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Abstract
We use cognitive models to evaluate three theories of the change in semantic memory caused by Alzheimer’s disease. We use
data from 14,096 clinical assessments of 3602 Alzheimer’s patients and their caregivers. Each patient completed a semantic
memory task involving the odd-one-out comparison of animal names. Each patient was also independently evaluated to
determine their level of impairment. Our cognitive models assume a feature-based representation of the animals and odd-
one-out choice probabilities based on common-feature similarities. We find no evidence for the restructured representation
hypothesis, which claims that impairment causes changes in the features used to represent stimuli. We also find no evidence
for the attention change hypothesis, which claims that impairment causes greater attention to be given to concrete features at
the expense of more abstract features. We do find evidence for the noisy access hypothesis, which claims that odd-one-out
choices become less determined by semantic similarity and more prone to the simple response strategy of choosing the last
option. We conclude that the noisy access hypothesis provides a simple account of odd-one-out choice behavior throughout
the progression of Alzheimer’s disease. More elaborate theories involving changes to underlying mental representations and
attention processes need to provide evidence they are superior to the noisy access account.

Keywords Semantic memory · Alzheimer’s disease · Odd-one-out task · Representation change · Attention change ·
Noisy access

Introduction

Alzheimer’s disease is a neurodegenerative disease that,
according to the World Health Organization (2019), is
the leading cause of dementia, with about 10 million
new cases worldwide each year. Memory decline is one
of the first noticeable symptoms of Alzheimer’s disease
(McKhann, Knopman, Chertkow, Hyman, Jack, Kawas,
& Phelps, 2011), and many cognitive measures used to
diagnose and monitor this disease rely on tests of episodic
memory, such as tests of free and cued recall (Buschke,
1984; Grober & Buschke, 1987) and autobiographical
memory (Kopelman, Wilson, & Baddeley, 1989; Levine,
Svoboda, Hay, Winocur, & Moscovitch, 2002). However,
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other diagnostic cognitive measures rely on semantic
memory, such as category fluency tasks (Newcombe, 1969),
verbal fluency tasks (Benton & Hamsher, 1983), and
picture naming tasks (Kavé, 2005). People diagnosed with
Alzheimer’s disease tend to do poorly on semantic memory
tasks and have semantic memory deficits over and above
those associated with normal cognitive aging (Nebes, 1989).

One way to study semantic memory is by testing people’s
odd-one-out choices in a triadic comparison task. This
task is part of some well-established Alzheimer’s testing
batteries (e.g., Shankle, Mangrola, Chan, & Hara, 2009;
Trenkle, Shankle, & Azen, 2007). One of the most common
tests involves odd-one-out choices between animal names.
In this task, on every trial, people are verbally presented
with three animal names and must choose the one that
is the least like the other two. For example, out of the
names “giraffe”, “elephant”, and “cow”, a person might
choose “cow” as the odd one out. This task does not have
correct answers but, from a person’s odd-one-out choices,
it is possible to make inferences about their semantic
representation of the animals. If a person chooses “cow” as
the odd one out, the implication is that they believe “giraffe”
and “elephant” are more similar to each other than either is
to “cow”.
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Previous work has examined changes in stimulus similar-
ity between healthy controls and Alzheimer’s patients using
triadic comparisons of odors and colors (Razani, Chan,
Nordin, & Murphy, 2010), line drawings of common objects
(Au, Chan, & Chiu, 2003), and pictures of animals and tools
(Chan, Salmon, & De La Pena, 2001). While it is clear that
perceptions of similarities do change, the underlying reason
for the change is debated. This debate can be summarized
in terms of three competing hypotheses. The first, which
we call the restructured representation hypothesis, is that
the underlying semantic representation has changed with the
onset of Alzheimer’s disease. In an influential body of work,
Chan and colleagues (e.g., Chan, Butters, Paulsen, Salmon,
Swenson, & Maloney, 1993a, Chan, Butters, Salmon, &
McGuire, 1993b, Chan, Butters, Salmon, Johnson, Paulsen,
& Swenson, 1995) argue that patients with Alzheimer’s
disease have semantic networks where the associations
between items differ from those of elderly healthy controls.
One way to quantify people’s latent semantic networks is
by using scaling and clustering techniques, such as mul-
tidimensional scaling (MDS: Shepard, 1980). In an MDS
analysis, the similarity within a set of items is represented
as distance between points in k-dimensional space, so that
items that are judged to be more similar are located closer
together in the space. In elderly healthy controls, an MDS
analysis showed a smaller distance between similar animals
(e.g., cat and dog) and a larger distance between less similar
animals (e.g., cat and sheep). In contrast, for Alzheimer’s
patients, the typical clustering of similar items became more
diffuse, and MDS analyses revealed an increased distance
between similar animals and decreased distance between
less similar animals (Chan et al., 1993a).

A related hypothesis, which we call the attention
change hypothesis, is that Alzheimer’s patients use different
information about the animals to make odd-one-out choices,
when compared to healthy controls. In particular, Chan and
colleagues argue that Alzheimer’s patients have a tendency
to focus on concrete over abstract information. For example,
elderly healthy controls are more likely to make similarity
judgments of animals based on domesticity as compared
to predation or size. In contrast, Alzheimer’s patients are
more likely to make similarity judgments based on size
(Chan et al., 1993b; 1995). The attention change hypothesis
can be viewed as a special case of the restructured
representation hypothesis. Both involve changes in the
way people represent stimuli, but the attention change
hypothesis assumes that the underlying representation
remains the same, and it is only the selective attention to
the components of that representation that are impacted by
impairment.

A final hypothesis, which we call the noisy access
hypothesis, is that differences in the triadic comparison
task are not due to a change in the underlying semantic

representation. Instead, the atypical response pattern seen
in Alzheimer’s patients is due to an increasing loss
of regularity in their choice behavior, rather than any
fundamental representational change. The hypothesis is
simply that Alzheimer’s patients have trouble accessing
the information their semantic representations provide
(Nebes & Brady, 1990). Adopting this position, some
researchers (Elvevåg & Storms, 2003; Storms, Dirikx,
Saerens, Verstraeten, & De Deyn, 2003; Voorspoels et al.,
2014; White, Voorspoels, Storms, & Verheyen, 2014) argue
that the conclusions drawn about semantic reorganization
from clustering and scaling techniques such as MDS may
need to be tempered. Their argument is that differences
in MDS output indicate only that the elderly healthy
controls and Alzheimer’s patient groups are different in
some way, but not how they are different. It could be
that the patient data are simply noisier than the control
data, and this noise could have a number of causes,
including problems in accessing representations, a failure to
understand instructions, or differing response strategies.

Figure 1 provides a conceptual overview of how
these three hypotheses relate to understanding odd-one-
out choices. The example involves choosing between the
animals “cow”, “elephant”, and “giraffe”. The left side of
the figure shows a cognitively healthy person choosing
“cow” by relying on a feature-based representation. Each of
the animals is represented in terms of whether or not they are
fat, are a draught animal, have spots, have fur, come from
Africa, or are commonly found in zoos. Different features
receive different levels of attention, and the cognitively
healthy person is shown as paying the most attention to
the African and zoo features. The similarity between each
pair of animals is assumed to correspond to how many
features they have in common, with the features weighted by
their level of attention. For the cognitively healthy person,
elephant and giraffe are the most similar, and so cow is
chosen as the odd one out.

The remainder of Fig. 1 shows how this choice can
change according to the three hypotheses. Under the
restructured representation hypothesis, the features involved
in representing animals are different. In the example
presented, the African and zoo features are no longer used.
Based on the four features that remain, the cow and giraffe
are the most similar, and the elephant is chosen as the odd
one out. Under the attention change hypothesis, all of the
features continue to be used, but the patterns of attention
are different. In the example, the fat feature gains attention,
making cow and elephant the most similar, and leading to
giraffe being chosen as the odd one out. Finally, under the
noisy access hypothesis, no aspect of the representation is
changed. Instead, access to the information becomes less
precise, and the odd-one-out choice becomes less based on
similarities and closer to random responding.
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Fig. 1 Overview of three hypotheses for changes in odd-one-out
choices. The left side shows the representation of “cow”, “elephant”,
and “giraffe” in terms of a set of six features, where the area of circles
corresponds to the weight given to each feature. The cow is chosen as
the odd one out, as indicated by the encompassing dashed line. The
right side of the figure shows how this choice changes according to the

three hypotheses. At the top, the representational restructuring hypoth-
esis involves only a subset of the features, and the elephant is chosen.
In the middle, the attention change hypothesis involves different fea-
ture weights, and the giraffe is chosen. At the bottom, the noisy access
hypothesis involves degraded access to the representation and more
random choice

The goal of this article is to evaluate these three
hypotheses as accounts of the change in odd-one-out
performance caused by the progression of Alzheimer’s
disease. In the next section, we detail clinical data that
assess patients with different levels of impairment. We
then introduce a basic cognitive model of odd-one-out
choice behavior based on simple assumptions about how
stimuli are represented and decisions are made. The model
is then extended to capture the specific assumptions of
the restructured representation, attention change, and noisy
access hypotheses, and each extension is evaluated against
the clinical data. We find no evidence for restructured
representation and no evidence for the sorts of changes in
attention that have previously been proposed. Instead, we
find that the noisy access model provides a good account
of the changes in triadic choice behavior. We conclude by
discussing the implications and limitations of these findings.

Behavioral data

Our behavioral data come from the animal triadic compari-
son task of the Mild Cognitive Impairment Screen (MCIS:
Shankle et al., 2009) at a cognitive disorders clinic, as part
of routine cognitive assessment of patients and their care-
givers. The task draws from a pool of 21 animals: antelope,
beaver, camel, cat, chimpanzee, chipmunk, cow, deer, dog,
elephant, giraffe, goat, gorilla, horse, lion, monkey, rabbit,

rat, sheep, tiger, and zebra.1 For each specific assessment,
nine animals are chosen from the pool, and each is presented
in a triad with every other animal over a total of twelve
trials. The triads are presented in accordance with a λ-2 bal-
anced incomplete block design (Burton & Nerlove, 1976).
On each trial, patients are verbally presented with the ani-
mal names and have to respond by choosing the animal that
is least similar to the other two.

The data include 14,096 assessments of 3602 patients
and their caregivers, (52% female, age range 16–103 years,
mean age 76 years). At the time of assessment, patients were
classified by a physician with the Functional Assessment
Staging Test (FAST; Reisberg, 1988). The FAST stages
describe the severity of Alzheimer’s disease symptoms in
terms of people’s ability to perform daily living tasks, such
as managing finances, cooking, and grooming. Table 1
provides a summary of the number of patients and total
number of assessments by FAST stage, and a description of
each stage. Patients in stage 1 have no discernible deficits,
and those in stage 2 have only a subjective functional deficit.
These stages are considered cognitively normal. Patients
in stage 3 have symptoms of mild cognitive impairment,
while patients in stages 4, 5, and 6 have mild, moderate,
and moderately severe dementia, respectively. We did not

1Animal names are chosen based on work in cultural anthropology that
provides evidence for the universality of the semantic structure of the
domain (Romney & Moore, 1998).
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Table 1 A description of the number of assessments, patients, and identifying characteristics for each FAST stage in the data set

FAST stage Description Patients Assessments

1 & 2 no deficit or subjective deficit 576 2032

3 objective deficit in complex tasks 908 3685

4 mild dementia evident in daily living tasks 1169 5352

5 moderate dementia 430 1313

6 moderately severe dementia 519 1714

include patients in FAST stage 7, who have severe dementia,
because their cognitive function has degenerated to the point
of an inability to understand simple instructions (Reisberg,
1988). The FAST stage assessments of impairment were
made independent of memory test performance and so
provide an external measure for grouping patients in order
to study changes in the odd-one-out task behavior.

Some basic analyses of the data make clear that odd-
one-out choices change as impairment progresses. As an
example of change within a specific triad, consider the ear-
lier cow, elephant, and giraffe example. For this triad, cow
was chosen 53% of the time by patients in stages 1 and
2. Patients in stage 3, however, chose giraffe more often
than cow, choosing giraffe 42% of the time and cow 37%
of the time. Patients in stage 5 showed yet another pattern,
choosing elephant as often as cow, with both accounting
for 42% of all choices. The overall probability of different ani-
mals being chosen also often changes. For example, zebra was
chosen as the odd one out 22% of the time by patients in
stages 1 and 2, but 32% of the time by patients in stage 6,
whereas rat was chosen 53% of the time by patients in stages
1 and 2, but only 43% of the time by patients in stage 6.

As a more thorough analysis of change, we examined
the changes in similarities between pairs of animals across
the FAST stages. Specifically, we compared the rates with
which neither of a pair of animals was chosen, when both
were presented. The Bayes factor (Lee & Pope, 2006)
favored a change in this rate for 5% of all pairs moving from
stages 1 and 2 to stage 3, in 26% of pairs moving from stage
3 to 4, in 18% of pairs from stage 4 to 5, and in 7% of
pairs from stage 5 to 6. These differences make it clear that
there is widespread change in odd-one-out choices across
the FAST stages.

Modeling analysis

A basic model of odd-one-out comparison

We begin the modeling analysis by developing a basic
model of choice behavior in the odd-one-out tasks, which
serves as the foundation for evaluating the competing
hypotheses. The model has two core components: one for

representing the stimuli and their similarities, and one for
the decision-making processes that act on the similarities to
produce choice probabilities.

Common-features similarity

Previous research modeling the change in semantic memory
with impairment (Chan et al., 1993a), including modeling
focused specifically on animal odd-one-out comparisons
(Lee, Abramyan, & Shankle, 2016), has relied on spatial
representations like MDS. These representations assume
that stimuli can be represented in terms of values on
a small number of underlying psychological dimensions.
An alternative to the dimension-based representational
assumptions of MDS is to assume stimuli are represented
in terms of features (Goldstone, 1999; Shepard, 1980). We
think this is a more natural assumption for the representation
of conceptual stimuli like animal names, and it aligns better
with the set of hypotheses we aim to evaluate. In particular,
the representational restructuring hypothesis assumes that
components of the representation are added or deleted
with impairment. This hypothesis seems far more plausibly
expressed in terms of the gain or loss of a few features,
which typically apply to only a few stimuli each, rather than
the gain or loss of an entire dimension, which always apply
to every stimulus.

To represent the animal stimuli in terms of features, we
assume that the similarity, sab, of animal a and animal b

is equal to the sum of the weights of their shared features
(Shepard & Arabie, 1979; Tversky, 1977),

sab =
∑

k

wkfakfbk, (1)

where fak is a binary indicator variable that determines
whether or not animal a has feature k, and wk represents
the salience or weight of feature k. We used a truncated
Gaussian2 for the priors on the feature weights,

wk ∼ Gaussian (0, 1) T (0, ) . (2)

2We parameterize the Gaussian distribution in terms of the mean and
precision, consistent with the JAGS software we use to implement the
models. The precision is the reciprocal of the variance.
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This common-features model makes animals similar only to
the extent that they share features. Animals do not become
more similar by both not having a feature. There is good
evidence this is usually a reasonable assumption (Navarro
& Lee, 2004), and the common-features model is the basis
of widely used additive clustering and related methods in
similarity data analysis (Shepard & Arabie, 1979; Navarro
& Griffiths, 2008; Peterson, Abbott, & Griffiths, 2018).

Rather than using additive clustering methods to infer
the features, we used the Leuven concept database as a set
of possible features (De Deyne et al., 2008). This database
includes a total 288 features for the domain of animals,
and lists whether a set of animals has each feature based
on four independent raters. We adapted the database for
our modeling goals by including animals in the MCIS not
originally listed, and eliminating features that had identical
patterns of presence or absence across the 21 animals. These
changes resulted in a final set of 118 possible features.

Luce choice rule

The probability, πa of choosing animal a as the odd one
out in a triad of animals a, b, and c is determined by their
relative similarities. Intuitively, it is more likely animal a

will be chosen if animals b and c are the most similar to each
other. This intuition can be formalized by the Luce (1959)
choice rule, which defines the choice probabilities as

πa = sbc

sab + sac + sbc

πb = sac

sab + sac + sbc

πc = sab

sab + sac + sbc

. (3)

Given these probabilities, the observed choice of participant
i on trial t , which we denote yit , is modeled as

yit = categorical (πa, πb, πc) . (4)

This basic model provides an account of how the features
used to represent stimuli, and the attention weights for
those features, combine to produce similarities, as well as
an account of the decision-making processes by which the
similarities produce choice probabilities.

Restructured representation analysis

The restructured representation hypothesis assumes that the
features to which people attend may change as memory
impairment progresses. To create a model consistent with
this hypothesis, we extend the basic model in several ways.
First, we assume that people in any FAST stage use only a
subset of the available features. Following Zeigenfuse and

Lee (2010), this assumption is implemented by introducing
a latent binary indicator parameter zt

k that determines
whether feature k is considered in the similarity judgments
made by people in stage t , so that

st
ab =

∑

k

zt
kwkfakfbk . (5)

The feature-inclusion parameters are given the prior zt
k ∼

Bernoulli (φt ) with a base-rate for each stage φt ∼
beta (1, 5).

Changes in the features zk across FAST stages would
provide evidence in favor of the restructured representation
hypothesis. To measure this evidence, we introduce a
change process by which the features used to represent the
animals can change across FAST stages. This is formalized
by binary parameters τ t

k that indicate whether the inclusion
of feature k is the same or different between stage t and
stage t + 1, such that

zt+1
k =

{
zt
k if τ t

k = 0

1 − zt
k if τ t

k = 1.
(6)

The feature-change parameters are given a prior τ t
k ∼

Bernoulli
(
ψt

)
with a base-rate ψt ∼ uniform (0, 1) for the

transition from stage t to stage t + 1.
We implemented the restructured representation model,

and all of the models considered in this article, as graphical
models in JAGS (Plummer, 2003). JAGS provides a high-
level scripting language for implementing probabilistic cog-
nitive models that allows for computational Bayesian anal-
ysis using Markov-chain Monte Carlo sampling methods.

Results

Figure 2 shows the marginal posterior expectations of
the feature-inclusion parameters zt

k . Most features have
posterior probabilities of inclusion close to 0 or 1. Only for
a very few features is the inference uncertain. This provides
good evidence that participants use about 45 of the 118
features in all of the stages. What remains to be determined
is whether these 45 features are the same across the stages.

Figure 3 shows, in blue, the posterior distributions of the
base-rates ψ for each of the transitions between successive
FAST stages. One way to understand this result is in model-
selection terms, comparing a “null” model that assumes
a base-rate of change less than 1% against an alternative
model that allows for greater change. Comparing the prior
and posterior densities in the interval 0 < φk < 0.01
allows the Bayes factors between these two models to
be estimated using the Savage–Dickey method (Wetzels,
Grasman, & Wagenmakers, 2010). These Bayes factors are

1488 Psychon Bull Rev  (2021) 28:1484–1494



 Stage 6

0 0.2 0.4 0.6 0.8 1
0

20

40

60Stage 5

0 0.2 0.4 0.6 0.8 1
0

20

40

60

Stage 4

0 0.2 0.4 0.6 0.8 1
0

20

40

60Stage 3

0 0.2 0.4 0.6 0.8 1
0

20

40

60Stages 1&2

0 0.2 0.4 0.6 0.8 1
0

20

40

60

Feature Inclusion Probability

N
um

be
r o

f F
ea

tu
re

s

Fig. 2 The distributions of marginal posterior expectations of zt
k for all features, within each FAST stage

about 55, 6, 28, and 23 for the four transitions, all favoring
the null model that assumes there is negligible change. The
other interpretation of the results in Fig. 3 is in parameter-
estimation terms, treating the posterior distributions as
measuring the extent of change that is assumed to exist.
From this perspective, it is clear that the probability of a
feature changing—either being added to a representation, or
dropped from a representation—across FAST stages is very
small, and almost certainly below 5% in every case.

From either perspective, the modeling results provide
clear evidence against the restructured representation
hypothesis. While participants use a subset of the possible
features to make odd-one-out decisions, they use very close
to the same subset in all of the FAST stages.

Attention change analysis

The attention change hypothesis assumes that the features
used to make odd-one-out choices do not change with
impairment, but the weights given to the features do change.
The best theoretically developed version of this hypothesis
is provided by Chan and colleagues (1993b, 1995), who
argue that one type of features, called physical features,
are given more attention as impairment progresses, while
other types of features, called thematic and abstract, are
given less attention. Physical features are those related to
the animal’s appearance, such as “is fat”, “is specked”,
and “has horns”. Abstract features are those related to the
animal’s behavior, such as “can swim”, “eats nuts”, and
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Fig. 3 The prior (yellow) and posterior (blue) distributions for the feature transition base-rate ψ for all transitions between successive FAST stages
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Fig. 4 The posterior mean and 95% credible intervals for the average attention weight for the physical, abstract, and thematic feature types across
FAST stages

“crawls up trees”. Thematic features are those describing
the animal’s role, such as “is a pet”, “is popular among
children”, and “is a cartoon figure”. We classified all of
our 118 possible features into these three types, using two
independent judges to determine the classifications, and a
third judge to resolve disagreements.

To create a model consistent with this specific attention
change hypothesis, we extend the basic model to include
an account of how the weights of the different feature
types change across FAST stage. This is accomplished
by a hierarchical extension that assumes the weight of
each feature is sampled from an over-arching Gaussian
distribution that depends on both its type and the stage.
Specifically, the feature weight wt

k in FAST stage t , for a
feature k is given by

wt
k ∼ Gaussian

(
mκ(k)t + cκ(k), 1/σ 2

κ(k)

)
T (0, ) . (7)

The function κ (·) assigns each feature to its appropriate
type, so that κ (k) = 1 means feature k is a physical
feature, κ (k) = 2 means it is an abstract feature, and
κ (k) = 3 means it is a thematic feature. The parameters
m1, m2, m3 ∼ Gaussian (0, 1) are slopes for the physical,
abstract, and thematic feature types respectively, measuring
how the average attention to features of that type increases
or decreases with changes in the FAST stage. Similarly, the
parameters c1, c2, c3 ∼ Gaussian (1, 1) T (0, ) are intercepts
that measure the absolute level of attention. Finally, the
parameters σ1, σ2, σ3 ∼ Gaussian

(
1, 1/22

)
T (0, ) are

standard deviations that measure the heterogeneity in the
attention weights between different features of the same
type in the same FAST stage.

These hierarchical assumptions allow every feature to
have its own attention weight in every FAST stage, but
provide a measure of the average attention given to the
physical, abstract, and thematic feature types. Critically, the
model also provides a measure, via the slope parameters, of

the change in the mean feature weights for each type as the
FAST stages progress. The attention change hypothesis can
be expressed concisely in terms of these slopes: attention to
physical features increases, so m1 > 0, while attention to
abstract and thematic features decreases, so m2, m3 < 0.

Results

Figure 4 presents the average attention weights for each
feature type by FAST stage. The error bars represent 95%
credible intervals. The average attention weight for each
of the physical, abstract, and thematic features all decrease
with impairment. This is inconsistent with the pattern
of change predicted by the attention change hypothesis.
To quantify this result, we calculated the Bayes factor
comparing the specific inequality-constrained attention
change hypothesis m1 > 0, m2, m3 < 0 against the
alternative hypothesis without any constraints. The Bayes
factor is about 35 in favor of the alternative hypothesis.
Collectively, these results provide strong evidence against
the attention change hypothesis. While there is a change in
the average attention given to different types of features,
there is not a systematic increase in the attention given to
more concrete features at the expense of more abstract ones.

Noisy access analysis

The noisy access hypothesis assumes that all participants
attend to the same features with the same attention weights,
but that the ease of access decreases with the progression
of impairment. To create a model consistent with this
hypothesis, we focus on the decision-making assumptions.
In particular, we extend the basic model to allow for
response determinism and a recency bias in the choice rule.

Response determinism measures how closely choice
behavior is determined by the underlying similarities, and
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can be modeled by extending the Luce choice rule through
exponentiation (Lee et al., 2016). Pairwise similarities are
now raised to a power, in the form s

γ

ab, and different values
of the parameter γ determine how consistently people
make odd-one-out choices. If γ = 1, the original Luce
choice rule is maintained. If γ decreases towards zero, the
probability of choosing animals a, b, and c are all reduced
towards 1

3 , and choice behavior becomes more random. As
γ increases to values greater than one, responses become
more deterministic, and the animal that is least similar to the
other two will be more consistently chosen.

The second decision-making extension is to include a
recency bias, corresponding to the strategy of choosing
the last animal name presented in the sequential verbal
presentation. An increase in the recency bias could be
explained by a deficit to working memory typically seen
in Alzheimer’s patients (see Huntley & Howard, 2010, for
a review). To allow for this possibility, we assume simply
that that last animal is favored by a bias measured by
the parameter β. Combining the response determinism and
recency bias extensions gives a set of choice probabilities
defined as

πa = 1 − β

2

(
s
γ

bc

s
γ
ac + s

γ

bc + s
γ

ab

)

πb = 1 − β

2

(
s
γ
ac

s
γ
ac + s

γ

bc + s
γ

ab

)

πc = β

(
s
γ

ab

s
γ
ac + s

γ

bc + s
γ

ab

)
. (8)

We assume the prior γ ∼ gamma (2, 1) for response
determinism. This distribution has a mode at 1, correspond-
ing to the original Luce choice rule and probability match-
ing, allows for greater values corresponding to deterministic
choice behavior, and allows for lesser values correspond-
ing to more random choice behavior. We assume a prior
β ∼ uniform (1/3, 1) for recency bias. This choice of prior

allows for the possibility of unbiased choices corresponding
to β = 1

3 , but captures our assumption that any bias will be
in favor of the last item.

Results

Figure 5 presents the posterior distributions for the response
bias and response determinism parameters by FAST stage.
It is clear that response determinism decreases as impair-
ment progresses across the stages. The Bayes factors testing
whether γ is the same or different across successive stages
are all greater than 100 in favor of there being a difference. It
is also clear that the recency bias generally increases across
the FAST stages. The Bayes factor is only 2 in favor of a
difference between stages 1 and 2 compared to stage 3, but is
greater than 25 for all of the other comparisons. Interest-
ingly, there is a significant recency bias even for cognitively
healthy participants in stages 1 and 2, since the Bayes factor
is more than 100 in favor of β being greater than 1

3 .
These results are very consistent with the noisy access

hypothesis. The natural interpretation is that changes in
choice behavior can be explained by progressively impaired
use of the underlying similarities between animals. The
choices made are less well determined by the similarities as
impairment increases, and there is a compensatory greater
reliance on the simple strategy of choosing the last animal
name presented.

Modeling conclusions

Our final analysis of all of four models—the basic model,
the restructured representation model, the attention change
model, and the noisy access model—involves their descriptive
adequacy. Being able to describe the data is a basic require-
ment for a model to be useful, and an important part of their
evaluation. To measure descriptive adequacy, we considered
how well model choice probabilities matched behavior. On
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Fig. 5 Posterior distributions for response determinism γ and recency bias β for each FAST stage
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each trial, a model generates probabilities πa , πb, and πc for
the three alternatives. If these probabilities describe the data
well, they should match the frequency with which the alter-
natives are actually chosen. For each of the models, we binned
the choice probabilities in increments of 0.1, and calculated
the frequency with which the alternative was chosen.

The results of this analysis are shown in Fig. 6. Panels
correspond to FAST stages, the lines show the mean
observed choice proportions, and error bars represent 95%
credible intervals. The basic model is the worst performed.
It fails to describe the data in FAST stages 5 and 6, and also
has systematic deviations in the other stages. This finding
is not surprising, since the basic model assumes there is
no change in odd-one-out behavior across the stages, but
our basic data analysis found clear evidence of change. The
three other models all describe the data well, and are all very
similar to each other.

These results show that the restructured representation
model, the attention change model, and the noisy access
model all meet the basic requirement of descriptive
adequacy. Accordingly, our overall evaluation of the models
focuses on how they achieve descriptive adequacy, which
amounts to asking how they explain the changes in odd-
one-out choice behavior. It is clear that the restructured
representation model does not capture the changes in the
data by changing the features used to represent animals.
The attention change model also fails to explain the data
in a way consistent with the guiding theory, which requires
increases in attention to physical features at the expense of
abstract ones. The noisy access model, in contrast, achieves
descriptive adequacy in exactly the way predicted by the
theory. Response determinism decreases with impairment
and is accompanied by an increasing use of the simple
response strategy of choosing the last item. Thus, our

conclusion is that the noisy access model provides the best
account of the data. It is the psychologically and statistically
simplest model, and accounts for the data in an interpretable
way consistent with its theoretical assumptions.

Discussion

Using behavior in odd-one-out tasks, we conducted a
model-based comparison of three hypotheses previously
proposed as accounts of changes in semantic memory
performance caused by Alzheimer’s disease. We found
no evidence for the idea that semantic representations
themselves fundamentally change. We also did not find any
evidence for the idea that the attention given to different
types of features changes systematically, with more concrete
physical properties becoming more prominent at the
expense of more abstract features. Instead, we found that the
differentiation between these types of features decreases as
impairment progresses, suggesting a gradual loss of acuity
in the use of the representations rather than a structured
shift in attention. Consistent with this interpretation, we
did find evidence favoring the idea that access to semantic
information becomes noisier as impairment worsens.
Choice behavior became less consistently linked to the
underlying similarities between stimuli, and participants
became more likely simply to repeat the last option. It
is possible that patients in higher FAST stages do not
fully understand the instructions of the task—and fail to
do a search of semantic memory—but do understand that
repeating an animal name back to the clinician is an
acceptable response.

We do not believe these results eliminate the possibility
that Alzheimer’s disease does cause basic systematic
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changes in semantic memory. The odd-one-out comparison
task provides only one window onto semantic memory,
and the clinical data we used considered only basic-level
exemplars from the natural kind of animals. This limits the
theories that can be tested. Some researchers, for example,
have proposed a “bottom-up” degeneration of semantic
memory (Henry, Crawford, & Phillips, 2004; Martin &
Fedio, 1983; Tröster, Salmon, McCullough, & Butters,
1989), where Alzheimer’s patients have more difficulty
generating specific exemplars (e.g., broccoli, orange) than
categories (e.g., vegetables, fruits). There is also evidence
that Alzheimer’s patients have a category-specific semantic
memory deficit for living things (Chan et al., 2001;
Whatmough & Chertkow, 2002). Our data cannot test either
of these possibilities directly.

In addition to the limitations of our data, each of
our models made a number of strong assumptions.
Our models do not take into account any properties
of the animal names themselves, such as their age
of acquisition, word length, or word frequency. Word
frequency may be particularly important, since previous
research has shown that Alzheimer’s patients do not show
typical effects of word frequency in tests of episodic
memory (Balota, Burgess, Cortese, & Adams, 2002;
Wilson, Bacon, Fox, Kramer, & Kaszniak, 1983). Another
assumption is that, while we think our use of feature-
based representations is appropriate, previous authors have
often relied on dimensional representations (Chan et al.,
1993a; Lee et al., 2016). The attention change and
noisy access hypotheses probably could be formalized
using dimensional representations, which would provide
an alternative approach to evaluation. In addition, within
the feature-based framework, it is possible to specify other
models consistent with the broad idea of attention change.
Our model focuses on one very specific influential proposal,
but it is possible other systematic changes in attention do
occur. What we do believe is that the noisy access model
provides a psychologically and statistically simple and
compelling account of our data, and serves as a theoretical
safeguard that any more elaborate theory of change in
semantic memory must outperform.

One avenue for stronger testing of the adequacy of the
noisy access hypothesis, as compared to the possibility of
more fundamental changes in representations, is to apply
our models to different populations where there are clear
expectations about whether and how semantic memory
should change. Healthy aging provides a context in which
we might expect noisy access to continue to provide a
better account than restructured representation or attention
change, and thus presents an opportunity for replication.
Early child development, in contrast, provides a context in
which we would expect to observe fundamental changes in
the way children represent stimuli. A goal of future work

is to apply our models to children’s performance on the
odd-one-out comparison task.

Understanding how Alzheimer’s disease affects semantic
memory is a basic theoretical question with important
societal implications. We have developed a model-based
approach that is capable of expressing and evaluating
competing theoretical accounts, and have demonstrated how
Bayesian methods allow the models to be applied to a
large real-world clinical data set. We hope that future work
continues to expand and refine the models, and provides
insights into how people’s semantic knowledge is impacted
by memory impairment.

Acknowledgements There is a project page on the Open Science
Framework associated with this article at https://osf.io/xas7b/. It
contains code for the cognitive models and the feature data used in
modeling. The archival clinical behavioral data are not available. This
research was supported by funding from Medical Care Corporation.
We thank Dennis Fortier, Junko Hara, Tushar Mangrola, and especially
Rod Shankle and Jason Bock for their help in providing the data
and their contribution to the research. We also thank Juliana Chhouk
for help with the animal feature data, and members of the Bayesian
cognitive modeling lab for helpful feedback. An earlier version of
this research was presented at the 57th Annual Edwards Bayesian
Research Conference, under the title “Can we create a model of triadic
comparison of animal names? You bet giraffe we can!”.

References

Au, A., Chan, A. S., & Chiu, H. (2003). Conceptual organization
in Alzheimer’s dementia. Journal of Clinical and Experimental
Neuropsychology, 25, 737–750.

Balota, D. A., Burgess, G. C., Cortese, M. J., & Adams, D. R.
(2002). The word-frequency mirror effect in young, old, and early-
stage Alzheimer’s disease: Evidence for two processes in episodic
recognition performance. Journal of Memory and Language, 46,
199–226.

Benton, A. L., & Hamsher, K. (1983). Verbal fluency: Multilingual
aphasia examination. AJA Associates.

Burton, M. L., & Nerlove, S. B. (1976). Balanced designs for triads
tests: Two examples from English. Social Science Research, 5,
247–267.

Buschke, H. (1984). Cued recall in amnesia. Journal of Clinical and
Experimental Neuropsychology, 6, 433–440.

Chan, A. S., Butters, N., Paulsen, J. S., Salmon, D. P., Swenson,
M. R., & Maloney, L. T. (1993a). An assessment of the semantic
network in patients with Alzheimer’s disease. Journal of Cognitive
Neuroscience, 5, 254–261.

Chan, A. S., Butters, N., Salmon, D. P., & McGuire, K. A. (1993b).
Dimensionality and clustering in the semantic network of patients
with Alzheimer’s disease. Psychology and Aging, 8, 411–419.

Chan, A. S., Butters, N., Salmon, D. P., Johnson, S. A., Paulsen, J. S.,
& Swenson, M. R. (1995). Comparison of the semantic networks
in patients with dementia and amnesia. Neuropsychology, 9, 177–
186.

Chan, A. S., Salmon, D. P., & De La Pena, J. (2001). Abnormal
semantic network for ‘animals’ but not ‘tools’ in patients with
Alzheimer’s disease. Cortex, 37, 197–217.

De Deyne, S., Verheyen, S., Ameel, E., Vanpaemel, W., Dry, M. J.,
Voorspoels, W., & Storms, G. (2008). Exemplar by feature

1493Psychon Bull Rev  (2021) 28:1484–1494

https://osf.io/xas7b/


applicability matrices and other Dutch normative data for semantic
concepts. Behavior Research Methods, 40, 1030–1048.
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