distort the expected linear pattern on Q–Q and P–P plots,
and they also necessitate modifications to formal assumption
tests (e.g., for the Shapiro–Wilk test; see Royston, 1989).

Third, it is possible that participants’ informal judgments
would have been better had they been provided with other
cues in addition to the graphs, such as combinations of graphs
with one or more formal test results. Conversely, it is also
possible that they would have been worse (e.g., Goldberg,
1968), as often happens when cues are redundant (Karelaia
& Hogarth, 2008). The Shapiro–Francia test is largely redun-
dant with a Q–Q plot, as the Shapiro–Francia test statistic (W')
is a measure of the linearity of dots on that plot. Because of
such redundancy, Shapiro–Francia and other correlation type
tests (e.g., Shapiro–Wilk) seem unlikely to be beaten by in-
formal judgments that combine these test results with some
form of Q–Q plot inspection.

Fourth, assumption tests are not always warranted, and
there are some situations in which they do more harm than
good. A well-known example is the test for homogeneity of
variance prior to conducting a two-sample t test. In that situ-
ation, the assumption test is unhelpful because the Welch ver-
sion of the test has no equal variance assumption, and yet
performs as well or better than the two-sample t test, even
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when homogeneity of variance is satisfied (Moser & Stevens,
1992; Zimmerman, 2004). Of course, there is no reason to
expect that the pitfalls of assumption tests can be avoided by
informal inspections of Q–Q plots or other graphs. Informal
judgments can carry the same risks as formal hypothesis tests,
and possibly more; if they are less discriminating, they behave
as assumption tests, but with additional noise influencing the
outcome.

Finally, while power and Type I error are important con-
siderations for choosing a model, numerous other factors
might also be considered, such as interpretability, precision
of estimates, and prediction error. That is, model choice is a
complex, multi-attribute decision problem. Even if the deci-
sion ultimately relies on some informal weighting of these
many attributes, it could still be advantageous to formalize
the judgment of individual attributes.

Conclusions

The relative value of formal tests versus informal statistical
judgments may appear obvious, or at least until one recalls the
long-standing debates about these issues (Bakan, 1966;
Cumming, 2014; Fisch, 1998; Greenwald, Gonzalez, Harris,
& Guthrie, 1996; Nelson, Simmons, & Simonsohn, 2018;
Skinner, 1956). Experiments that directly compare formal
and informal statistical judgment, and particularly within an
ROC framework, offer an empirical approach to navigate
these debates. The experiments here showed that formal sta-
tistical judgment can be more discriminating, resulting in
slightly higher power of the chosen statistical model.
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