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Abstract
People often fail to use base-rate information appropriately in decision-making. This is evident in the inverse base-rate effect, a
phenomenon in which people tend to predict a rare outcome for a new and ambiguous combination of cues. While the effect was
first reported in 1988, it has recently seen a renewed interest from researchers concerned with learning, attention and decision-
making. However, some researchers have raised concerns that the effect arises in specific circumstances and is unlikely to
provide insight into general learning and decision-making processes. In this review, we critically evaluate the evidence for
and against the main explanations that have been proposed to explain the effect, and identify where this evidence is currently
weak. We argue that concerns about the effect are not well supported by the data. Instead, the evidence supports the conclusion
that the effect is a result of general mechanisms that provides a useful opportunity to understand the processes involved in
learning and decision making. We discuss gaps in our knowledge and some promising avenues for future research, including the
relevance of the effect to models of attentional change in learning, an area where the phenomenon promises to contribute new
insights.

Keywords Inverse base-rate effect . Human associative learning . Attention in learning . Decisionmaking

Introduction

Many of our daily decisions involve at least some guesswork
– take any situation in which we may want to use environ-
mental cues to predict an outcome, whether it be deciding
whether to take an umbrella to work based on the current
weather, choosing between unfamiliar restaurants based on
their menus, or diagnosing an illness based on the patient’s
symptoms. Most cues we encounter are not fully predictive of
the outcomes with which they are associated, and most situa-
tions to which we want to generalize our knowledge of the
world are not exactly the same as what we have experienced in

the past. Consequently, people are often required to make
decisions based on ambiguous information. For instance, doc-
tors make diagnoses based on symptoms that are associated
with several different conditions. In these cases, the base-rates,
or relative frequencies, of events provide an important source
of information when making decisions. Indeed, a widely
known aphorism in medical circles states “when you hear
hoofbeats, think of horses, not zebras”, which serves as a
reminder that common diagnoses are more probable than rare
ones. Yet, several studies have suggested that people often fail
to show adequate sensitivity to base-rates.

Base-rate neglect is a phenomenon in which base-rate in-
formation is underweighted in favour of more specific infor-
mation about the individual case (Bar-Hillel, 1980; Bar-Hillel
& Fischhoff, 1981; Kahneman& Tversky, 1973). There are of
course situations in which favouring specific local information
and neglecting base-rates is beneficial for judgements.
However, when local information is ambiguous or uninforma-
tive, neglecting base-rates may lead to irrational decision-
making. For example, in the classic lawyer-engineer problem,
groups of participants were presented with written personality
descriptions and were asked to judge the likelihood that the
person described was a lawyer or an engineer (Kahneman &
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Tversky, 1973). Participants were either instructed that the
description was randomly drawn from a population of 70 law-
yers and 30 engineers, or from a population of 30 lawyers and
70 engineers. Participants’ judgements of whether each de-
scription referred to a lawyer or engineer were more likely to
be based on the stereotypical personality characteristics de-
scribed than the base-rates of each profession within the sam-
ple. Even when given ambiguous, uninformative descriptions,
when base-rates should be most informative, participants
underweighted this information, predicting a 50% probability
of either profession.

These examples of base-rate neglect tend to be observed in
explicit decision-making tasks, where base-rate information is
provided in a summary statistic. Yet, insensitivity to base-
rates appears to be dependent on task conditions (see
Koehler, 1996, for a review). Several studies have shown that
decisions are more likely to be consistent with base-rates
when they are acquired through trial-by-trial experience
(Butt, 1988; Christensen-Szalanski & Beach, 1982;
Christensen-Szalanski & Bushyhead, 1981; Manis,
Dovalina, Avis, & Cardoze, 1980). This kind of direct expe-
rience is assumed to make the base-rates more salient, and
therefore more likely to be used. Medin and colleagues sug-
gest that the use of base-rate summaries in these text-based
tasks fails to consider the influence of learning processes that
may allow base-rate information to be incorporated implicitly
(Medin & Bettger, 1991; Medin & Edelson, 1988). The in-
verse base-rate effect is therefore particularly noteworthy, as it
not only demonstrates a choice bias that goes against the
underlying base-rates when faced with ambiguous informa-
tion, but also demonstrates a failure to use base-rates despite
acquisition through experience (Medin & Edelson, 1988).

The inverse base-rate effect

To illustrate the inverse base-rate effect, imagine a doctor
learning to diagnose diseases on the basis of exhibited symp-
toms. Over time, they learn that all patients with the symptoms
headache and nausea have the common disease “midosis”, and
all patients with the symptoms headache and fever have the
rare disease “coralgia”. A new patient then presents with nau-
sea and fever. Which disease should be diagnosed? Here, both
nausea and fever are equally predictive of their respective
diseases, and therefore the specific symptoms do not provide
evidence in favour of one disease over the other. However,
midosis occurs muchmore frequently than coralgia, and thus a
rational response considering the base-rates would be to pre-
dict midosis. Yet, given this combination of conflicting cues,
most people tend to predict the rare disease. This choice dem-
onstrates a preference for the less frequent outcome, and is
therefore termed the inverse base-rate effect. This effect was
first reported byMedin and Edelson (Medin & Edelson, 1988;

see also Binder & Estes, 1966) in a contingency learning task
where participants played the hypothetical role of a doctor,
like the scenario described above. In their task, participants
learned symptom-disease contingencies on a trial-by-trial ba-
sis. All patients with symptom A and symptom B had disease
1 (AB-O1), while all patients with symptom A and symptom
C had disease 2 (AC-O2). Instances of O1 occurred three
times as often as instances of O2. Symptom A is therefore
an imperfect predictor, as it is paired with both diseases.
Symptom B is a perfect predictor of the common disease,
O1 (hereafter the common predictor), and symptom C is a
perfect predictor of the rare disease, O2 (hereafter the rare
predictor).1 After learning these contingencies, participants
completed a transfer phase including several new combina-
tions of the trained symptom cues. Most critically, when par-
ticipants are presented with a pair of conflicting symptoms,
BC, they tend to diagnose the rare disease. It is these conflict-
ing trial types that yield the inverse base-rate effect. However,
almost all studies of the effect also report responses for a series
of other transfer trials, which, taken as a whole, reveal the
particular circumstances in which the inverse base-rate occurs.
As these trials demonstrate the ways in which people make
decisions when presented with ambiguous information, we
will first define each of the most commonly used types of
transfer trials, and summarise the patterns of predictions that
they typically elicit. These trial types comprise the key
elements of the basic design shown in Table 1, where letters
represent individual cues and O1, O2, etc. represent individual
outcomes. In the original Medin and Edelson (1988) task,
there were three repetitions of this design, with different cues
and outcomes for each repetition.

The conflicting (BC)2 compound trials are composed of a
perfect common outcome predictor (B) and a perfect rare out-
come predictor (C) that shared a cue during training (A). The
inverse base-rate effect is indicated by greater choice of the
associated rare outcome on these trials. Several studies have
also included between-compound conflicting cues, which pair
a common and rare predictor that did not share a cue during
training. These trials also typically lead to a preference for the
rare outcome, although the preference is sometimes slightly
numerically weaker (Bohil, Markman, & Maddox, 2005;
Kalish, 2001; Kruschke, 1996; Lamberts & Kent, 2007).

The imperfect cue A is associated with both the common
and the rare outcome, but typically elicits greater common
outcome responses, consistent with base-rate use. These trials
are useful to assess normative use of the base-rates of the
relevant outcomes, and from a mechanistic perspective, the

1 Note that where there are multiple instantiations of the design, letters A–C
will refer to all cues of the same type. That is, A refers to imperfect predictors,
B to perfect predictors of common outcomes, and C to perfect predictors of
rare outcomes.
2 The descriptive (e.g., conflicting) and abstract (e.g., BC) labels for these
transfer trials are used interchangeably throughout this review.
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strength of the association between the imperfect cue and the
common outcome.

Combined (ABC) trials are a combination of the first two
transfer trials. These trials also tend to elicit a bias towards the
common outcome, but often to a lesser extent than that on
imperfect trials (e.g., Johansen, Fouquet, & Shanks, 2010;
Kruschke, 1996; Kruschke, 2001a, 2001b; Medin &
Edelson, 1988; Shanks, 1992; Winman, Wennerholm,
Juslin, & Shanks, 2005; Wood & Blair, 2011), and sometimes
show no bias, or even a slight rare bias (e.g., Bohil et al., 2005;
Kruschke, 2001a, 2001b; Lamberts & Kent, 2007; Sherman
et al., 2009; Wood, 2009). As such, combined test trials show
response biases that are less reliable than biases on imperfect
and conflicting trials.

Other transfer trials of interest are the perfect predictors,
which were only associated with one outcome during training.
Comparing accuracy on perfect common (B) and perfect rare
(C) predictor trials at test has been highlighted as important for
attention-based cue competition accounts of the effect (Le
Pelley, Mitchell, Beesley, George, & Wills, 2016; Wills,
Lavric, Hemmings, & Surrey, 2014; see Attention accounts
section below).

Why is the inverse base-rate effect important?

The inverse base-rate effect is generally considered an irrational
choice bias and, if it is symptomatic of decisions that we make
in everyday life, then the psychological processes responsible
for the effect may well have important real-world conse-
quences. Base-rate neglect has been shown to result in an over-
estimation of disease likelihood in medical professionals (e.g.,
Casscells, Schoenberger, & Graboys, 1978). Given the

potential implications for misuse of base-rate information, it is
important to understandwhy the inverse base-rate effect occurs,
and the processes that are responsible for these kinds of biases.
As we discuss later, research on the inverse base-rate effect may
be valuable not only because of what it can tell us about the
information people tend to rely on when faced with conflicting
or ambiguous information, but also what it can reveal about
fundamental learning processes. Seemingly irrational biases of-
ten arise as a product of generally adaptive processes (Tversky
& Kahneman, 1974). However, the inverse base-rate effect is
also a demonstration of a bias that feedback learning does not
seem to correct. Rather, it appears to arise as a result of expe-
rience with trial-and-error learning with feedback. There are
few category learning effects that involve this kind of deviation
from a “normative” standard. Investigating the mechanisms
underlying these effects can therefore inform our understanding
of the processes that drive human learning and decision-making
more generally.

However, despite this potential import and despite occa-
sional robust theoretical debate (Kruschke, 2003; Winman,
Wennerholm, & Juslin, 2003), the effect has not had the im-
pact that one might expect, either on informing debates about
base-rate neglect as a general property of human cognition or
informing relevant theories of learning, including associative
accounts of contingency learning. This reflects some uncer-
tainty about the relevance of the phenomenon to general cog-
nitive processes. Indeed, Winman et al. (2005, p.812) argued
that the inverse base-rate effect is simply “yet another example
of behaviour by puzzled participants trying to figure out what
to do in a contrived experimental dilemma”. As we discuss in
this review, some authors have argued that the inverse base-
rate effect is the product of specific inferential reasoning pro-
cesses that are made in the unique situation posed by the
conflicting BC trials rather than being the product of more
general learning and memory mechanisms. It is important to
note that the critical issue when it comes to the relevance of
the inverse base-rate effect is not whether learning and deci-
sions in these tasks are inferential or associative in nature, nor
indeed whether they are rational or irrational. Instead, the is-
sue is the assumed specificity of the explanation, and its lack
of generalizability to causal and category learning in other
contexts. If the decisions that give rise to the inverse base-
rate effect are highly idiosyncratic, reliant on a unique config-
uration of circumstances and thoughts (as it may be argued is
the case for some explanations of the effect, such as the elim-
inative inference discussed below), then it is possible that the
phenomenon tells us very little about the rest of our decisions
made in other contexts, including the propensity for base-rate
use and neglect in learning from experience. In contrast, if the
effect is the result of more general learning and attention
mechanisms, or the result of inferential reasoning processes
that are commonplace in human thoughts and actions, then the
effect is relevant and should not be ignored.

Table 1 Basic inverse base-rate task design

Training phase Transfer phase

Base-
rate

Trials Type Trials

3 AB – O1 Imperfect Predictors A?

1 AC – O2 Conflicting transfer BC?

Combined transfer ABC?

Note: A – C represent different symptom cues, O1 – O2 represent differ-
ent disease outcomes. AB – O1, for example, indicates that symptom A
and symptom B predicted disease O1

Cues in bold indicate perfect predictors of common outcomes, underlined
cues indicate perfect predictors of rare outcomes

The base-rate column refers to the relative number of presentations of
each trial type during training, such that AB – O1 occurs three times as
often as AC – O2

“?” indicates trials on which participants make a response without
feedback
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It is therefore extremely important to consider the plausi-
bility of the specific explanations that have been offered for
the inverse base-rate effect, as well as their implications for
what the effect means in the broader context of human cogni-
tion. To this end, we offer critical evaluations of some of the
more prominent explanations of the effect and highlight where
the evidence that is held to be supportive of these explanations
is currently relatively weak. We argue that there is still much
work to be done to test the generality of the inverse base-rate
effect, as well as its underlying causes.

Notwithstanding this uncertainty, the attention that the inverse
base-rate effect has received reveals it to be of potential import to
theory development. One reason the effect was initially consid-
ered striking is because it was not predicted by existing
exemplar-based models of category learning, such as Medin
and Schaffer’s (1978) context theory, which anticipates consis-
tent use of base-rates, and other connectionist models using a
prediction error or “delta” rule (e.g., Medin & Edelson, 1988;
Rescorla & Wagner, 1972; Rosenblatt, 1961; Shanks, 1992;
Widrow & Hoff, 1960). The effect has therefore also been im-
portant for our understanding of cue competition, that is, how
predictive signals appear to compete for learning. Cue competi-
tion, as a theoretical construct, and its associated learning phe-
nomena have formed the impetus for a whole field of learning
algorithms and computational analysis over the past 40 years.
The inverse base-rate effect shares important similarities in de-
sign and potentially psychological processes with other well-
known cue competition effects, such as blocking. It is also highly
related to the learned predictiveness effect (or learned
predictiveness principle; Le Pelley & McLaren, 2003;
Lochmann & Wills, 2003; Mackintosh, 1975), in which predic-
tive cues capture greater attention than less predictive cues, and
are consequently learned about more readily. Kruschke (2001a,
2003) has argued the effect is functionally similar to highlighting,
in whichAB-O1 compounds are first learned in an initial training
phase, prior to the introduction of AC-O2 trials. In the highlight-
ing effect, BC trials elicit a preference for the late outcome, O2.
While research on the inverse base-rate effect was most promi-
nent between the late-1980s and early-2000s, it has recently re-
ceived renewed interest (e.g., Don & Livesey, 2017; Don,
Beesley, & Livesey, 2019a; Inkster, Milton, Edmunds,
Benattayallah, & Wills, 2019a; Inkster, Mitchell,
Schlegelmilch, & Wills, 2019b; Le Pelley et al., 2016;
O'Bryan, Worthy, Livesey, & Davis, 2018; Wills et al., 2014).
Specifically, for reasons that are discussed below, the inverse
base-rate effect has been highlighted as an important phenome-
non because it may discriminate between different attention-
based models of learning. Further, the effect provides a useful
opportunity to examine how higher-order reasoning processes
may interact with lower-level processes in learning and deci-
sion-making. In the following sections, we examine the strengths
and weaknesses of common theoretical explanations for the in-
verse base-rate effect, and highlight important remaining

questions that should be addressed in future research. As a re-
source for researchers interested in studying the inverse base-rate
effect, we have also included a summary of themethods typically
used to measure the effect.

Theoretical accounts of the inverse base-rate effect

A novelty effect

Perhaps the simplest and most intuitive explanation for rare out-
come biases is in terms of a relative novelty effect (Binder &
Estes, 1966), which combines the idea that novel or striking
events are more memorable (Rhetorica ad Herennium, c.85BC)
with the availability heuristic, which states that eventsmore easily
remembered are judged to be more probable (Tversky &
Kahneman, 1973). The availability heuristic is, in essence, an
associative principle. That is, the stronger the association between
a cue and an outcome, the greater the ease with which a cue will
“bring to mind” an outcome (Hamilton, 1981). However, a nov-
elty explanation in its simplest form is disconfirmed by the obser-
vation that imperfect (A) and combined (ABC) transfer trials tend
to elicit responses consistent with the underlying base-rates
(Medin & Edelson, 1988). A relative novelty explanation instead
predicts that these trials would also bring to mind the rare out-
come. Further, compounds trained in the same base-rates but
without a shared cue elicit base-rate normative responding for
conflicting cues, which also suggests the effect is not a bias based
on the novelty of the cues or outcomes (Kruschke, 2001a; Medin
& Edelson, 1988; Wills et al., 2014).

Associative learning and cue competition

According to associative learning theories, contingency learn-
ing results from the formation and strengthening of associa-
tions between cues and outcomes. The relationship between a
cue and an outcome depends not only on their co-occurrence,
but also the predictive qualities of other cues presented at the
same time. According to associative accounts, selective learn-
ing effects arise due to simultaneously presented cues compet-
ing for a limited amount of associative strength with the out-
come (Dickinson, Shanks, & Evenden, 1984).

Several prominent cue competition effects are well ex-
plained by prediction error models of learning. In these
models, learning only occurs to the extent to which an out-
come is surprising, or unexpected (Kamin, 1969; Rescorla &
Wagner, 1972). Thus, learning about a cue can be restricted by
the presence of another that already predicts the outcome.
Perhaps the most widely cited formalisation of this idea is
the Rescorla-Wagner model (Rescorla & Wagner, 1972),
though the same concept has been used in many other models
of predictive learning.
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In inverse base-rate tasks, predictive cues are trained in
compound with an imperfect predictor. It is therefore possible
that differential competition amongst cues in common and
rare compounds may result in differences in learning about
predictive cues. Because cue A is a better predictor of O1 than
O2, it should compete more effectively with cue B than with
cue C for associative strength with their respective outcomes.
This would then result in a weaker association between B and
O1 than between C and O2, such that C controls responding
on BC trials. Indeed, some authors have noted negative cor-
relations between responding for A and responding for BC
trials at test (Medin & Edelson, 1988; Shanks, 1992). That
is, the more strongly A is associated with O1, the more C
appears to dominate responding on BC trials. However, sev-
eral authors have demonstrated that the Rescorla-Wagner
model is unable to account for the inverse base-rate effect
(Gluck & Bower, 1988; Markman, 1989). As cue A is an
imperfect predictor, it eventually loses associative strength,3

while predictive cues B and C gain all associative strength
with their respective outcomes. Learning about AB also
reaches asymptote more quickly than learning about AC,
due to the difference in presentation frequency, and therefore
prior to asymptote, B will always be more strongly associated
with O1 than C is with O2. Consequently, if BC is tested at
asymptote, Rescorla-Wagner predicts no bias in choice,
whereas if BC is tested early in training, the model predicts
a common outcome bias. Thus, there is no point at which the
model predicts a rare bias for BC trials.

Several authors have proposed additional model assump-
tions that may allow Rescorla-Wagner to account for the ef-
fect. For example, Markman (1989) suggested that if the acti-
vation of absent cues is coded as -1, rather than zero, the
model could predict an inverse base-rate effect. However, as
Shanks (1992) pointed out, it is difficult to determine which of
all possible encountered cues should be considered absent,
and so this assumption may prove problematic in practice
(but see Dickinson & Burke, 1996; Larkin, Aitken, &
Dickinson, 1998; Van Hamme & Wasserman, 1994, for
potential solutions). Gluck (1992) proposed that incorporating
distributed cue representations could account for the effect,
but this only predicted a small preference for the rare outcome
on BC trials, and a small preference for the common outcome
on A and ABC trials. In practice, the biases on BC and A trials
are much more substantial. In addition, Gluck’s model does
not predict greater accuracy for B than C at test that is found in
some studies (e.g., Wills et al., 2014 – described in greater
detail in the following section).

Attention accounts

Although several explanations of the inverse base-rate effect
have made use of connectionist models (Gluck & Bower,
1988; Medin & Edelson, 1988; Shanks, 1992), the most wide-
ly accepted account is the attention-based approach proposed
by Kruschke (1996, 2001b). Attention refers to the mecha-
nisms responsible for prioritising certain stimuli or events
for further processing. Attention-based theories of associative
learning (e.g. Kruschke, 2001a, 2001b; Mackintosh, 1975;
Pearce & Hall, 1980) posit that attention is flexible and is
influenced not only by cue salience but also by previous ex-
perience of the relationship between cues and outcomes.
According to these theories, processes of learning and atten-
tion interact. That is, learning about the relationship between a
cue and an outcome determines the amount of attention allo-
cated to a cue, and the amount of attention allocated to a cue
influences the rate of learning about that cue in future associ-
ations. It is widely established that cues that are reliable pre-
dictors of outcomes attract preferential attention, with exten-
sive evidence in animal learning (Mackintosh, 1975;
Sutherland & Mackintosh, 1971) and human learning (see
Le Pelley et al., 2016, for a review).

According to the attention-based account, choice of the rare
outcome on conflicting BC trials is explained as the result of
increased attention to cue C during learning (Kruschke, 1996,
2001b). AB-O1 trials are learned well early in training, because
they occurmore frequently thanAC-O2 trials. As a result, bothA
and B form associations with the common outcome, to some
extent. As this learning has primacy, the presence of A on AC
trials quickly comes to produce an incorrect prediction of O1.
Kruschke’s model assumes a shift in attention occurs to reduce
this error. At the point where prediction error is experienced,
attention rapidly shifts away from the ambiguous cue A towards
the more predictive cue, C. This kind of attention towards more
predictive cues forms the basis of the learned predictiveness prin-
ciple (Le Pelley & McLaren, 2003; Lochmann & Wills, 2003).
The attention shift serves the dual purpose of correcting error on
subsequent AC trials more effectively and also preserving what
has been learned aboutAB trials. The resulting attention bias to C
supports a stronger association between C and O2 than the asso-
ciation between B and O1, and may also produce continued
attention to cue C on BC trials, such that C tends to control
responding on BC trials at test. Either of these two biases – one
based in learning, the other in test performance – could indepen-
dently produce a tendency to choose the rare outcome when
presented with BC for the first time on test.

Evidence for attention accounts

Several studies have provided evidence in support of the role
of attention in producing the rare outcome bias on conflicting
trials.

3 Shanks (1992) notes that A will be a better predictor of the outcomes than a
neutral cue, and therefore should not lose all associative strength.
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The importance of the imperfect predictor The necessity of a
shared cue (e.g., cue A is present in both the common and rare
compounds) provides particularly compelling evidence for
accounts of the effect that are mediated by prediction error,
such as the attentional account described above. Several stud-
ies have shown that the inverse base-rate effect does not occur
for conflicting DE trials if D and E are trained in non-
overlapping compounds, where FD-O1 is trained more fre-
quently than GE-O2 (Kruschke, 2001a; Medin & Edelson,
1988; Wills et al., 2014). In the absence of a shared cue, there
would be no prediction error on GE trials to drive attention
toward the predictive cue, E. Wills et al. (2014) measured
event-related potentials (ERPs) associated with visual atten-
tion in response to predictive cues after training with a shared
cue (AB vs. AC) and after training in the absence of a shared
cue (FD vs. GE). This included differential ERP effects,
Selection Negativity and Selection Positivity, which indicate
the difference in ERPs for the target and unattended stimuli,
and are elicited by attention to features. When cues were pre-
sented individually at test, there were significantly greater
posterior Selection Negativity and concurrent anterior
Selection Positivity for C compared to B. However, there
was no significant difference in these ERPs for E compared
to D, which had not been trained with a shared cue, and had
not elicited a rare bias when presented in compound at test.
This suggests greater attention to the rare predictor, but only
when it had been trained in compound with an imperfect pre-
dictor, which suggests that error-driven shifts of attention may
be critical in driving choice biases.

Eye gaze and overt attention Eye gaze is often used as a
measure of overt attention. While it is possible to make co-
vert shifts of attention without accompanying eye move-
ments, spatial allocation of attention and gaze direction are
generally closely related (Posner, 1980). Kruschke,
Kappenman and Hetrick (2005) trained participants in a
highlighting design (where AB-O1 is trained in a first phase
before the introduction of AC-O2 in a second phase), while
measuring fixation time (the length of time spent fixating on
each cue). They found greater fixation time to C on AC trials
than to B on AB trials, and greater fixation time to C than to
B on BC trials. In a standard inverse base-rate design,
Don et al. (2019a) found greater fixation time to C than A
on AC trials during training, and no bias on AB trials, both
prior to making a choice prediction, and during feedback.
Prior to making a decision, the attention bias towards C in-
creased across the course of training, likely reflecting a
learned attention bias towards cues that best predict the out-
come. During feedback, the bias towards C emerged quickly
and reduced over the course of training. This likely reflects
an attention shift in response to error, with attention directed
towards cues that will reduce future error, and subsequently
decreases as prediction accuracy increases.

Attention transferMost models based on predictiveness prin-
ciples (e.g. Kruschke, 2001b; Le Pelley, 2004; Mackintosh,
1975; Pearce & Mackintosh, 2010) assume that participants
attend to cues according to their predictive history, and that
learning about cues is proportional to the attention allocated
to them. Attention to cues influences their associability, or the
rate at which they are learned about. That is, the more atten-
tion paid to a cue, the faster that cue will be learned about in
future novel associations. In a recent study, we show greater
associability for previously rare predictors (C) than previous-
ly common predictors (B; Don & Livesey, 2021). After base-
rate training, in a new learning phase, previously rare predic-
tors and previously common predictors were presented in
compound, and paired with a novel outcome. Participants
learned the association between previously rare predictors
and the novel outcome better than the association between
previously common predictors and the novel outcome. This
transfer bias was evident after a short amount of base-rate
training but was diminished after longer training. A similar
result has been reported for highlighting. Kruschke et al.
(2005) gave participants a secondary training phase with sev-
eral new combinations of either AB or AC trials, paired with
novel outcomes. In this phase, A was now predictive of the
novel outcome, while B and C were non-predictive. If C
captures more attention than B during training, and this con-
tinues into future learning, it should be more difficult to learn
about the new predictive cue A in the presence of C than in
the presence of B. Indeed, Kruschke found that AC trials
were learned more slowly than AB trials, between subjects,
thereby providing an indirect test of the difference in attention
for C versus B.

Salience effects An assumption of the learned predictiveness
principle, and attentional shifts that may be responsible for the
inverse base-rate effect, is that predictiveness operates a little
like salience, making cues that have been predictive stand out
in the same way as physically salient stimuli. More salient
stimuli also attract greater attention (Denton & Kruschke,
2006). Cue salience can be determined not only by the phys-
ical properties of the cue, but also training history (Mitchell &
Le Pelley, 2010). In a medical diagnosis task, Bohil, Markman
and Maddox (Bohil et al., 2005) tested the hypothesis that cue
C gains greater salience and attention throughout training by
manipulating the perceived salience of cues, while training
AB-O1 and AC-O2 trials in equal base-rates. They found that
if cue C was presented as a serious symptom (e.g., paralysis),
and cue B was presented as a mild symptom (e.g., stuffy
nose), participants showed a preference for O2 on BC trials,
creating an analogue of the inverse base-rate effect. They also
found that when AB-O1 and AC-O2 were trained in a 3:1
base-rate, the inverse base-rate effect could be removed if
cue B was presented as a more serious symptom than cue C.
If similar processes also govern the inverse base-rate effect,
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these results imply the rare predictor develops greater salience
as a result of training, and therefore receives greater attention.

Attention models and the inverse base-rate effect

The inverse base-rate effect provides a good test-bed for
models of attention in learning. The attention account of the
inverse base-rate effect was initially formalised in the ADIT
model, which was later extended to allow attention distribu-
tions to be learned in the EXIT model (Kruschke, 1996,
2001b). These models have been successful in predicting the
inverse base-rate effect and related highlighting effects
(Kruschke, 2001a, 2003). The EXIT model is a connectionist
model of associative learning that incorporates rapid attention
shifting in response to prediction error. That is, after making
an outcome prediction, and subsequently observing the actual
outcome, attention shifts to the cue most likely to reduce
subsequent prediction error. After attention shifts within a
trial, the distribution of attention to each cue is incrementally
learned, such that a proportion of that attention distribution
can be applied on similar trials in the future. In EXIT,
attention moderates the influence of cues on both responding
and learning, such that cues that are attended will have greater
control over responding within a trial, and will be learned
about more readily. Thus, according to EXIT, attention is
shifted towards C on AC trials, due to the prediction error
driven by the ambiguous cue A. On BC trials, C has a
stronger association with O2, and/or greater attention is paid
to cue C, resulting in greater O2 responses. EXIT is a relative-
ly complex model containing several mechanisms. Recently,
Paskewitz and Jones (2020) have shown that the EXIT model
only requires rapid attentional shifts or attentional competition
components in order to explain most experimental effects,
including the inverse base-rate effect.

While the EXIT model is most commonly applied to the
inverse base-rate effect, it is not the only attention-based mod-
el of learning that is relevant to the effect. EXIT is based on the
theoretical principle that greater attention is allocated to cues
that reduce subsequent prediction error, and is therefore
conceptually very similar to the Mackintosh (1975) model.
TheMackintosh model has been applied extensively in animal
and human learning literature, and has been critical in
explaining related biases in learning, such as the learned
predictiveness effect (e.g., Le Pelley et al., 2016; Le Pelley
& McLaren, 2003; Lochmann & Wills, 2003). While the
Mackintoshmodel can account for choice biases in the inverse
base-rate effect, it fails to predict stronger attention to C onAC
trials than to B on AB trials (Don et al., 2019a), as well as
associability benefits for previously rare predictors (Don &
Livesey, 2021).

More recently, Le Pelley et al. (2016) proposed a far
simpler model in which attention is assumed to be propor-
tional to associative strength. Here, attention would be

directed towards cues that are good predictors of an out-
come, and away from cues that may weakly predict multi-
ple outcomes. The authors state that this model can account
for most effects of attention in human learning, with the
exception of the inverse base-rate effect. The primary issue
for this model is the finding that often, the inverse base-
rate effect occurs when common responses for B alone are
greater than rare responses for C alone at test (e.g., Inkster
et al., 2019b; Wills et al., 2014). We refer to this difference
as the B>C effect. This suggests that the inverse base-rate
effect occurred even though there was a greater association
between B and O1 than between C and O2. While the co-
occurrence of the inverse base-rate effect and the B>C
effect is not always present, this trend is evident in several
other cases (e.g., Bohil et al., 2005; Kruschke, 1996;
Medin & Edelson, 1988; Medin & Bettger, 1991; Shanks,
1992; Winman et al., 2005; see Winman et al., 2003, for
further discussion of this issue). The result is surprising, as
rare responding to BC trials cannot be predicted by the
summation of associative strengths for B and C. The find-
ing may be problematic for attention-based theories of the
inverse base-rate effect, particularly for the simple atten-
tion account that assumes a close relationship between
learning strength and attention biases (Le Pelley et al.,
2016). At the very least, it suggests that there may be dis-
sociations between attention and response accuracy (Wills
et al., 2014; Winman et al., 2003).

Context associations

One potential way to reconcile the inverse base-rate effect and
the B>C effect with Le Pelley et al.’s attention model is to
assume a role of context learning (Don & Livesey, 2017; Don
et al., 2019a; Le Pelley et al., 2016). Context associations are
an important component of associative learning models for a
range of reasons, but, in this case, particularly because they are
the primary way in which such models can explain learning of
base rates that is independent of predictive cues. The assump-
tion is that the experimental context acts as an additional cue
that becomes associated with the outcomes, and influences
predictions and judgments in much the same way as other
cues. Because of the base-rates, the context will be more
strongly associated with the common outcome. Therefore, B
alone trials can be considered B+context trials, where both the
cue and context associations would facilitate prediction of the
common outcome. On C+context trials, the cue and context
predict different outcomes, such that context associations
might weaken rare outcome predictions, even if the C-O2
association is stronger than the B-O1 association.

The effect of context associations has been studied by
equating global outcome frequency (Don & Livesey, 2017;
Don et al., 2019a, Don & Livesey, 2021). In typical inverse
base-rate designs with multiple instantiations and fewer
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outcomes than cue compounds, each outcome is always paired
with either common compounds or rare compounds. For ex-
ample, O1 is always paired with common compounds AB and
DE, and O2 is always paired with rare compounds AC and
DF, such that the context will be more strongly associated
with O1. Don and colleagues used this as the “standard” train-
ing condition. In contrast, the experimental condition in these
studies was a “balanced” training condition in which each
outcome was paired with both a common compound and a
rare compound. In this way, all outcomes were experienced
with equal frequency during training. For example, O1 was
paired with the common compound AB and the rare com-
pound DF, while O2 was paired with the rare AC and the
common DE. For any given set of overlapping cues, the
base-rate difference is preserved – O1 was the common out-
come within overlapping AB and AC trials, and O2 was the
common outcome within DE and DF trials – and these local
base-rate differences ensure that there is a rare predictor and
common predictor in each set. At the same time, there is no
global base-rate difference in the frequency of the outcomes,
and thus there is no basis for the context to be more strongly
associated with any particular outcome.

The balanced outcome design typically reduces the prefer-
ence for the rare outcome on conflicting trials (Don &
Livesey, 2017; Don et al., 2019a). Differences in the B>C
effect as a result of context associations were difficult to assess
in these studies, as responding for both B and C test trials were
close to ceiling in both groups, such that no difference was
observed. Don et al. (2019a) also found that global outcome
frequency produces differences in gaze preferences prior to
making an outcome prediction during training.While the stan-
dard group in their study showed preferential attention to the
predictive cue on AC trials, and no bias on AB trials, the
balanced condition produced gaze biases towards the more
predictive cue on both AB and AC trials. As the context does
not provide a good prediction of the outcome, it may be more
necessary to attend to the predictive cue on every trial in order
to make an accurate prediction. In contrast, the standard group
can rely to some degree on the global base-rates to make
correct predictions, with the exception of AC trials. During
feedback, where, according to EXIT, attention is adjusted to
minimise prediction error by attending more to the cues that
produce the least error, there was no difference in attention
between standard and balanced groups, perhaps suggesting
that regardless of the role played by context learning, attention
tends to shift to discrete cues during this phase. Assessing
attention during feedback is not common practice in these
types of tasks, and therefore warrants further research.

In the EXIT model, context learning is captured by associ-
ations between the outcome and a “bias node”, which is
allowed to vary in salience. The EXIT model can predict the
co-occurrence of the inverse base-rate effect and B>C effect,
but only when the B versus C difference is heavily weighted in

model fits (Kruschke, 2001a, 2003). Notably, EXIT can ac-
count for reductions in the inverse base-rate effect and atten-
tion biases when outcome frequency is matched (Don et al.,
2019a).

While the inverse base-rate effect is reduced when the con-
text is not strongly associated with the common outcome, it is
unlikely to be the result of context conditioning alone. In one
study (Don & Livesey, 2017, Experiment 3), AB-O1 and AC-
O2 were trained in equal frequency, and outcome base-rate
differences were produced by including high-frequency filler
trials paired with O1, such that there should be a strong
context-O1 association. These conditions were not sufficient
to produce an inverse base-rate effect on BC trials. In addition,
Inkster et al. (2019b) found that changing the context in the
test phase had no effect on the strength of the inverse base-rate
effect or B>C effect. The failure to find any effect of a context
shift on test performance is not consistent with the notion that
context associations are heavily involved in the inverse base-
rate effect. It is clear there is a need for further research to
identify the role of context in the inverse base-rate effect,
and its implications for models of attention.

Inferential accounts

Some researchers have proposed that, rather than a learning
effect, the inverse base-rate effect is a rational decision based
on inferential processes at test (Juslin, Wennerholm, &
Winman, Juslin, Wennerholm, & Winman, 2001; Winman
et al., 2005). According to this account, selective attention
and selective learning are not necessary to explain rare out-
come choice. The predominant inferential explanation is the
eliminative inference account, proposed by Juslin et al.
(2001). The general principle of this account is that people
eliminate the well-known, common category when they are
faced with ambiguous or dissimilar features that do not fit that
category. For instance, BC trials do not match the known AB
features of the common outcome, and therefore that option is
eliminated, and the rare outcome is instead chosen.

More formally, the eliminative inference model (ELMO)
assumes that participants form a number of inference rules
about the relationship between cues and outcomes (e.g. AB
→ O1) during training. On any given trial during the test
phase, some of these learned rules will form part of an active
set in working memory. The remaining outcomes, which per-
tain to inference rules that are not currently active in memory,
form part of a guessing set. The probability of an inference
rule being part of the active set is proportional to its base-rate,
so that frequent inference rules (e.g. AB → O1) are more
likely to be active in memory than infrequent inference rules
(e.g., AC → O2). At test, ELMO determines whether a par-
ticular transfer item will elicit a process of induction or
elimination according to the similarity between each of the
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active inference rules and the transfer item, where similarity is
determined by the cues (or features) comprising the inference
rule and the transfer item. Transfer items with at most one
deviating feature to the active rules will elicit induction. In
this case, inference rules that share similarity with the transfer
item are activated, and an active outcome is then chosen at a
probability proportional to its similarity to the transfer item.
For example, A and ABC transfer trials have one dissimilar
feature to the active rules (missing one perfect predictor, or
one too many perfect predictors, respectively), and therefore
lead to induction. Because the common inference rule is more
likely to be part of the active set, O1 is typically chosen for
these trials. Transfer items with two or more deviating features
will instead elicit elimination. In elimination, the active infer-
ence rules (and thus the choice of the relevant outcome) are
removed, and participants guess amongst the remaining out-
comes (i.e. those whose inference rules are inactive) in the
guessing set, which is more likely to contain rare outcome
rules. The conflicting BC trial deviates from AB → O1 with
two features (one missing imperfect predictor, and one extra
perfect predictor), and so the active O1 outcome is eliminated,
and participants guess the rare O2 outcome. As is evident from
this model, an eliminative inference is highly specific in terms
of the rules surrounding induction and elimination, which may
only apply in an artificial learning environment when making
discrete choices. It is difficult to see how these specific rules
may generalise readily to other situations in everyday life or
even other similar phenomena in the lab. However, elimina-
tion in general may be a cognitive mechanism that is more
widely used. We discuss this further later in the paper.

Although ELMO accounts for the inverse base-rate effect
in its original form, the model fails to account for several
important characteristics of the effect. These include the ne-
cessity of a shared cue during training, as ELMO incorrectly
predicts elimination even in cases where there is no imperfect
predictor (Wills et al., 2014). The model also struggles to
account for differences in the strength of responding to imper-
fect and combined transfer items; typically, the tendency to
choose the common outcome is stronger for A than ABC
trials, even though ELMO predicts induction should occur
for both (Kruschke, 2001a). The model also incorrectly pre-
dicts elimination on transfer trials that combine an imperfect
predictor with a novel cue. For instance, Don and Livesey
(2017) found that AX trials elicited a tendency to choose the
common outcome, even though these trials differ from the AB
→ O1 rule by the same number of features as the BC transfer
trials. As such, many researchers no longer consider it a plau-
sible model of the effect.

The way in which ELMO is defined, operating on a
set of discrete rules (one for each outcome category or
training trial) does not lend itself easily to some of the
conditions under which the inverse base-rate effect is
readily observed, for instance when multiple cue

combinations lead to the same outcome (and indeed
the fact that this has no effect on rare bias, see Don
& Livesey, 2017, Experiment 1) or when the cues are
not discrete but presented as variable quantities (Kalish,
2001). These properties could at least, in principle, be
accommodated by a generalised version of the model.
Potentially more consistent with a decision process
based on discrete rules, Kalish (2001) did not observe
the effect when using overlapping distributions of cue
values, which in effect produced probabilistic rather
than deterministic cue-outcome relationships. There are
several unusual features of this experiment that may
have led to this failure but if it were the case that
probabilistic relationships did not support the inverse
base-rate effect then that would be rather inconsistent
with a connectionist account. Again, it would also cast
serious doubt on the generality of the phenomenon in
question. However, more research is needed to answer
this question one way or another.

Although there are serious doubts about the ability of
eliminative inference to adequately account for the inverse
base-rate effect, this does not mean some form of reason-
ing process at test is not involved in producing it. Some
researchers have suggested that elimination is synony-
mous with a general novelty-matching strategy, in which
novel cues are paired with novel outcomes. While we
suggest this kind of matching strategy differs from a
dissimilarity-based eliminative inference (the matching
strategy involves selecting the rare outcome specifically
because of its novelty rather than eliminating the common
outcome and choosing among the rest), this is at least
another reasoning process that is not captured by connec-
tionist networks like the EXIT model (Kruschke, 2001a).
The following section outlines evidence related to higher-
order reasoning processes in the effect.

Evidence for inferential accounts

Novel cue effects

Responding to novel cues has been an important test for elim-
ination accounts. That is, a novel cue at test should elicit
elimination of the common outcome, due to its dissimilarity
to learned rules. Juslin et al. (2001) found a rare outcome bias
for novel cues, and Johansen, Fouquet, and Shanks (2007)
found a similar result in a text-based version of the task.
However, Inkster et al. (2019b) found a common bias on
novel cue trials, and, as noted, Don and Livesey (2017) found
a bias for the common outcomes on AX trials that contained
the imperfect predictor plus a novel cue, which should also
elicit a process of elimination. In this case, responding to
novel cues may be based on the associations of other cues
present (e.g., context, imperfect predictors).
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Processing of the common predictor

In an fMRI study, O'Bryan et al. (2018) used multivoxel pat-
tern analysis to examine activation patterns associated with
the cues presented on ambiguous test trials. Faces, objects
and scenes were used as cues, as these visual categories have
well-defined regions of representation in ventral temporal cor-
tex. Prior to training, regions of sensitivity to these categories
were determined for each participant. The authors used repre-
sentational similarity analysis to compare patterns of activa-
tion from this initial task with patterns of activation on con-
flicting test trials, giving an indication of whether participants
are more strongly activating information from the common or
the rare category. Although there was no significant overall
preference for the rare outcome, on conflicting trials where the
rare outcome was chosen, there was neural activity indicative
of stronger activation of cue B than of cue C. No such differ-
ence emerged on trials where participants chose the common
outcome. This finding suggests that participants were choos-
ing the rare outcome by making a decision about the
dissimilarity between the test trial and the common category
trials (AB – O1) experienced during training, therefore
avoiding the common outcome as a choice. O’Bryan et al.
interpreted this as evidence of a deliberative form of reason-
ing, consistent with the eliminative inference, and distinct
from similarity-based choices. Consistent with this interpreta-
tion, response times were also slower on conflicting trials
when rare choices were made, but were faster when the neural
activity indicated the common outcome was processed to a
greater extent. In other words, participants were faster to re-
spond with the rare outcome if they attended more to the
common cue B. However, another study has shown greater
activation for cue C than cue B in brain regions linked to
prediction error (Inkster et al., 2019a).

Developmental and comparative differences in base-rate
adherence

Researchers often turn to developmental changes and cross-
species differences in behavioural phenomena in an attempt to
understand their psychological origins, and to some extent this
is true for the inverse base-rate effect. Winman, Wennerholm,
Juslin and Shanks (Winman et al., 2005) compared the effect
between adults and children, assuming that children would be
less likely to use high-level reasoning processes, and instead
rely on more simple associative processes. Adults demonstrat-
ed an inverse base-rate effect, while children showed
responding at chance levels on conflicting trials. The authors
argue that the difference between adults and children was not
attributable to differences in learning efficiency, suggesting
that the result was not simply due to differences in the strength
of learned associations or selective attention (since these
should manifest in differential performance on the task). The

authors thus argued that the effect observed in adults was
likely to be a result of their capacity to use higher-order pro-
cesses. However, in contrast to these results, Burling and
Yoshida (2016) found highlighting effects in young children.

To date, the inverse base-rate effect and highlighting effect
have only been demonstrated in humans. In comparison, some
cue competition effects such as blocking and overshadowing
have been found in many other species, using a wide variety
of conditioning tasks. In the only comparative study of the
highlighting effect that we know of, Fagot, Kruschke, Depy
and Vauclair (1998) compared the effect in humans and ba-
boons. While humans showed a rare bias on conflicting trials,
baboons showed ambivalent responding on both conflicting
and imperfect test trials. Fagot et al. argued that this was due to
a difference in rapid attention shifting, rather than
reasoning capacity. However, it is clear that if the effect in
humans was based on higher-order reasoning then we might
expect to see a weaker or even absent effect in other species. In
any case, since the only data to date that bear on this question
come from just two baboons, comparative evidence for or
against the inverse base-rate effect is sorely lacking. Future
studies could test the effect in animals using simple condition-
ing paradigms.

Individual differences in rule use

Recent studies in category learning have found that individual
differences in the tendency to rely on feature- versus rule-
based processes are relatively stable across tasks, where “fea-
ture-based” refers to generalisation on the basis of surface
similarity of features, and “rule-based” refers to generalisation
on the basis of abstract relations (Little & McDaniel, 2015;
McDaniel, Cahill, Robbins, & Wiener, 2014). This has given
rise to the suggestion that certain types of generalisation are
often carried by a subset of participants who have a tendency
to search for abstract relations among items (Goldwater, Don,
Krusche, & Livesey, 2018). If only a subset of participants
(e.g., those disposed to rule-learning) exhibited the inverse
base-rate effect, then it might suggest the effect is grounded
in selective cognition. To test this hypothesis, Winman et al.
(2005) classified participants as rule-based or feature-based,
according to generalisation performance in a patterning task
(Shanks & Darby, 1998), in which rule-transfer and feature-
based transfer produce very distinct patterns of generalization
on test. Other studies have found that rule-based generalisa-
tion in this task is associated with higher working-memory
capacity (Wills, Barrasin, & McLaren, 2011a), greater cogni-
tive reflection, and more strategic "model-based" choice in
reinforcement learning (Don, Goldwater, Otto, & Livesey,
2016). In this case, Winman et al. (2005) compared the
strength of the inverse base-rate effect produced by partici-
pants classified as rule- or feature-learners, based on their
performance in a separate patterning task. Only those
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participants who were able to extract and apply an abstract
rule in the patterning task exhibited an inverse base-rate effect,
suggesting that the effect may rely on the use of higher-order
processing. Nevertheless, this observation is open to multiple
interpretations, particularly because it is correlational in na-
ture. For instance, there is evidence of individual differences
in selective attention in tasks widely assumed to have their
basis in broad learning mechanisms (e.g., Granger, Moran,
Buckley, & Haselgrove, 2016; Haselgrove et al., 2016; Le
Pelley, Schmidt-Hansen, Harris, Lunter, & Morris, 2010),
and this may form the basis of individual differences in the
inverse base-rate effect. People who display rule-based learn-
ing in the patterning task typically also display greater learn-
ing efficiency (i.e., they improve faster) and faster learning
may provide an advantage for learning rare predictors in par-
ticular since they are less frequent and typically the slowest to
attain high accuracy.WhileWinman et al. (2005) attempted to
control for overall training accuracy in their statistical analy-
sis, there is still a possibility that rule-learning in the patterning
task and the strength of the inverse base-rate effect are indi-
rectly linked by a common but very general factor such as
participants’ attentiveness or motivation to engage on the task,
or that each is the result of different cognitive processes that
rely on a common cognitive capacity, as would be the case for
instance if some component of attention shifting were work-
ing memory dependent. Without knowing the basis of this
link, we can only conclude that people who are likely to pick
up and use the patterning rule are also likely to show the
inverse base-rate effect, but the reason for this association is
far from clear.

Is learning through experience necessary?

Johansen et al. (2007) demonstrated an inverse base-rate effect
when cue-outcome contingencies were presented simulta-
neously in written listed format, suggesting that trial-by-trial
learning is not necessary for the effect. Although the rare
choice bias was present when each trial was listed in text form,
the effect was negated when an explicit summary of the base-
rates was provided, suggesting the choice bias is not simply
based on higher-order processes applied at test. Curiously, in
the inverse base-rate effect, summarising base-rates appears to
encourage their use (e.g., Johansen et al., 2007), yet the oppo-
site appears to be true for base-rate neglect (e.g., Butt, 1988;
Christensen-Szalanski & Beach, 1982; Christensen-Szalanski
& Bushyhead, 1981; Manis et al., 1980). However, the task
requirements involved in producing these phenomena are very
different.

Cognitive load

Lamberts and Kent (2007) argued that there is no evidence for
rule-based processes in the inverse base-rate effect. In their

study, participants were tested in four different within-
subjects conditions, three of which were designed to tax work-
ing memory capacity, and therefore interfere with effortful,
cognitively demanding reasoning processes. In a control con-
dition, participants responded to test trials under standard,
unspeeded conditions. In a dual-task condition, participants
were required to simultaneously count backwards in multiples
of three, and in two speeded conditions, participants were
required to respond to test trials within either 500 or 300 ms.
An inverse base-rate effect was obtained in all four conditions.
The authors therefore argued that the inverse base-rate effect
cannot be a result of inferential processes at the time of test.

Some aspects of Lamberts and Kent’s (2007) analysis
make it difficult to draw a firm conclusion that these condi-
tions have no influence on the strength of the effect. For in-
stance, differences in the strength of the effect under dual-task
or speeded conditions, compared to no-load conditions, were
not reported. Indeed, the effect appears numerically weaker
under speeded conditions. Further, the cognitive load manip-
ulations were applied during the test phase only. The assump-
tion is that inferential rules in the inverse base-rate effect are
formed or used effortfully during the test phase, because this is
where the relevant trials are presented. Nevertheless, it is pos-
sible that rules or inferences are formed throughout training,
and these inferences may then be applied during the test phase
with little cognitive demand. Indeed, Wills, Graham, Koh,
McLaren and Rolland (2011b) found that the use of rule-
based processes in a patterning task was affected by cognitive
load during training, but not during test. Rule-use in the pat-
terning task is also based on responses to new combinations of
trained cues, in a similar way as the inverse base-rate effect.
Thus, Lamberts and Kent’s (2007) results do not rule out the
possibility that some form of inferential reasoning could con-
tribute to the effect.

Related to this, the inverse base-rate effect is affected by
conditions that may influence the way in which inferences are
formed during training. That is, the effect is weakened when
outcome novelty or trial novelty is removed (Don & Livesey,
2017). However, whether the effect of novelty influences con-
scious reasoning processes or lower-level learning processes
(or both) is unclear.

Self-report measures

The ability to articulate a rule is often considered an important
part of inferential rule use and, indeed, in tasks where a dom-
inant and clearly articulable rule is in place, articulation of the
rule is often found to be highly correlated with patterns of
generalization (e.g., Lee, Hayes, & Lovibond, 2018). To the
best of our knowledge, no study has attempted to systemati-
cally document participants’ articulated response rules in re-
lation to the inverse base-rate effect.
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By way of a preliminary investigation, we assessed partic-
ipants’ reasoning processes on conflicting trials by adminis-
tering a post-experimental questionnaire to 30 participants,
after they completed an inverse base-rate effect task using
identical methods to the standard condition described in Don
and Livesey (2017), which is known to produce a strong

inverse base-rate effect, and indeed did so again in this study
(mean rare outcome choice on BC trials accounted for 72% of
all relevant outcome choices, see Online Supplementary
Materials for a full description of methods and learning task
results). The aim was to determine whether participants artic-
ulate a clear inferential reasoning strategy for rare choice at
test, and if so, whether this strategy is consistent across par-
ticipants. The questionnaire provided a written summary of
the abstract structure of the task design, the outcome base-
rates, and the conflicting trials. They were asked to indicate
which outcome they tended to choose on conflicting trials
during the test phase of the computer task, and were then
asked to describe their reason for choosing that outcome.
Participants were classified as rare-biased, common-biased
or unbiased, according to their responses to conflicting trials
in the test phase (see Table 2). Table 3 provides category
definitions into which outcome choice responses were

Table 2 Outcome choice in the questionnaire by bias shown at test

Bias at test Questionnaire response

Common Rare Total

Common 3 0 3

Rare 15 4 19

Unbiased 5 3 8

Total 23 7 30

Table 3 Explanations for outcome choice by category

Outcome Category Classification N Mean rare bias Example response

Common Base-rate normative The more frequent outcome
has a higher probability
of occurring

9 .67 (±.11) “Since disease 1 occurred more often
it makes sense that there is a bigger
probability that the patient suffers
from disease 1 rather than 2.”

Associative memory Remembered the relationship
between B and O1 better

6 .71 (±.08) “I remembered the symptoms of this
disease better than the other diseases
which weren’t seen as often.”

Intuitive Other reason for choosing
O1, e.g., greater confidence,
or salience of the cue or
outcome etc.

4 .75 (±.10) “I was more confident on the symptoms
displayed for disease 1 than 2”;
“I would often give symptom C less
weighting than B because it would
feel somehow more natural for
me to do so.”

Unclassified 4 .71 (±.17)

Rare Elimination If the cues do not match those
of the common outcome,
the rare outcome is chosen.

1 .50 “Disease 1 occurred so often that it was
really easy to identify whether or not
it was disease 1, and if the symptoms
did not match or seem familiar to that
of disease 1, I would choose disease 2.

Novelty Selection

Outcome O2 was chosen because it
was a novel outcome

0 -

Trial O2 was chosen because C
was novel

2 .50 (±.0) “…Since symptom C is unusual, when it
appears it probably means the patient is
more likely to get the rare disease associated
with symptom C”

Novelty-matching BC was novel, so the more
novel outcome was chosen

0

Asymmetric
representation

C indicates the rare outcome more
than B indicates the common outcome.

3 .92 (±.08) “Symptom C could be the main signal of
a rare kind of disease”

“Because that symptom seemed to
be exclusive to only that disease.”

Unclassified 1 1.0

Note: Mean rare bias refers to the proportion of relevant rare outcome choices on conflicting BC trials for participants in each classification
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classified. As this questionnaire was primarily an exploratory
exercise, these categories were determined post hoc, based
primarily on proposed explanations for the effect. The number
of responses falling into each of these categories, mean rare
biases at test for each category, and example responses, are
also summarised.

The questionnaire revealed several notable results.
Responses in the questionnaire did not clearly correspond
with choice at test. Of the 19 participants who were clearly
rare-biased at test, 15 indicated they had chosen the common
outcome. Although Johansen et al. (2007) also found greater
common responses in a similar questionnaire, it is interesting
that providing this kind of base-rate summary was also able to
override choices made during the test phase. It could be the
case that participants simply could not recall which outcome
they had chosen on these trials, although the questionnaire
was administered directly following the test phase.
Alternatively, it may be difficult for participants to map the
abstract structure described in the questionnaire to the appro-
priate trials during the test phase, especially considering the
large number of test trials. However, this mismatch in choice
did not occur in the opposite direction. That is, no participants
who indicated they had chosen the rare outcome in the ques-
tionnaire had shown a common bias at test. Thus, it seems to
be the case that providing a summary of the base-rates leads to
more rational responding, even in participants prone to mak-
ing rare responses when contingencies are learned on a trial-
by-trial basis.

Most participants who chose the common outcome in the
questionnaire gave a rational, base-rate normative explana-
tion. That is, the more common outcome is more likely to
occur. Several other participants gave an explanation based
on associative memory, where they indicated that they re-
membered the outcome that went with cue B better, because
it was seen more frequently. Others relied on more intuitive
explanations, such as greater confidence in that response.

The explanations for choosing the rare outcome were of
greater interest. One participant clearly articulated an elimina-
tive inference, stating that if the symptoms did not match those
of the common disease, they chose the rare disease. Thus,
despite the general dismissal of eliminative inference in the
literature, it appears that this is in fact an inferential strategy
that participants may form and use when responding in these
tasks. Even so, it is clear that this inference is either used by
only a very small minority of participants, or is one that is not
readily articulated (i.e., it is quite possible that using an elim-
inative inference is more common than reporting it).

There were no responses expressing a clear novelty-
matching strategy (that is, that unusual or novel trial types
somehow go with the rarer outcome), or a more general pref-
erence for a more novel outcome. Responses that mentioned
novelty did so only in reference to the novelty of the rare
predictor. That is, the rarity of cue C meant that its associated

outcome was more likely. The novelty of cue C during train-
ing appears to lead to a strong link between C and the rare
outcome, which could indicate either an inferential or associa-
tive process. This is similar to the responses given by three
participants classified as an asymmetric representation, in
which C indicated the rare disease more than B indicated the
common disease. Asymmetric representation will be
discussed in greater depth in the following section of this
paper.

While it is difficult to make strong conclusions given the
small sample of rare choice explanations, these results do sug-
gest that: (1) eliminative inference is a plausible, but not com-
monly reported, inference, (2) the novelty of C is important for
the effect, and (3) there is little evidence for a unified inferen-
tial process resulting in rare outcome choice.

The evidence for reasoning in the effect is not clear cut, and
may point to the contribution of multiple processes. Several
researchers, including those who have proposed associative
and attentional accounts of the inverse base-rate effect, have
acknowledged a potential role for higher-order reasoning in
the effect (Johansen et al., 2007; Kruschke, 2003; Kruschke,
2005; Winman, Wennerholm, & Juslin, 2003). Dual-process
accounts, which assume associative learning processes may
be influenced by, or interact with, higher-order inferential pro-
cesses, still form the most complete explanations for other
learning and cue competition effects (McLaren et al., 2014;
Thorwart & Livesey, 2016). The assumption is that associa-
tions and inferences describe general mechanisms jointly
governing human learning and behaviour in most situations,
and thus it seems unlikely that the inverse base-rate effect
should be any different in this regard.

The mixed findings regarding the contribution of
higher-order processes highlight the need for further re-
search into individual differences in the effect, to deter-
mine which factors predict a predominance of inferential
or associative processes, and whether the tendency to
rely on either process results in differences in choice.
The tendency to choose the rare outcome might be as-
sociated with different learning orientations or cognitive
abilities. For example, prior research has shown associ-
ations between the use of higher-order processes and
cognitive reflection (Don, Goldwater, Otto, & Livesey,
2015; Don et al., 2016; Livesey, Lee, & Shone, 2013),
and interactions between learning orientation and task
conditions (Goldwater et al., 2018). If there are individ-
ual differences in the proclivity for rule use, then ma-
nipulations that increase the obviousness of rules or en-
courage their use should affect individuals differently
(e.g., Don, Goldwater, Greenaway, Hutchings, &
Livesey, 2020; Goldwater et al., 2018). These kinds of
manipulations may help us draw inferences above and
beyond the simple correlation found by Winman et al.
(2005).
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Asymmetric representation and the role
of similarity

Kruschke (2001a) suggests that attention shifts during learn-
ing result in an asymmetric representation of cue-outcome
relationships. Cue A receives more attention on AB trials than
it does on AC trials, such that both A and B predict O1, but
only C predicts O2. In category learning terms, the O1 cate-
gory is represented by both A and B, whereas the O2 category
is represented by C alone. On BC transfer trials, the absence of
cue A means that BC is more similar to the representation for
O2 than the representation for O1 (e.g., Nosofsky, 1984,
1986). Johansen et al. (2007) trained participants in a “disjoint
cue structure” that mirrors this asymmetric structure, where
AB-O1 was presented three times as often as C-O2. This re-
sulted in greater O2 choice on BC trials. Given that partici-
pants did not show a choice bias when given a summary of the
base-rates in an explicit decision-making task, they concluded
that both asymmetric association and base-rate neglect were
individually necessary and jointly sufficient to produce the
inverse base-rate effect.

In our questionnaire study, three participants provided ex-
planations classified as asymmetric representation, suggesting
that C indicates the rare outcome more than B indicates the
common outcome (although a small sample, these participants
also showed a strong rare bias). This is more difficult to clas-
sify as a purely inferential strategy. Asymmetric representa-
tion of the information presented during training may well be
a feature of the decisions that lead to the inverse base-rate
effect, no matter what cognitive processes are responsible
for those decisions. Associative networks that account for
the effect (e.g., Kruschke’s EXIT model) produce
asymmetries because both the attention to cues and the asso-
ciations with O1 are distributed across A and B on common
AB-O1 training trials, whereas attention and O2 associations
heavily favour cue C on the rare AC-O2 trials. However,
reasoning processes may also be influenced by biased atten-
tion and asymmetric representation. Take the process of elim-
ination, for example, where it is assumed that participants
reject the common outcome because they notice that BC trials
are different from well-learned instances of AB-O1.
Asymmetric representation may contribute to people regard-
ing AB and BC as being less similar than AC and BC. If it is
assumed that C is represented in a way that makes it individ-
uated and distinct, then AC and BC at least share a relevant
cue in common. In contrast, if A and B are only retrieved as
part of an integrated representation of AB-O1, participants
may not make the same link between AB and BC, and may
regard them as being distinctly different.4

Both inferential reasoning and associative memory may be
affected by changes in the psychological similarity between
trained and test trials. Associative accounts make the limiting
assumption that generalization from past to present conditions
occurs on the basis of similarity, and particularly on the basis
of the presence of common features that have been associated
with outcomes in the past. Inferential reasoning could also
occur on the basis of feature similarity – indeed, associative
generalization could simply be viewed as a form of inductive
reasoning – but it may also occur on the basis of other factors,
including dissimilarity. Elimination is an example of this; it is
assumed that an individual will not choose the common out-
come if they notice that the conflicting BC trial is substantially
different from the AB-O1 trials they have experienced previ-
ously. Differences between similarity and dissimilarity pro-
cesses have been captured formally in an extension of the
generalized context model, known as the dissGCM (Stewart
& Morin, 2007). The dissGCM incorporates standard compu-
tations of similarity to memories of learned exemplars
(Nosofsky, 1986), with calculations of dissimilarity to those
exemplars, with both contributing to decisions about category
membership. O’Bryan et al. (O'Bryan et al., 2018) used this
model to find independent neural correlates of similarity and
dissimilarity processes while participants performed an in-
verse base-rate task. While it remains open to debate whether
similarity and dissimilarity processes reflect the operation of
qualitatively distinct psychological operations (like reasoning
and associative memory), they do at least appear to engage
different neural circuits.

Measurement of the inverse base-rate effect

There is documented variation in the strength of inverse base-
rate effects across studies, and some researchers have argued
that the effect may be limited to a particular set of conditions
(Winman et al., 2005). To make this conclusion with confi-
dence, we would need to know that the methodological pa-
rameters were optimised to find the effect, yet these parame-
ters have not been systematically explored in a satisfactory
way. The following section therefore reviews the parameters
that have been varied in inverse base-rate research.

Base-rates

In a typical inverse base-rate effect task, AB-O1 trials are
presented more frequently than AC-O2 trials. This basic de-
sign is often repeated multiple times with different cues and
outcomes, including two (e.g., Bohil et al., 2005; Kruschke,
1996; Kalish, 2001; Lamberts & Kent; Wood, 2009; Wood &
Blair, 2011), three (e.g., Medin & Edelson, 1988; Winman
et al., 2005) or four (e.g., Don & Livesey, 2017; Don et al.,
2019a; Medin & Bettger, 1991; Juslin et al., 2001) repetitions.

4 While this is possible, O1 responses toAX trials suggest this might not be the
case (Don & Livesey, 2017).
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Although most tasks have used a 3:1 base-rate of common to
rare trials in training, the effect has also been demonstrated
with a more extreme 7:1 base-rate (Juslin et al., 2001;
Lamberts & Kent, 2007; Shanks, 1992). Some evidence sug-
gests that the 7:1 base-rate leads to a stronger effect than a 3:1
base-rate when trained within-subjects (Shanks, 1992).
However, the effect is also observed with a weaker 2:1 base-
rate (Wills et al., 2014). The effect also persists when the
relative base-rates of common and rare trials are changed at
different stages throughout training, with a choice bias for the
early rare outcome on BC trials (Kruschke, 2009; Medin &
Bettger, 1991). Based on these findings, Kruschke (1996,
2009) has suggested that learning the common contingencies
before the rare contingencies is critical for the effect. Indeed,
training AB-O1 trials prior to the introduction of AC-O2 trials
also leads to a preference for O2 on BC trials in the
highlighting effect (Kruschke, 1996).

Task scenarios

Studies of the inverse base-rate effect have traditionally
used a medical diagnosis task, where participants assume
the role of a doctor learning to diagnose fictitious diseases
from experience with several patients (e.g., Johansen et al.,
2007; Juslin et al., 2001; Kruschke, 1996; Medin & Bettger,
1991; Medin & Edelson, 1988). Nevertheless, the effect
also appears to be robust under a variety of task scenarios
and stimuli, including random word associations (Dennis &
Kruschke, 1998; Kruschke, 2005), abstract shapes and
coloured squares (Fagot et al., 1998), line stimuli (Kalish
& Kruschke, 2000; Johansen et al., 2010), features of cell
images and viruses (Lamberts & Kent, 2007), abstract
shapes representing “cell bodies” and diseases (Wills
et al., 2014), foods and allergic reactions (Don et al.,
2019a), graphs of “blood proteins” and native Australian
animal species (Kalish, 2001), as well as personality traits
and group membership (Sherman et al., 2009). Other cue
competition effects that have been linked to the inverse
base-rate effect (e.g., blocking; Kruschke et al., 2005) seem
to be affected by the explicit causal relationship implied by
the task scenario (e.g., Blanco, Baeyens, & Beckers, 2014;
Don & Livesey, 2018; Luque, Cobos, & López, 2008;
Waldmann, 2000, 2001; Waldmann & Holyoak, 1992).
The robustness of the effect across various task scenarios
suggests this may not be the case for the inverse base-rate
effect, although this has yet to be directly tested.

Test measures

With the exception of one study that used a cued-recall
paradigm (Dennis & Kruschke, 1998), the inverse base-
rate effect has been measured using a discrete choice be-
tween outcomes, where participants are asked to select the

most likely outcome.5 That is, participants are asked to
choose which outcome they think is most likely, given
the presented cues. Some studies have additionally includ-
ed confidence ratings with transfer trial responses (Don &
Livesey, 2017; Don et al., 2019a), which often reveal
relatively high levels of confidence in choices on conflict-
ing trials.

Given that several other cue competition effects, such as
blocking, have been shown across different kinds of test mea-
sures (see Don & Livesey, 2018; Jones, Zaksaite, & Mitchell,
2019; Livesey, Greenaway, Schubert & Thorwart, 2019;
Luque, Vadillo, Gutiérrez-Cobo, & Le Pelley, 2016;
Mitchell, Lovibond, & Gan, 2005; Mitchell, Lovibond,
Minard, & Lavis, 2006, for examples using predictive ratings,
causal ratings, and discrete outcome choice), it is noteworthy
that the inverse base-rate effect has almost exclusively been
measured using discrete outcome choice. If the inverse base-
rate effect is a result of similar mechanisms to other cue com-
petition effects, we might expect it to occur under the wide
variety of test conditions used in other cue competition effects.
However, currently, there is a lack of studies demonstrating
the effect (or its absence) using other test measures, even those
that are commonly used in contingency learning experiments,
such as continuous predictive ratings.

Statistical analysis

There is little consensus about the most appropriate way to
statistically analyse the inverse base-rate effect. Many have
adopted the approach of using simple paired t-tests compar-
ing choice of common and rare outcomes directly, even
though the underlying distributions of choice probability
may deviate from normality. Several others have used chi-
square tests, yet typically each participant contributes more
than one response for each trial type (there are several var-
iants of BC trials), which constitutes a violation of the as-
sumption of independence required for chi-square tests.
Dennis and Kruschke (1998) addressed this issue stating
the chi-square values they obtained were large enough that
conservative adjustments would still lead to the same con-
clusions, however, this may not always be the case with
weaker effects.

Consistent with the analyses just described, most studies
assume (either tacitly or explicitly) that a meaningful inverse
base-rate effect is identified relative to a point of impartial-
ity, where participants favour neither the rare nor the com-
mon outcome over the other, and therefore an inverse base-
rate effect occurs when choice of the rare outcome is above
chance. Some studies have instead compared choice on BC

5 An unpublished study byWedell and Kruschke (2001, as cited by Kruschke,
2009) measured likeability ratings in a task where participants used personality
traits to predict group membership.
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trials to choice on A trials (Lamberts & Kent, 2007; O'Bryan
et al., 2018). The imperfect predictor may provide an appro-
priate comparison for rational base-rate use, as the frequency
with which A is paired with each outcome is equivalent to
the overall base-rate of each outcome. However, while one
rational response to BC trials would be to predict the

common outcome, another rationally justifiable response
would be to show no choice bias, as the probability of O2
given C is equivalent to the probability of O1 given B.
Thus, this statistical approach may lend itself to showing a
significant inverse base-rate effect when choice of the com-
mon and rare outcome on BC trials do not differ, but there is

Table 4 Summary of empirical findings, strength of evidence, and consistence with theoretical accounts

Empirical findings Consistency with theoretical accounts

Observation Strength
of
evidence

Notes Attention + Prediction
error

Elimination
inference
(ELMO)

Novelty
selection/
Novelty
matchingSimple (Le

Pelley et al.,
2016)

Complex
(EXIT)

Rare bias on BC trials Stronga The inverse base-rate effect, ob-
served many times

Con Con Con Con

Common bias on A trials Stronga Almost always accompanies the
inverse base-rate effect

Con Con Con Con

Generality across task scenarios Stronga Widely replicated in different tasks Con Con n/a n/a

Necessity of shared cue Moderateb Consistent result in three studies Con Con Inc Inc

Generality across biased base-rates Moderateb Replicated in base rates ranging
from 2:1 to 7:1

Con Con Con Con

Attention bias C > B Moderateb Tested once in eye-gaze and
associability (two similar effects
in highlighting)

Con Con n/a Con

Global outcome base-rate effect Moderateb Consistent result in three studies Inc* Con** Con Con

Higher confidence on conflicting than
imperfect or novel trials

Moderateb Consistent pattern in two studies,
statistically analysed in one.

Con Con Inc Inc

Common bias on ABC trials Moderatec Often tested, sometimes shows rare
bias

Con Con Con Inc

Accuracy: B > C Moderatec Evident in many (not all) studies but
rarely specifically tested

Inc* Con** Con n/a

Rare bias on novel cue trials Weake Two studies, conflicting results Inc Inc Con Con

Common bias on novel AX trials Weakd One study only, replicated in three
experiments

Con Con Inc Inc

(lack of) effect of cognitive load Weakd One study only, weak rare bias Con+ Con+ Inc Inc

(lack of) effect when cue frequency is
matched and outcome base-rate is
present

Weakf One study only Con Con n/a Inc

Common predictor processing at test Weakf One study only, replicated within
the study, weak rare bias

Inc Inc Con Inc

Correlation with rule use in another
task

Weakf One study only Inc+ Inc+ Con Con

(lack of) effect in children Weakf One study only, weak age difference
(conflicting result in highlighting)

Inc+ Inc+ Con Con

(lack of) effect in other animals Weakf One study in highlighting only with
N=2

Inc+ Inc+ Con Con

Discrete cues not required Weakf One study only n/a Con Inc Inc

Deterministic relationships required Weakf One study only, unusual design Inc Inc Con n/a

Note: Inc = Inconsistent; Con = Consistent. Strength of evidence is classified on the following bases: (Strong) a Widely replicated across many studies;
(Moderate) b Consistent effects / large effect sizes across relatively few studies, c Fairly consistent (with some exceptions) over many studies; (Weak) d

Replicated multiple times within one study only; e Inconsistent results over relatively few studies, f Only a single study involving the inverse base-rate
effect. * Could be consistent if we assume context associations are involved. ** Likely requires learning about context due to the presence of a bias cue in
the EXIT model. + This assumes that associative processes are bottom-up and automatic in nature and thus should have primitive origins and no
relationship to higher-order cognition or working memory. However, the validity of these assumptions is highly debatable and there is no reason to
assume that selective attention in particular should have these properties. These manipulations can only really provide evidence against the inferential
accounts that assume memory dependence
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a common bias on A trials. Comparisons of choice on BC
trials against A therefore provide a good test of base-rate
neglect, while comparisons against chance provide a stron-
ger test of an inverse base-rate effect.

Conclusions and future directions
for the inverse base-rate effect

Table 4 summarises the key empirical results related to the
inverse base-rate effect that we have addressed, the strength
of evidence for each of these results, and their consistency
with different theoretical accounts. Table 5 summarises key
questions where further evidence is needed. On the whole, the
effect seems unlikely to be a result of a highly specific infer-
ence such as eliminative inference. The data presented here
show that eliminative inference is an occasionally reported
strategy in this task, although it is unlikely to account for the
range of phenomena associated with the inverse base-rate

effect. It also suggests the inverse base-rate effect can be pro-
duced in the absence of this strategy.While we have attempted
to test alternative inferences that may result in the inverse
base-rate, for example, novelty selection or novelty matching
(Don & Livesey, 2017), this inference suffers similar limita-
tions in terms of its inability to account for the available data.
Our sample of participants who described their inferential
choices in a post-experiment questionnaire offered no indica-
tion of any other inference that they could articulate or con-
sistently use. In addition, participants generally tend to be
more confident in their choices on conflicting BC trials than
on imperfect and novel transfer trials (Don & Livesey, 2017;
Don et al., 2019a), which is inconsistent with the idea that
participants are simply making odd choices as a result of un-
certainty about these trials. For now, far and away the most
defensible conclusion is that the inverse base-rate effect is not
the consequence of a single specific and idiosyncratic infer-
ence like elimination, nor is it obviously the consequence of a
collection of well-articulated inferences that each possess

Table 5 Outstanding questions and possible avenues for further research

Research question Theoretical interpretation

How are conflicting BC trials processed at test? Evaluating whether there is greater attention to the common or rare predictor at test will
help determine whether the effect is a result of facilitating rare responses or inhibiting
common responses

What is the role of context associations in the inverse
base-rate effect?

Strong associations between the context and the common outcome appear to contribute to
attention biases favouring rare predictors, but there is still mixed evidence regarding the
effect of context on test trials and counterintuitive B>C effects

Are attention biases to rare predictors during training driven
by novelty or prediction error (or both)?

Several results indicate that greater attention is paid to the rare predictor. This may be
because the predictor itself is surprising due to its novelty, or because its associated
outcome is surprising (i.e., the predictor is accompanied by larger prediction error).
EXIT assumes the latter; however, novelty and prediction error are confounded in these
tasks

How well does the EXIT model account for other
attention-based learning effects?

If the inverse base-rate effect is useful for theories of attention-based learning, the model
that best accounts for it should also account for other attention-based learning effects

How does attention during feedback differ from attention
prior to making a prediction?

Research in the inverse base-rate effect indicates different attention biases prior to making
a prediction and during feedback. A question remains as to whether this occurs in other
attention-based learning effects

Does the inverse base-rate effect occur with probabilistic
contingencies?

This will assess the generalisability of the effect. If the effect does not occur with
probabilistic contingencies, this would be inconsistent with connectionist accounts

Which individual differences predict the inverse base-rate
effect?

Correlations with executive cognitive processes, including abstract reasoning and
cognitive control of attention will help determine whether rule-based (or other execu-
tive) processes may be involved in the effect.Manipulations encouraging rule use could
serve a similar aim

Does the inverse base-rate effect occur in animals? If the effect occurs in animals in simple conditioning paradigms, this would provide good
support for a generalisable competitive learning effect

Does the inverse base-rate effect occur in children? Further research is needed to test whether the absence of the effect in children is consistent.
If the effect does occur in children, this might call into question whether high-level
reasoning processes are necessary

Does dissimilarity-based elimination play a more general
role in learning from experience?

The eliminative inference is not well supported as an explanation of the inverse base-rate
effect, however perhaps a more general dissimilarity decision mechanism is important
here and in other decisions based on prior experience. More evidence and theory
development is needed

Does the inverse base-rate effect occur in different types of
test judgements?

Other cue competition effects tend to be demonstrated in different types of judgements,
e.g. learned predictiveness and blocking effects
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similar specificity (and thus would not be found elsewhere in
learning and decision making). While the eliminative infer-
ence as it has been applied formally to the inverse base-rate
effect is highly specific (and proponents of its use have argued
that the effect itself might be highly idiosyncratic), a general
form of this cognitive mechanism is still worth taking serious-
ly. That is, decisions and judgments underpinned by
dissimilarity-based elimination may be more widely used in
human cognition than our analysis of the inverse base-rate
effect suggests. It remains a challenge for future research to
find stronger evidence of such processes, particularly in the
type of learning and decision tasks that we are concerned with
here. Assuming such evidence can be found, determining how
such decisions might contribute to the inverse base-rate effect
is still a problem that needs to be resolved. In our opinion,
there are too many inconsistencies between the eliminative
inference and empirical evidence for this to be considered a
viable option.

Currently, the empirical results that are inconsistent with
attention-based models of the effect either have weak or con-
flicting evidence, or can be accounted for if we make addi-
tional, reasonable assumptions, such as learning about context
associations. The more general evidence that the inverse base-
rate effect requires executive function or higher-order cogni-
tion (e.g., correlation with rule discovery and developmental
trajectory) only constitutes evidence against attention-based
prediction error models if one makes the assumption that se-
lective attention in learning is independent of cognitive re-
sources. We suggest that there is little basis for this assump-
tion; selective attention processes may well rely on executive
functions even if basic association formation does not. There
is some evidence for automaticity in the attentional changes
that are driven by predictive learning but there is also evidence
of cognitive control (e.g., Mitchell, Griffiths, Seetoo &
Lovibond, 2012).

To knowwhether the inverse base-rate effect reflects broad
cognitive mechanisms, it is critical to determine the generality
of the effect. While the effect occurs across different task
scenarios and conditions, some conditions have remained con-
sistent across all studies and may be unlikely to arise in the
real world. For instance, almost all studies have used perfect
contingencies between predictive cues and outcomes. One
study has shown that the effect disappears when using contin-
uous overlapping cue magnitude distributions. The interpreta-
tion they offer is that this renders the cue-outcome relationship
probabilistic rather than deterministic. Thus, testing whether
preferences for rare outcomes still occur with probabilistic
cue-outcome relationships is an important aim for future re-
search. In addition, the effect has typically been assessed using
a binary choice test. It is therefore important to determine
whether the effect occurs in different types of test judgements,
for example, predictive or causal ratings.

While there is consistent evidence of attention biases dur-
ing training, there are currently mixed results regarding how
conflicting BC trials are processed at test. To better determine
the nature of decision processes happening on these trials,
future research requires complementary evidence from eye-
tracking, associability measures, and imaging to determine
how participants make decisions on these trials, for instance,
whether the rare-outcome choices are a result of facilitating
rare responses by attending to the rare predictor, or inhibiting
common responses after attending to the common predictor.

Further work is also needed to examine the role of context
associations in driving outcome predictions, since learning
about context associations may be necessary to explain some
properties of the effect, and the evidence for such learning is
still minimal. While the EXIT model is generally successful in
accounting for many of the phenomena accompanying the in-
verse base-rate effect, the model is complex, potentially to the
detriment of understanding how individual theoretical mecha-
nisms are useful in generating the effect. If the inverse base-rate
effect is important for the development of theories of attention-
based learning, then the capabilities of the EXIT model also
require broader testing, in order to determine whether it serves
as an effective general-purposemodel of attention. Recent work
by Paskewitz and Jones (2020) has begun to address this.
Future work is needed to test how well this model or a reduced
version of it can account for other attention-based effects, for
example, effects driven by absolute or relative predictiveness,
or uncertainty. Further, it will be important to establish whether
attention biases to rare predictors are based on prediction error
specifically, or simply cue novelty. The EXIT model predicts
that attention is driven by prediction error, but this is confound-
ed with cue novelty in the task.

Conclusions about the triviality of the effect (e.g., Winman
et al., 2005) are currently based on relatively weak evidence.
In some cases, there is simply scarce evidence on which to
make conclusions. For instance, further research in children
and animals is required to ascertain whether the absence of the
inverse base-rate effect in these populations is consistent.
More generally, the link between the inverse base-rate effect
and executive cognitive processes needs to be explored fur-
ther, including determining the role played by abstract reason-
ing on the one hand and cognitive control of attention on the
other. For instance, the correlations with rule-based processes
require greater examination, and could be better assessed by
task manipulations that highlight rules or encourage their use.

Finally, inconsistencies in findings may be reconciled by
appealing to individual differences. There is need for greater
assessment of whether differences in learning, cognitive abil-
ity, or cognitive strategies can predict the inverse base-rate
effect, in order to fully understand the processes involved in
the effect, and to identify which individuals may be most
susceptible to this misuse of base-rate information.
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Misuse of base-rate information in learning
from experience

The inverse base-rate effect reveals conditions in which peo-
ple consistently misuse base-rate information when learning
from experience. The base-rates of events provide an impor-
tant source of information when making decisions based on
ambiguous information. Yet, people are often poor at making
rational choices when they involve a consideration of base-
rates. Despite previous suggestions that trial-by-trial learning
may encourage rational use of base-rates (e.g., Christensen-
Szalanski & Beach, 1982; Butt, 1988; Christensen-Szalanski
& Bushyhead, 1981; Manis et al., 1980), this is clearly not the
case in all situations.

On thewhole, the evidence currently favours the inverse base-
rate effect being driven by general learning andmemory process-
es coupled with changes in attention, and thus should not be
dismissed by theorists interested in these processes. The inverse
base-rate effect is not the only learning phenomenon in which
biased judgements arise from the erroneous use of base-rate in-
formation. Base-rate neglect occurs in trial-by-trial learning in a
number of experimental contexts. For example, the formation of
illusory causation between a cue and an outcome when there is
zero contingency (i.e., when the probability of the outcome is the
same when the cue is present and when the cue is absent) is
assumed to be the result of failing to adequately consider the
base-rates of the outcome when the cue is absent (e.g., Matute
et al., 2015). This illusory causation is also greater when the
outcome is experienced frequently (Blanco, Matute, & Vadillo,
2013). It is possible that these effects are stronger in trial-by-trial
learning conditions than when participants are made explicitly
aware of the base-rates. Indeed, when participants are pre-trained
to expect a high base-rate of the outcome, illusory causation is
reduced (Blanco&Matute, 2019). This may have a similar effect
to providing participants with a summary of the base-rates, as in
Johansen et al. (2007). Reward frequency also appears to have
stronger influences on choice behaviour than reward probability
in reinforcement learning tasks (Don, Otto, Cornwall, Davis, &
Worthy, 2019b). It remains to be seen whether these errors of
judgements are the consequence of the same cognitive mecha-
nisms (see Kutzner & Fiedler, 2015; Sherman et al., 2009), but at
the very least, they seem to arise in similar learning contexts.

Curiously, the conditions in which the inverse base-rate
effect is most reliable are also the conditions in which partic-
ipants display the greatest learning of base-rates in other ways.
For instance, rare biases on conflicting trials are stronger when
there are greater common responses to the imperfect predictor
(Shanks, 1992). Indeed, conditions that reduce the rare bias on
conflicting trials also reduce common responses on other trials
(e.g., Don & Livesey, Experiments 2 and 3). The effect there-
fore does not appear to be a result of failing to learn base-rate
information, but is instead a consequence of learning the base-
rates well. Perhaps above all else, the effect highlights that

efficient learning mechanisms can lead to faulty decisions.
Studying these seemingly puzzling decisions provides an op-
portunity to understand the mechanisms by which we learn
and use frequency information in day-to-day life.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.3758/s13423-020-01870-0.
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