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Abstract
Visual categorization is fundamental to expertise in a wide variety of disparate domains, such as radiology, art history, and quality
control. The pervasive need to master visual categories has served as the impetus for a vast body of research dedicated to
exploring how to enhance the learning process. The literature is clear on one point: no category learning technique is always
superior to another. In the present review, we discuss how two factors moderate the efficacy of learning techniques. The first,
category similarity, refers to the degree of featural overlap of exemplars. The second moderator, category type, concerns whether
the features that define category membership can be mastered through learning processes that are implicit/non-verbal (informa-
tion-integration categories) or explicit/verbal (rule-based categories). The literature on each moderator has been conducted
almost entirely in isolation, such that their potential interaction remains underexplored. We address this gap in the literature by
reviewing empirical and theoretical evidence that these two moderators jointly influence the efficacy of learning techniques.
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Introduction

The ability to learn visual categories is a fundamental skill
across the lifespan. Visual categorization is not only essential
for basic survival, such as recognizing that a tiger is not a
housecat (Palmeri & Gauthier, 2004), but also in many pro-
fessional and technical fields, spanning radiology (Hatala,
Brooks, & Norman, 2003; Kok, de Bruin, Robben, &
Merrienboer, 2013), forensics (Searston & Tangen, 2017;
Tangen, Thompson, & McCarthy, 2011), and industrial in-
spection (Carter, 1957; Drury, 1975). Learning why different
objects belong together under a common name enables us to
generalize or transfer our knowledge to solve new problems.
Successful category learning is what enables a radiology stu-
dent to diagnose new patients after studying only a limited set
of X-rays. That is, category learning yields knowledge that
transcends the original learning event. Given the pervasive
need to learn visual categories, a great deal of research has
focused on identifying techniques to enhance the learning

process. The purpose of this review is to explore the factors
that make a given learning technique more, or less, effective.

In a typical category-learning experiment, participants study
the exemplars of several categories. The exemplars of each
category consist of features that are diagnostic (distinguish be-
tween categories) and/or non-diagnostic of category member-
ship. On a later test, participants are tasked with categorizing
previously studied and/or novel exemplars. Performance on the
novel exemplars is especially important as it reflects how well
participants can transfer their category knowledge. If partici-
pants are only able to categorize studied exemplars, then they
have demonstrated only basic memorization and not the ab-
straction of a mental representation of a category.

Although many different category learning techniques have
been explored, these techniques can be divided roughly into two
classes. One class of techniques manipulate exemplar
sequencing, the order and timing of presenting exemplars from
the various categories during the learning process (see Fig. 1).
Exemplar-sequencing techniques include blocking, in which the
exemplars of one category are studied before the exemplars of
another category (e.g., A1A2A3 B1B2B3 C1C2C3), or
interleaving, in which the exemplars of categories are studied
in an intermixed fashion (e.g., A1B2C3C3B1A3C1A2B1; Kornell
& Bjork, 2008). Another class of techniques manipulates the
type of learning task, which refers to how participants are asked
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to process, respond, or engage with exemplars during the learn-
ing process. Types of learning tasks include passive techniques,
such as observational learning, in which participants simply
view a series of labeled exemplars (e.g., Noh et al., 2016), or
more active techniques, such as classification training, in which
participants attempt to categorize unlabeled exemplars (e.g.,
Jones & Ross, 2011). Of course, these two classes of techniques
can be combined (e.g., a passive learning task with a blocked or
interleaved sequence; see Carvalho & Goldstone, 2015a).

No category learning technique is always superior to an-
other. Often, the learning technique that is most effective in
one context is the least effective in another. For example,
interleaving is sometimes more effective than blocking
(Kornell & Bjork, 2008), but the reverse has also been ob-
served (Carvalho & Golstone, 2014a, b). Motivated by dis-
crepant results, researchers have increasingly sought to iden-
tify factors that moderate the efficacy of category learning
techniques.

In the present review, we focus on two factors that moder-
ate the efficacy of category learning techniques. The first,
category similarity, refers to the degree to which exemplars
share features in common with other exemplars. The more
features that exemplars share in common, the more likely they
are to be perceived as belonging to the same category (see
Goldstone, 1994; Rosch, Mervis, Gray, Johnson, & Boyes-
Braem, 1976). Consequently, when the exemplars of a single
category do not share many features, it is difficult for the
learner to see why they should be grouped together. In that
case, research suggests that the best learning techniques em-
phasize the commonalities amongst dissimilar exemplars of
the same category (Carvalho & Goldstone, 2014a, b, 2015a;
Goldstone, Steyvers, & Rogosky, 2003; Zulkiply & Burt,
2013a). Alternatively, if exemplars from multiple categories
all look alike, then the best learning techniques do not empha-
size the similarities within a category, but rather the differ-
ences between categories (see Kornell & Bjork, 2008).

The second moderator, category type, concerns the degree
to which category membership can be mastered verbally or

explicitly (Ashby, Alfonso-Reese, & Turken, 1998; Minda &
Miles, 2010). Whereas rule-based categories can be defined
easily with verbal rules, information-integration categories are
extremely difficult or impossible to describe verbally. For
information-integration categories, multiple features of an exem-
plar must be averaged or treated holistically before a categoriza-
tion decision can be made, which cannot be accomplished with
verbal processes (Ashby&Waldron, 1999; Ashby&Ell, 2001).
An example of rule-based categories are the functional classes of
organic chemistry (e.g., alcohols, carboxylic acids; Eglington &
Kang, 2017). Each functional class can be defined perfectly by
verbalizable rules (e.g., alcohols are alkanes with a hydroxyl
group; carboxylic acids are alcohols with an additional double-
bonded oxygen), and these rules can be consciously used to
categorize an exemplar. A classic example of information-
integration categories come from the domain of “chick sexing,”
which involves categorizing young chicks as male or female
well before the obvious discriminative features develop.
Learning this skill cannot be accomplished by learning verbal
rules. Despite achieving high levels of accuracy, expert chick
sexers cannot articulate the basis of their judgments (Biederman
& Schiffrar, 1987).

Although category similarity and category type have both
been shown to moderate the efficacy of learning techniques,
the interaction between these two factors has received scant
empirical or theoretical attention. Several researchers have
speculated about the possibility of such an interaction, but
have not offered a thorough treatment of the subject (see,
e.g., Carvalho & Goldstone, 2015b; Noh et al., 2016;
Sorensen & Woltz, 2016; Zulkiply & Burt, 2013a). The pur-
pose of this review was to gather and discuss empirical evi-
dence concerning an interaction between these moderators.

Method of literature search and review

We searched for empirical articles that investigated how the
efficacy of a learning technique varies across levels of each

Fig. 1 An example of blocking and interleaving. Left: Exemplars from a single category (painters) are studied in a row (blocking) or in an alternating
fashion (interleaving). Right: Examples of final test items. Stimuli taken from Kornell and Bjork (2008)
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moderator (a) category similarity and/or (b) category type. We
used search strings containing the terms category (or per-
ceptual discrimination). To find articles using the most
common learning techniques in perceptual category exper-
iments, we used the following terms: blocking (ormassing),
interleaving (or spacing), inference (-training), and classi-
fication (-training). For the moderator of category similar-
ity, we not only used the term “similarity,” but also four
other keywords that are sometimes used to conceptualize
similarity in terms of the distance between category mem-
bers in features spaces, including “dispersion,” “range,”
“continuity,” and “variability.” For the moderator of cate-
gory type, we used the terms rule-based (or explicit) and
information-integration (or implicit). We also searched the
references from articles from these searches. This method
resulted in 393 articles for screening.

In our discussions on each moderator, we drew on the
results from empirical articles that met the following four
criteria. First, the dependent measure of category learning
must have been the proportion of correct responses for unstud-
ied exemplars (i.e., transfer). Often, studies included both
studied and unstudied exemplars on the categorization tests,
but we drew inferences from performance on the unstudied
exemplars. In such cases, we only drew inferences about the
influence of learning techniques on transfer when studied and
unstudied exemplars were reported and/or analyzed separate-
ly. Second, participants must have been humans between the
ages of 18 and 65 years. And third, the categories must have
been visual in nature, meaning that their diagnostic features
were directly observable.

For illustrative purposes, we report a subset of representa-
tive and influential studies in Table 1 (N = 11), which are
grouped by the type of manipulation: learning technique, sim-
ilarity, learning technique and similarity, and learning tech-
nique and type. In some cases, researchers did not report the
exact means of groups/conditions, but showed these data only
in figures and charts. In these cases, we used a validated soft-
ware to obtain estimates of the means from these figures and
charts for Table 1 (Burda, O'Connor, Webber, Redmond, &
Perdue, 2017). To check the efficacy of the software and our
procedure for using it, we examined studies that reported the
exact means and also presented the same data in charts. The
estimates matched closely. We must stress that we did not
conduct any analyses with these estimated means, but rather
included them in Table 1 to enhance interpretability.

Moderator 1: Category similarity

Category similarity is composed of two sub-concepts: within-
category similarity and between-category similarity (see
Carvalho & Goldstone, 2014a, b, for a discussion). Within-
category similarity refers to how much exemplars of the same
category share features in common. For example, the category

of “Bengal Tiger” exhibits relatively high within-category
similarity, as its exemplars share many features in common,
but the category of “living things” has comparatively lower
within-category similarity, with many of its exemplars
appearing quite dissimilar (e.g., giant squid, Venus-fly trap,
armadillo). In contrast, between-category similarity refers to
howmuch the features of one category’s exemplars are shared
with another category’s exemplars. For example, the catego-
ries of “Bengal Tiger” and “Indochinese Tiger” have fairly
high between-category similarity, but the categories of
“Bengal Tiger” and “East African Lion” have comparatively
lower between-category similarity.

Both aspects of category similarity can influence the diffi-
culty of the learning process in different ways (Carvalho &
Goldstone, 2014a, b, 2015a; Hammer et al., 2008; Higgins &
Ross, 2011; Higgins, 2017; Zulkiply & Burt, 2013a). When
within-category similarity is low, it is difficult to identify the
common features of exemplars within a category (i.e., it is
hard to see a “family resemblance” of a category’s exemplars).
Thus, lower within-category similarity makes learning harder,
and higher within-category similarity makes it easier. In con-
trast, when between-category similarity is high, it is difficult to
isolate the subtle features that differ between categories (i.e., it
is hard to see that there is more than one “family”). Thus,
higher between-category similarity makes learning harder,
and lower between-category similarity makes it easier.

In some cases, task difficulty may be driven primarily by
within-category or between-category similarity (see
Archambault, 2014; Carvalho & Goldstone, 2014a, b, 2015a;
Goldstone, 1996; Lancaster, Shelhammer, & Homa, 2013;
Zulkiply & Burt, 2013a). If within-category similarity is low
(hard) and between-category similarity is low (easy), then task
difficulty is driven by the former (i.e., the difficult part of the
task is to identify common features of exemplars within a cat-
egory). If within-category similarity is high (easy) and between-
category similarity is low (hard), then task difficulty is driven
by the latter (i.e., the difficult part of the task is to identify the
features that distinguish between categories). Of course, if
within-category similarity is low (hard) and between-category
similarity is high (hard), then neither drives task difficulty more
than the other (both are hard). The same is true for cases in
which within-category similarity is high (easy) and between-
category similarity is low (easy; both are easy).

Research suggests that the efficacy of a category-learning
technique depends on which component of category similarity
drives task difficulty (Carvalho & Goldstone, 2014a, b,
2015a; Eglington & Kang, 2017; Goldstone, Steyvers, &
Rogosky, 2003; Hammer et al., 2008; Higgins & Ross,
2011; Higgins, 2017; Meagher, Carvalho, Goldstone, &
Nosofsky, 2017; Zulkiply & Burt, 2013a; see Fig. 2). The
basic idea is that a category-learning technique is effective to
the degree that it helps participants overcome the most diffi-
cult part of the task. If task difficulty is driven by low within-
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category similarity, learning techniques that emphasize
within-category commonalities will be best (i.e., it helps with
the more difficult part of the task). In contrast, if task difficulty
is driven more by high between-category similarity, then
learning techniques that emphasize between-category differ-
ences will be best.

Exemplar-sequencing techniques Much of the evidence for
the moderating role of category similarity comes from the
literature exploring exemplar-sequencing techniques, such as
blocking and interleaving. Neither blocking nor interleaving
has proven to be superior to the other in all circumstances
(e.g., Carvalho & Goldstone, 2014). Identifying when and
why one method of exemplar sequencing is superior to the
other offers key insight into the moderating role of category
similarity.

The literature on exemplar sequencing is largely motivated
by the fact that people can learn categories by comparing
exemplars, and that the way these exemplars are sequenced
can influence the comparison process. For example, blocking

is thought to promote comparisons of the exemplars within a
category, since it juxtaposes members of the same category. In
contrast, interleaving is thought to promote comparisons,
since it frequently juxtaposes members of different categories
intermixed (e.g., Goldstone, 1996; Kornell & Bjork, 2010).

Blocking was long thought to be superior to interleaving
(see Kornell & Bjork, 2008, for a discussion). Researchers
who espoused this idea argued that if the goal of category
learning is to isolate the features that define a category, then
members of the category should be grouped together to high-
light their common features. That is, techniques promoting
within-category comparisons would always be best. From this
perspective, interleaving would harm category learning be-
cause it inherently involves adding a temporal delay between
the study of two exemplars from the same category. This
would make it harder for participants to see the common fea-
tures uniting members of a category or perhaps even cause
interference and/or confusion. Consistent with this hypothesis,
many studies have documented benefits of blocking over in-
terleaving (Gagné, 1950; Kurtz & Hovland, 1956; Goldstone,
1996; Carvalho & Goldstone, 2011, 2014a, b, 2015a; Noh
et al., 2016; Monteiro, Melvin, Manolakos, Patel, &
Norman, 2017; Weitnauer, Carvalho, Goldstone, & Ritter,
2013; Zulkiply & Burt, 2013a). For example, Kurtz and
Hovland (1956) had participants study several categories,
each of which consisted of exemplars that varied in four diag-
nostic properties: shape, color, size, and position. Participants
who studied the exemplars with blocking outperformed those
who studied them with interleaving on a later categorization
test.

However, many studies have documented benefits of inter-
leaving compared to blocking in category learning. These
studies suggest that, at least in some cases, promoting
between-category comparisons is the superior route for cate-
gory learning. That is, it may sometimes be better to see how
members of two categories are different than how members of
one category are similar. This is called the discriminative-con-
trast hypothesis (Goldstone, 1996; Kang & Pashler, 2012;
Kornell & Bjork, 2008). In one experiment showing a benefit
of interleaving over blocking in category learning, Kornell
and Bjork (2008) had participants study the exemplars of dif-
ferent painters (the categories). Interleaving led to superior
categorization performance for studied and novel paintings
on a later test (see also, Kang & Pashler, 2012; Kost,
Carvalho, & Goldstone, 2015; Guzman-Munoz, 2017;
Kornell, Castel, Eich, & Bjork, 2010; Sana, Yan, Kim,
Bjork, & Bjork, 2018; Verkoeijen & Bouwmeester, 2014;
Wright, 2017; Yan, Bjork, & Bjork, 2016; Yan, Soderstrom,
Seneviratna, Bjork, &Bjork, 2017; Zulkiply &Burt, 2013a, b;
but see Zulkiply, 2015). These results have been replicated
with other types of categories, including bird species
(Birnbaum, Kornell, Bjork, & Bjork, 2013; Walheim,
Dunlosky, & Jacoby, 2011), butterfly species (Birnbaum

Fig. 2 The moderating influence of category similarity on learning
techniques. The vertical axis represents between-category similarity and
the horizontal access represents within-category similarity. Bottom-left
corner:Task difficulty is driven bywithin-category similarity (low, hard)
and not between-category similarity (low, easy). Thus, learning tech-
niques that highlight within-category commonalities are best for learning
(e.g., blocking). Top-right corner: Task difficulty is driven by between-
category similarity (high, hard) and not within-category similarity (high,
easy). Thus, learning techniques that highlight between-category differ-
ences are best for learning (e.g., interleaving). Top-left corner: Neither
type of category similarity drives difficulty, as within-category similarity
is low (hard) and between-category similarity is high (hard). Learning
techniques should emphasize both within-category commonalities and
between-category differences equally. Bottom-right corner: Neither
type of category similarity drives difficulty, as within-category similarity
is high (easy) and between-category similarity is low (easy). Learning
techniques do not need to emphasis either within-category commonalities
or between-category differences, as the learner should easily learn both no
matter the type of technique. The dotted, diagonal line indicates the point
at which one style of learning technique becomes superior to another
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et al., 2013), electrocardiogram abnormalities (Hatala, Brooks,
& Norman, 2003), organic chemistry compounds (Eglington &
Kang, 2017), diseases on X-rays (Rozenshtein, Pearson, Yan,
Liu, & Toy, 2016), and various types of artificial visual stimuli
(Dwyer, Mundy, & Honey, 2011; Lavis & Mitchell, 2006;
Mundy, Honey, & Dwyer, 2009; Mitchell, Nash, & Hall,
2008; Noh et al., 2016; Zulkiply & Burt, 2013a).

The idea that interleaving benefits learning through pro-
moting between-category comparisons has been challenged
by a rival account. According to the spacing hypothesis (see,
e.g., Guzman-Munoz, 2017; Kang & Pashler, 2012; Kornell
& Bjork, 2008; Kornell et al., 2010), the benefit of interleav-
ing is simply a spacing effect, which is the robust finding that
long-term memory of an item improves when studying that
item is divided into multiple occasions spread out across time
(Cepeda, Pashler, Vuhl, Wixted, & Rohrer, 2006; Delaney,
Verkoeijen, & Spirgel, 2010; Ebbinghaus, 1885).
Interleaving necessarily involves some degree of spacing,
since the study of the exemplars of a given category is sepa-
rated temporally by the study of other categories. The basic
idea is that when two exemplars from the same category are
separated by a sufficient delay, the presentation of the second
exemplar provokes the retrieval of the first exemplar from
long-term memory. This would result not only in a within-
category comparison but also the strengthening of memory
of the exemplars’ features through the retrieval process (a
retrieval-practice effect; Roediger & Karpicke, 2006).

Evidence favors the discriminative-contrast over the spacing
hypothesis (Guzman-Munoz, 2017; Kang & Pashler, 2012;
Mitchell, Nash, & Hall, 2008; Zulkiply & Burt, 2013a; but
see Birnbaum et al., 2013). For example, Kang and Pashler
(2012) had participants study paintings by blocking, spaced
blocking (filler tasks interjected between exemplars), or inter-
leaving. Assuming that spacing is responsible for the interleav-
ing effect, spaced blocking and interleaving should result in the
same performance. However, the authors found that interleav-
ing was superior to both blocked conditions (which resulted in
equivalent performance). In a second experiment, the authors
also found that interleaving was equally as effective as simul-
taneously presenting exemplars from different categories in one
image, again providing evidence that between-category com-
parisons underpin the interleaving effect (see also, Mundy,
Honey, & Dwyer, 2007, Mundy et al., 2009).

Taken together, the literature on blocking and interleaving
presents a mixed picture. Some studies demonstrate that
blocking is better, suggesting that promoting within-category
comparisons is the superior route for category learning.
However, other studies contradict this interpretation and sug-
gest that encouraging between-category comparisons are better.

Category similarity as a moderator of exemplar-sequencing
techniques Motivated by the divergent findings observed in
studies on blocking and interleaving, researchers proposed

that category similarity could be a moderating factor (see,
e.g., Carvalho & Goldstone, 2014a,b, 2015a; Eglington &
Kang, 2017; Goldstone, Steyvers, & Rogosky, 2003;
Hammer et al., 2008; Higgins and Ross, 2011; Higgins,
2017; Meagher, Carvalho, Goldstone, & Nosofsky, 2017;
Zulkiply and Burt, 2013a). This idea has been most promi-
nen t ly a r t i cu l a t ed and tes t ed by Carva lho and
Goldstone (2014a, b, 2015a, b, 2017), which they call the
attentional-bias framework. According to this framework,
the efficacy of category-learning techniques depends on the
extent to which it biases attention to the most difficult part of
the task.When task difficulty is driven by lowwithin-category
similarity (members of a category are dissimilar), blocking
will be best, but when it is driven by high between-category
similarity (members of each category look alike), interleaving
will be best.

To test the attentional-bias framework, Carvalho and
Goldstone (2014a) had participants study categories through
blocking and interleaving and manipulated category similari-
ty. The categories were composed of blob-shaped exemplars
that were defined by the presence of a single feature. The
authors constructed two sets of categories. The low-
similarity set was constructed to make task difficulty driven
by low within-category similarity. That is, within-category
similarity was low (hard) and between-category similarity
was low (easy). The high-similarity set was constructed to
make the task difficult due to high between-category similar-
ity. That is, between-category similarity was high (hard) and
within-category similarity was high (easy). Consistent with
their hypothesis, the authors found that interleaving was su-
perior to blocking with the high-similarity categories, but that
blocking was better than interleaving for the low similarity
categories. These basic results have observed in several other
studies (see, e.g., Carvalho & Goldstone, 2014b, 2015a;
Zulkiply & Burt, 2013a).

The attentional-bias framework readily accounts for all of
the previously discussed studies that show the benefit of in-
terleaving. Carvalho and Goldstone (2015a) note that all of the
stimuli documenting benefits of interleaving (paintings, bird
species, butterfly species, organic-chemistry compounds)
were intentionally designed to have high between-category
similarity (hard) and high within-category similarity (easy).
For example, the paintings in the study by Kornell and
Bjork (2008) were chosen to be equated roughly on subject
matter and artistic style, such that all exemplars from all cat-
egories look alike. As such, the primary challenge for partic-
ipants was identifying subtle between-category differences,
which would explain why interleaving was the superior learn-
ing technique in these studies.

Type of learning task: Inference and classification training
Nearly all of the previously discussed studies on blocking
and interleaving had participants learn through passively
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observing labeled exemplars. However, more active learning
techniques have been explored, and these techniques have
also been shown to influence within-category and between-
category learning. Two of the most commonly explored and
compared of these active techniques are inference training and
classification training (Chin-Parker & Ross, 2004; Jones &
Ross, 2011; Yamauchi & Markman, 1998). During inference
training, participants are presented with incomplete exemplars
and asked to produce or point out the missing feature. In
contrast, during classification learning, participants are pre-
sented with sequences of exemplars and are tasked with
assigning a category label to that exemplar from a provided
list. Sometimes, this is done with no explicit instruction or
initial presentation of labeled exemplars, such that perfor-
mance begins as guessing, and learning occurs through re-
sponse feedback (Ashby, Ell, & Waldron, 2003; Ell, Ashby,
& Hutchinson, 2012).

Inference training and classification training are thought to
promote within-category and between-category learning, respec-
tively (Chin-Parker & Ross, 2004; Hélie, Shamloo, & Ell, 2017,
2018; Hoffman & Rehder, 2010; Johansen, & Kruschke, 2005;
Jones & Ross, 2011; Sweller & Hayes, 2010; Yamauchi, Love,
&Markman, 2002; Yamauchi &Markman, 1998, 2000a, b; but
see Taylor & Ross, 2009). Inference training promotes within-
category representations because filling in a missing feature is
accomplished by attending to the internal structure of the exem-
plar, which biases attention to all the features of a category (i.e.,
both non-diagnostic and diagnostic features). In contrast, classi-
fication training promotes between-category learning because
the task requires identifying the diagnostic features that separate
category membership. Chin-Parker and Ross (2004) provided
evidence for this distinction by having participants study cat-
egories of fictitious bugs through both types of learning tech-
niques. Exemplars varied in both diagnostic and non-diagnostic
features. The final categorization test involved presenting par-
ticipants with two images of a bug from the same category, and
participants were asked to classify which of the two was most
representative of the category. Classification learners tended to
select the bugs that had the most diagnostic features (between-
category features), whereas inference learners tended to select
the bugs that hadmore non-diagnostic features (within-category
features). Inference and classification training therefore differ-
entially sensitize participants to different aspects of the catego-
ry. As with blocking and interleaving, these studies suggest that
inference training is superior when within-category similarity is
low, and classification learning is best when between-category
similarity is high.

Learning techniques may also be combined to strengthen
within- or between-category learning. For example, combin-
ing blocking and inference training may be paired to enhance
within-category learning, whereas interleaving and classifica-
tion training may be paired to enhance between-category
learning.

Moderator 2: Category type

Another factor that moderates the efficacy of category-
learning techniques is the type of category being studied.
The studies on category similarity have been conducted with-
out considering research exploring the existence of
qualitatively-different types of categories, each of which
may require distinct cognitive systems for mastery (Ashby
& Valentin, 2017; Minda & Miles, 2010; Nosofsky, 2011).

There are at least two broad types of categories: rule-based
and information-integration categories (Ashby et al., 1998;
Minda & Miles, 2010). The difference concerns the degree
to which category membership can be mastered verbally or
explicitly. Whereas rule-based categories can be defined eas-
ily with verbal rules, information-integration categories are
extremely difficult or impossible to describe verbally. For
information-integration categories, multiple features of an ex-
emplar must be averaged or treated holistically before a cate-
gorization decision can be made, which cannot be accom-
plished with verbal processes (Ashby & Ell, 2001). An exam-
ple of rule-based categories are the functional classes of or-
ganic chemistry (e.g., alcohols, carboxylic acids; Eglington &
Kang, 2017). Each functional class can be defined perfectly
by verbalizable rules (e.g., alcohols are alkanes with a hydrox-
yl group; carboxylic acids are alcohols with an additional
double-bonded oxygen), and these rules can be used to cate-
gorize an exemplar. A common example of information-
integration categories are some types of X-ray abnormalities;
even after years of expertise, expert radiologists often do not
approach perfect diagnostic categorization of some patholo-
gies, and the decisions they make are difficult or impossible to
verbalize (Mareschal, Quinn, & Lea, 2010).

Much of the literature on rule-based and information-
integration categories have used artificial categories (but see
Roads, Xu, Robinson, & Tanaka, 2018). The most studied
type of such artificial stimuli are sine-wave gratings (see Fig.
3). Exemplars are composed of circles containing lines vary-
ing in frequency and orientation.

It is important to note that the terminology of rule-based
and information-integration can be misleading – information-
integration categories do have rules that determine category
membership. The key difference is that the rule is difficult or
impossible to describe verbally (or even psychologically
meaningless if known). Consider the sin-wave categories
depicted in Fig. 3. Each sin-wave varies in two features: bar
orientation and bar frequency. For the rule-based category,
only bar orientation is diagnostic, such that the simple,
verbalizable rule is: “If the bar orientation is high, then the
exemplar belongs to Category A.” However, for the
information-integration categories, both bar orientation and
frequency are diagnostic. Critically, a decision about each
dimension cannot be made separately and then combined,
such as, “If the angle of the bar orientation is high and the
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bar frequency is low, then the exemplar belongs to Category
A.” That is, two simple, verbalizable rules cannot be com-
bined: both factors, which are measured with incommensura-
ble units (radians, cycles per degree) must be integrated to-
gether in a holistic manner (Ashby et al., 2003). Although
there is clearly a rule separating the information-integration
categories depicted in Fig. 3, it is impossible to verbalize this
rule in a meaningful way (see Ashby & Valentin, 2018).

The literature on category type has explored a relatively
narrow range of category-learning techniques compared to
the literature on category similarity. This may be due to the
fact the primary focus on the category-type literature has been
in determining whether distinct cognitive systems mediate
learning of rule-based and information-integration categories
(see Minda & Miles, 2010, for a discussion). Consequently,
less effort appears to have been devoted to exploring the rel-
ative efficacy of many different types of category-learning
techniques.

Type of learning task Nearly all studies exploring category
type had participants use a specific learning technique: clas-
sification training with an interleaved sequence. During
classification training, participants are presented with a se-
ries of exemplars and attempt to label these exemplars from
a provided list. Generally, participants are not shown any
labeled exemplars before starting the classification task,
such that performance begins as pure guessing and im-
proves with experience (e.g., Ell et al., 2012).

Researchers have manipulated several characteristics of
interleaved-classification training and documented dissocia-
tions between rule-based and information-integration catego-
ries (see Ashby & Valentin, 2017, for a review). These ma-
nipulations include the presence or absence of feedback, the
timing of feedback, the type of feedback, and sequencing ex-
emplars by difficulty (e.g., easy to hard). Providing feedback
has substantial benefits for learning information-integration,
but not for rule-based categories (Ashby et al., 2003; Ell et al.,
2012; Maddox& Ing, 2005). Further, delaying feedback by as
little as 2.5 s impairs information-integration but not rule-
based category learning (Maddox, Ashby, & Bohil, 2003;
Maddox & Ing, 2005; Dunn, Newell, & Kalish, 2012;
Smith, Boomer, Zakrzewski, Roeder, Church, & Ashby,
2014). The type of feedback is also critical: information-
integration category learning is better with minimalist feed-
back (simply informing that a response is correct or incorrect)
but worse with more informative feedback (providing the
correct answer; Maddox, Love, Glass, & Filoteo, 2008). The
inverse is true of rule-based categories (Maddox et al. 2008).
Sequencing exemplars from hard to easy is better than from
easy to hard for information-integration, but not rule-based
categories (Spiering & Ashby, 2008a). Some studies have
shown that classification training is superior to passive obser-
vational learning (no active assignment of category labels) for

information-integration, but not rule-based categories (Ell
et al., 2012; Dunn et al., 2012; but see Edmunds, Milton, &
Wills, 2015).

Notably, with only one exception (Maddox et al., 2008), all
of the above studies demonstrated no effect of various study
techniques for rule-based categories. The manipulations that
have resulted in such differences were independent of the type
of learning technique itself. That is, these were manipulations
that were extrinsic to the type of technique, like the number of
studied categories (Maddox et al., 2004), the use of a second-
ary task that taxes working memory (DeCaro, Thomas, &
Beilock, 2008), sleep deprivation (Maddox, Zeithamova, &
Schnyer, 2009), and stress (Ell, Cosley, & McCoy, 2011).
These questions are informative regarding the cognitive sys-
tems that mediate mastery of rule-based categories, and thus
offer only indirect evidence for optimal learning techniques.
As such, these manipulations will be discussed later.

Exemplar-sequencing techniques To our knowledge, only one
study has examined how blocking and interleaving influence
the learning of different types of categories. Noh et al. (2016)
had participants learn four rule-based or information-integration
categories by passively observing labeled exemplars. For one
group of participants, the exemplars were blocked, and for the
other group, the exemplars were interleaved. Each exemplar
was composed of a line that varied in length and orientation
(the diagnostic features) and randomly varied in position (the
non-diagnostic feature). After passively studying the labeled
exemplars, participants took a classification test in which they
were asked to assign labels to novel exemplars. Blocking was
best for rule-based categories, and interleaving was best for
information-integration categories.

Generalizability of studies on category type

The use of simplistic stimuli in the studies on category type
calls into question the generalizability of findings from this
literature. The sine-wave categories depicted in Fig. 3 vary
only on two dimensions. However, in applied settings, stimuli
can be far more complex and perceptually rich (see Fig. 4).
For example, consider the diagnostic categorization of skin
lesions. To categorize a skin lesion as benign or malignant,
doctors must consider multiple factors, including the symme-
try of its shape, smoothness of its border, its size, and variabil-
ity of its color. At a glance, the simple stimuli used in studies
on category type may not appear generalizable to a task as
complex as the diagnosis of a skin lesion.

The gulf between simplistic and the complex stimuli in
applied settings may not always be as vast it seems. This is
because complex tasks can sometimes be broken down into
separate categorization decisions (e.g., this lesion is asymmet-
ric, has high color variation) that together inform a diagnosis
(Sajjad & Marsden, 2008). Let us home in on categorizing
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color variation in the diagnosis of melanoma. Assessing color
variation depends on how the values of three dimensions (hue,
saturation, and brightness) change across the surface area
of alesion. These three dimensions are not perceptually sepa-
rable, meaning that judgments regarding each dimension can-
not be made separately and combined to make a rule-based
judgment (Burns & Shepp, 1988; Garner, 1976; Melara,
Marks, & Potts, 1993). In other words, assessing the color
variation of a lesion meets the criteria of an information-
integration task with only a few category-relevant dimensions.
Indeed, this could help explain why training explicit rules is
not always effective with diagnosing skin lesions and why
doctors struggle to verbalize their decision criteria (see
Roads et al., 2018, for a treatment of this subject). From this
perspective, it is not a stretch of the imagination to see how the
studies on information-integration categories using simplistic
stimuli can generalize to more complex tasks.

As another example, consider the categorization task of the
“apex fitting” depicted in Fig. 4. This piece of equipment at-
taches cargo to a helicopter for air lifting. Inspectors categorize
the object as functional or dysfunctional based on the presence
and correct assembly of several small pieces in the top portion:

an aluminum spacer, a castellated nut, and a cotter pin. If any of
these are missing or are the wrong type (e.g., a non-castellated
nut), missing, or incorrectly assembled, then the equipment
should be categorized as dysfunctional. This is a rule-based
task, as the rules for categorization can be stated verbally
(e.g., the pin is missing) and are sufficient for perfect categori-
zation. This task only has a few dimensions that vary between
categories. The other features, although they make the object
more perceptually rich than rule-based sine-wave categories,
are irrelevant to the task. Categories in naturalistic settings
can also be simple and rule-based, such as discriminating be-
tween prokaryotic and eukaryotic cells. In that task, knowledge
of the rules is verbalizable and strongly supports categorization
accuracy (e.g., only prokaryotes have no membrane-bound or-
ganelles; see Raven & Johnson, 2002).

Despite the above examples, the literature on category
type should embrace the use of more complex and naturalistic
categories. Without empirical investigation, knowing how
well the findings from studies with simple stimuli will gener-
alize to more complex tasks will remain speculative. At a
minimum, the artificial stimuli can be made more complex
with the addition of more category-relevant dimensions.

Fig. 3 Distributions of rule-based (left) and information-integration
(right) category exemplars (sine-wave gratings). Each circle indicates
an exemplar. The values of bar orientation and bar frequency are random-
ly sampled from separate univariate normal distributions to create each

exemplar. The red line indicates the optimal-decision boundary that dis-
tinguishes the categories (i.e., the rule). Adapted from Ashby and
Valentin (2017)

Fig. 4 Examples of categorization tasks in applied settings. Left: X-rays
of lungs are diagnosed with cystic fibrosis based on the presence of web-
like markings, distributed white spots, abnormal thickness of the bronchi-
al pathways, and flattened convexity of the hemidiaphragm (Grum &

Lynch, 1992). Middle: Skin lesions are diagnosed as cancerous based
on features such as their symmetry, border, colors, and size.Right:Apex
fittings for helicopter airlifting are considered dysfunctional if they lack
pieces in the top right corner (e.g., a small pin is missing)
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An interaction between category similarity
and category type

Several sources of evidence suggest that manipulations of
category similarity influence rule-based category learning dif-
ferently than information-integration category learning.
According to category-similarity theories, techniques that ori-
ent learners’ attention to between-category comparisons, like
interleaving and classification training, become less effective
as between-category comparisons become easier and within-
category comparisons become harder. This hypothesis is
largely based on studies documenting cases in which decreas-
ing within-category similarity reduces the efficacy of blocking
and increases the efficacy of interleaving. However, all studies
documenting this pattern used rule-based categories, includ-
ing various types of types of artificial stimuli (Carvalho &
Goldstone, 2014a, b, 2015a; Zulkiply & Burt, 2013a), animal
species like butterflies (Birnbaum et al., 2013) and birds
(Walheim et al., 2011), and organic chemistry molecules
(Eglington & Kang, 2017). With these stimuli, category mem-
bership can be stated and judged verbally (e.g., Viceroy but-
terflies have orange wings with black/white trim, but Sprite
butterflies have black wings with white trim).

We are not aware of any study that demonstrates this pat-
tern of findings with information-integration categories. To
our knowledge, interleaving has shown to be superior to
blocking in every study that used information-integration cat-
egories. Most directly, Noh et al. (2016) found that, holding
both properties of category similarity constant, interleaving
was superior to blocking for information-integration catego-
ries. The paintings used in the studies comparing blocking and
interleaving are widely considered to be information-
integration categories (e.g., Ashby & Gott, 1988; Kost et al.,
2015) because they presumably require combining multiple
perceptual features into a gestalt to make a category judgment.
The researchers who used paintings to investigate category
learning also selected stimuli to reduce the probability that
simple verbal rules could be used to maximize performance
(e.g., by attempting to equate subject matter and artistic style
between painters; for a discussion, see Zulkiply and Burt
2013a). In all of these studies, interleaving was superior to
blocking.

Three studies provide experimental evidence that category
similarity influences the efficacy of learning techniques for
information-integration categories differently than rule-based
categories (Maddox et al., 2005, 2007; Maddox & Filoteo,
2011). These studies all used minor variations of the same
paradigm. The learning procedure consisted of five blocks of
classification training with an interleaved sequence and trial-
by-trial feedback (interleaved classification). After the initial
learning procedure, participants then took a transfer test that
used purely novel items. These studies used sign-wave grat-
ings as stimuli (see Fig. 3), for which it is possible to obtain

exact and comparable measures of both within- and between-
category similarity via multidimensional signal-detection the-
ory (Ashby & Gott, 1988; Ashby & Soto, 2015). Specifically,
measures of discriminability, like d prime (d’), quantify both
components of category similarity on the same numeric
scale.1

Maddox et al. (2007) had participants learn information-
integration or rule-based categories and manipulated category
similarity. As shown in Fig. 5, the authors manipulated both
within- and between-category similarity across two conditions.
In the small-range condition, the exemplars of categories were
relatively clustered tightly together, and in the large-range con-
dition, the exemplars were relatively more dispersed (i.e.,
within- and between-category similarity was lower). From a
signal-detection perspective, task difficulty should be equiva-
lent between the small- and large-range conditions. Using d’ to
measure category similarity of the two conditions helps dem-
onstrate the point. In the small-range condition, the d’ value for
within-category similarity (d’within) was 3.86 and for between-
category similarity (d’between) was 7.73.

2 Recall that lower d’
values indicate higher similarity, meaning that in the small-
range condition, exemplars within categories were more alike
than exemplars between categories. To make the large-range
condition, the authors decreased within-category similarity
(d’within = 7.73; task made harder) and between-category sim-
ilarity (d’between = 11.59; task made easier) to an equal degree
(Δd’= +3.86). Thus, relative to the small-range condition,
within-category learning became harder and between-
category learning became easier commensurately.

Solely considering category-similarity theories (see Fig. 2),
performance on the final transfer test would be expected to be
lower in the large-range compared to small-range conditions
in the study by Maddox et al. (2007). This is because both
interleaving and classification training are best when task dif-
ficulty is driven by between-category difficulty (see Carvalho
& Goldstone, 2014, and Ell et al., 2017, respectively).
Therefore, as within-category similarity decreases (harder)
and between-category similarity decreases (easier) from the

1 As with unidimensional signal-detection theory, measures of similarity are
derived by dividing the distance between two points in space (usually themean
of each category’s feature values) by a common standard deviation. Lower
values of d’ indicate higher levels of similarity (and higher task difficulty).
Two d’ values are needed to characterize properties of category similarity, one
for between-category similarity (d’between) and another for within-category
similarity (d’within).
2 Although d’ values are commonly reported in studies using sine-wave grat-
ings as categories, they were not reported in the three studies discussed here
(Maddox et al., 2005; Maddox et al., 2007; Maddox & Filoteo, 2011). We
used the category parameters reported in these studies to calculate the d’
values. Note that in these studies, each category was composed of multiple
clusters of exemplars, which were sampled from a bivariate normal space.
Consequently, there were multiple orthogonal distances between the clusters
belonging to different categories. The d’between values reflect an average of
these between-category distances. The d’within values likewise reflect an aver-
age of the within-category cluster distances. For an extensive discussion on
how to calculate d’ values with these stimuli, see Ashby and Valentin (2018).
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small- to large-range conditions, interleaving/classification
should be less effective.

However, Maddox et al. (2007) found that for information-
integration categories, performance on the transfer test was
higher in the large-range compared to the small-range condi-
tions. That is, interleaved-classification training became more
effective as within-category similarity decreased. In contrast,
for rule-based categories, performance did not differ between
the two conditions on the transfer test. This null result is like-
wise inconsistent with pure category-similarity theories. It is

possible that the manipulation of category similarity was not
powerful enough to result in an effect. Regardless, the manip-
ulation did result in an effect with information-integration cat-
egories, suggesting an interaction between category similarity
and category type. Using the same paradigm and stimuli,
Maddox and Filoteo (2011, Experiment 1) replicated the find-
ing with information-integration categories but did not include
rule-based categories for comparison.

Two other studies corroborate the finding that for
information-integration categories, decreasing within-category

Fig. 5 Plots of the rule-based (RB) and information-integration (II) cate-
gories used by Maddox et al. (2007, Experiment 1). Each individual dot
represents a single exemplar. The lines indicate the boundaries between
the categories. (a) Rule-based categories, small-range condition. (b) Rule-
based categories, large-range condition (exemplars more dispersed). (c)
Transfer stimuli for the rule-based categories. (d) Information-integration

categories, small-range condition. (e) Information-integration categories,
large-range condition (exemplars more dispersed). (f) Transfer stimuli for
the information-integration categories. In the large-range conditions, both
within- and between-category similarity was lower than the small-range
condition. Adapted from Maddox et al. (2007)
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similarity does not reduce the efficacy of interleaved-
classification training (Maddox et al., 2005; Maddox &
Filoteo, 2011, Experiment 2). For example, Maddox et al.
(2005) had participants study two information-integration and
rule-based categories and manipulated category similarity
across two conditions. As shown in Fig. 6, the authors held
between-category similarity constant across the two conditions
(d’between = 3.0) but decreased within-category similarity from
the small-range (d’within = 3.0) to the large-range condition (d’-
within = 12.0; task made harder). Consequently, task difficulty
was driven more by lower within-category similarity in the
large-range condition. Task difficulty was also harder in the

large-range condition, which introduces a design confound that
makes comparisons of means between conditions difficulty.
Nevertheless, it is useful to compare performance between
the last learning block and the transfer tests within each condi-
tion. For information-integration categories, performance on
the final learning block, as measured by proportion correct,
was significantly higher for the small-range condition (.83)
than for the large-range condition (.65), which reflects the dif-
ference in task difficulty. However, performance on the transfer
test was equivalent between the conditions (.70), representing a
decrease in performance for the small-range condition (-.13),
but an increase in the large-range condition (+.05). For the

Fig. 6 Plots of the rule-based (RB) and information-integration catego-
ries (II) used in Maddox et al. (2005). Each individual dot represents a
single exemplar. The lines indicate the boundaries between the categories.
(a) Information-integration categories, small-range condition. (b)
Information-integration categories, large-range condition (exemplars
more dispersed). (c) Transfer stimuli for the information-integration

categories. (d) Rule-based categories, small-range condition. (e) Rule-
based categories, large-range condition (exemplars more dispersed). (f)
Transfer stimuli for the rule-based categories. Between-category similar-
ity was equivalent between the small- and large-range conditions, but
within-category similarity was lower in the large-range condition.
Adapted from Maddox et al. (2005)
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small-range condition, this reduction (-.13) brought perfor-
mance back down to levels observed in the first of the five
learning blocks (.70) – in other words, learning did not transfer
to novel stimuli. In contrast, the performance increase in the
large-range condition suggested that participants could success-
fully transfer their learning. These results again challenge
pure category-similarity theories, as the efficacy of
interleaved-classification training increased as within-category
similarity decreased for information-integration categories.

Taken together, the evidence presented here suggests an
interaction between-category similarity and category type.
For rule-based categories, optimal study techniques may de-
pend on the extent to which task difficulty is defined more by
high between-category similarity or low within-category sim-
ilarity. When the former is true, study techniques that empha-
size between-category differences (e.g., interleaving, classifi-
cation) are best, otherwise, techniques that highlight within-
category similarities (e.g., blocking, inference training) are
best. In contrast, the studies conducted by Noh et al. (2016)
and Maddox and colleagues (Maddox et al., 2005; Maddox &
Filoteo, 2011) suggest that this pattern does not hold for
information-integration categories. In these studies, which
had participants learn with interleaved-classification training,
transfer performance increased as task difficulty shifted to-
ward being driven by lower within-category similarity.
However, the evidence presented thus far does not provide a
complete explanation or picture of this interaction.

Theoretical explanationsDifferences in the type of mental rep-
resentations of information-integration and rule-based catego-
ries may help explain the category similarity-by-type interac-
tion. Information-integration categories are thought to be stored
as exemplars, prototypes, and/or a combination (seeMaddox&
Filoteo, 2011). Using these mental representations to make
categorization judgments involves making similarity-based
comparisons between the representation and novel stimuli.
Given that no rule can ever be learned to support perfect cate-
gorization performance, this performance should, therefore, de-
pend on how closely the features of the mental representation
match with a novel stimulus. In support of this idea, transfer
performance with information-integration categories drops
sharply as novel exemplars become dissimilar from studied
exemplars (Casale et al., 2012). Thus, fostering information-
integration category learning may require expanding the range
of studied exemplars (i.e., increases the likelihood that a novel
exemplar is similar enough to a studied exemplar). This might
explain why expanding the range of the stimulus space (i.e.,
decreasing within-category similarity) profited transfer in the
experiments reported by Maddox and Filoteo (2011). This
could also explain why interleaving might always be superior
for information-integration categories. Perhaps alternating be-
tween the exemplars of different categories helps sensitize par-
ticipants to a wider range of stimulus features at a faster rate.

In contrast to information-integration categories, the mental
representations of rule-based categories are thought to include
verbalizable rules. These verbalizable rules should help liberate
participants from the perceptual characteristics of the studied
exemplars and enable exceptionally far transfer (e.g., Casale,
Roeder, & Ashby, 2012). For example, once the rule for a
functional group of an organic chemistry molecule is known,
successfully categorizing novel instances of that molecule can
be made easily, no matter how perceptually different these
exemplars are. Thus, in contrast to information-integration cat-
egories, learning rule-based categories should require less em-
phasis on exposing the participant to a wider range of exem-
plars and more emphasis on promoting the discovery and/or
retention of the verbalizable rules. This would explain why the
efficacy of learning techniques for rule-based categories de-
pends on category similarity. When within-category similarity
is low, promoting the discovery of the rules is enhanced by
encouraging within-category comparisons. In contrast, when
between-category similarity is high, discovering the rule profits
from techniques encouraging between-category comparisons.

Essentially, the qualitative difference between themental rep-
resentations of rule-based and information-integration categories
may be a key factor. For learning information-integration cate-
gories, the primary goal is to foster a mental representation that
includes a wide variety of exemplars and features. Category
similarity would thus influence information-integration category
learning by determining the range of these exemplars and fea-
tures. More variability in the trained exemplars (i.e., lower
within- and/or between-category similarity) should enhance this
process. However, for rule-based category learning, the primary
goal is to promote a mental representation that features
verbalizable rules. Category similarity would affect rule-based
learning by influencing the probability of discovering
verbalizable rules. This process would not always benefit from
increasing variability in the studied exemplars.

Two conclusions about study techniques follow from this
discussion. First, learning techniques for information-
integration categories should be effective to the extent that
they expose and/or sensitize participants to a wide range of
exemplar features. Second, learning techniques for rule-based
learning are effective to the extent that they promote the dis-
covery of these rules.

Another explanation, which is not mutually exclusive, con-
cerns the possibility that distinct cognitive systems mediate
the learning of information-integration and rule-based catego-
ries. According to these theories, the efficacy of a category-
learning technique depends on how effectively it supports the
type of cognitive system that mediates the learning of a
category.

The existence of at least two category-learning systems has
a long heritage and has become the dominant view in the
literature (for reviews or discussions, see Ashby & Valentin,
2017; Kéri, 2003; Minda, Desroches, & Church, 2008; Minda
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& Miles, 2010; but see Nosofsky, 2011). Various models
describe these two systems as being as rule- and exemplar-
based (Allen & Brooks, 1991; Nosofsky & Palmeri, 1998;
Nosofsky, Palmeri, & McKinley, 1994); analytic and holistic
(Brooks, 1978; Jacoby & Brooks, 1984; Nelson, 1984; Smith
& Shapiro, 1989; Smith, Tracy, & Murray, 1993; Ward,
1988); verbal and nonverbal (Minda & Miles, 2010); and ex-
plicit and implicit (Ashby & Ell, 2001; Ashby et al., 1998).
The common thread is that one system is non-verbal, implicit,
and automatic, whereas the other system is verbal, explicit,
and deliberate. For brevity, we refer to these as the explicit
and implicit systems. Whereas the explicit system involves
frontally-mediated, hypothesis-testing processes that draw on
executive functioning (Ashby& Ell, 2001; Ashby et al., 1998;
Decaro et al. 2008), the implicit system involves striatally
mediated, procedural processes (Ashby & Ell, 2001; Ashby
et al., 1998; Eichenbaum & Cohen, 2001; Poldrack et al.,
2001; Poldrack & Packard, 2003; Squire, 2004).

Evidence for the two systems includes research with exper-
imental dissociations, neuroimaging data, clinical popula-
tions, and statistical modeling. For example, the following
manipulations generally impair rule-based, but not
information-integration learning: taxing working memory
with a dual-task procedure (Waldron & Ashby, 2001;
Zeithamova & Maddox, 2006), stress (Ell et al., 2011), sleep
deprivation (Maddox et al., 2009), and increasing the number
of categories in the stimulus set (Maddox, Filoteo, Hejl, &
Ing, 2004). Compared to people with average or high
working-memory capacity, people with lower working mem-
ory capacity perform worse on rule-based tasks but better with
information-integration tasks (Decaro et al., 2008). Clinical
populations with executive functioning impairments reflect
this same pattern of findings (Brown & Marsden, 1988; Ell,
Marchant , & Ivry , 2006; Maddox et a l . , 2005;
Maddox, Pacheco, Reeves, Zhu, & Schnyer, 2010).

Neuroimaging studies also demonstrate higher activity in
frontal than striatal/procedural brain regions when participants
study rule-based categories (Allen & Brooks, 1991; Patalano
et al., 2001), but the opposite is true for information-
integration categories (Nomura et al., 2007). The procedural/
striatal memory systems thought to mediate information-
integration category learning rely heavily on feedback/
reinforcement and motor processes. Withholding or delaying
feedback by even a few seconds (Maddox et al., 2003;
Maddox & Ing, 2005; Dunn et al., 2012; Smith et al., 2014),
which obstructs reinforcement schedules, and switching the
response locations of button presses, which obstructs the mo-
tor component (Maddox et al., 2004; Maddox, Lauritzen, &
Ing, 2007; Spiering and Ashby, 2008b), impairs the success of
procedural/striatal processes.

There is evidence that adults are biased toward using the
explicit systems until it fails to accomplish adequate learning,
which triggers a transition to the use of the implicit system

(Ashby et al., 1998; Jacoby & Brooks, 1984; Minda et al.,
2008). Consequently, any factors that obstruct the efficacy of
the explicit system should speed transfer to using the implicit
system. Perhaps this is why information-integration categories
seem to profit from interleaving and lower within-category
similarity – both of these factors increase task difficulty and
could overwhelm the explicit system. Indeed, model-based
analyses suggest that decreasing within-category similarity
sped-up the transition from the explicit to the implicit system
in the two studies reported by Maddox and colleagues that we
reviewed in detail (Maddox et al., 2005; Maddox & Filoteo,
2011).

To summarize, the interaction between category similarity
and category type may involve two factors. First, each type of
category may use different representational formats. Whereas
rule-based categories can be represented verbally,
information-integration categories may only be represented
by storing exemplars or prototypes. Consequently, the effica-
cy of category learning techniques may depend on how well
they support the development of verbal representations or
exemplar/prototype representations. The second factor is that
distinct cognitive systems may mediate learning. Rule-based
category learning thrives when explicit, verbal processes are
not overburdened. This explains why optimal rule-based cat-
egory learning is differentially sensitive to category similarity:
when between-category similarity is high, interleaving re-
duces cognitive load by making category comparisons easier,
whereas when within-category similarity is low, blocking re-
duces cognitive load by making within-category comparisons
easier. The multiple-systems explanation also accounts for
why conditions that increase difficulty, like interleaving and
decreasing within-category similarity, benefit information-
integration category learning. These factors may overburden
working memory and frontal processes, speeding the transi-
tion to the implicit, procedural systems that better master the
learning of information-integration categories.

Future directions

The interaction between category similarity and type needsmore
direct empirical investigation. The experimental paradigms that
have been used to explore each moderator can be combined in a
straightforward way. For example, many studies manipulate
category similarity and learning techniques simultaneously.
Simply conducting these studies with information-integration
and rule-based categories would yield valuable data. A different
pattern of findings for rule-based and information-integration
categories would provide strong evidence for an interaction be-
tween similarity and type. The study conducted by Noh et al.
(2016) provides a useful starting point, as the authors explored
how exemplar-sequencing techniques (blocking and interleav-
ing) influence the learning of information-integration of rule-
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based categories. The artificial stimuli used in that study lend
themselves easily to manipulations of category similarity.

The study conducted by Noh et al. (2016) is also worth
revisiting because we are aware of no other study that exam-
ined how blocking influences the learning of both category
types. In that study, interleaving was superior to blocking for
information-integration categories, but the opposite pattern
was observed with rule-based categories. A handful of studies
used stimuli that can be considered to be information-
integration categories (paintings), and these all found that in-
terleaving was superior (e.g., Kang & Pashler, 2012; Kornell
& Bjork, 2008; Yan et al., 2017). Any study demonstrating the
opposite finding could have immense theoretical value.
Consider that the theoretical conclusions from the literature
on category similarity have been based in large part on explor-
ing discrepant findings with blocking and interleaving.

Developing methods to measure the category similarity
of complex and naturalistic stimuli is an important ave-
nue for future researchers to explore. Unlike simple arti-
ficial categories, such as the sine-wave gratings depicted
in Fig. 3, properties of category similarity cannot be readily
manipulated or assessed in a straightforward manner with
more complex stimuli. As it stands, the similarity of complex
categories is often manipulated qualitatively rather than quan-
titatively (cf. Carvalho and Goldstone, 2014a, b; Kornell &
Bjork, 2008). Obtaining precise methods would allow more
precise theoretical investigations. This would also be useful
for information training practices in applied settings. That is,
educators could measure category similarity and use tech-
niques to target within- or between-category learning.
Recent efforts have been made to quantify within- and
between-category stimuli with naturalistic stimuli (Meagher
et al., 2017; Nosofsky, Sanders, Gerdom, Douglas, &
McDaniel, 2017; Roads et al., 2018). Most germane to the
present discussion, Roads et al. (2018) used multidimensional
scaling to model between- and within-category similarity of
cases of benign and malignant skin lesions.

Future work should replicate this work and explore alter-
natives. Various learning techniques may be combined to in-
fluence the learning of within- or between-category learning.
For example, since both interleaving and classification train-
ing are thought to promote between-category learning, they
may be profitably combined when multiple categories are es-
pecially hard to distinguish. Of course, such an emphasis on
between-category learning can come at the expense of within-
category learning (Chin-Parker & Ross, 2002). If both within-
and between-category information must be learned, then two
techniques that emphasize each type of learning could be
paired, such as blocking and classification training. This last
example is useful for illustrating a potential pitfall of combining
techniques. Blocked sequences of learning are characterized by
predictability since the category identity of exemplars is con-
sistent across blocks. If used in the context of classification

training, the learner may quickly realize that the same response
is required during each trial, which could reduce effort and
task-engagement (see Guzman-Munoz, 2017, for a discussion).
One way to rectify this issue is not to use pure blocking, but to
intermix a few trials of a different category to reduce predict-
ability (e.g., A1A2A3B1A4A5B2A6A7).

Research on category type should expand beyond the use
of the simplistic, artificial categories. Without the use of more
complex stimuli, the generalizability of results from this liter-
ature will remain an open question. As discussed previously,
there is some reason to suspect that the results will generalize,
at least to some degree. Further, increasing the complexity of
information-integration categories has been shown not to
harm the learning process (see, Ashby et al., 2003). This ac-
cords with theories that the cognitive system that mediates the
learning of information-integration categories can process
many different stimulus dimensions concurrently and auto-
matically (e.g., the procedural system of the COVIS model;
Ashby & Ell, 2001). Nevertheless, the matter needs to be
investigated empirically. To do so, researchers must devise
methods of measuring the extent to which a category is rule-
based or not. Further complicating matters is the possibility
that the distinction of category type is not all-or-none. That is,
perhaps some aspects of a category can be mastered through
explicit processes while others require implicit processes. All
things being equal, it is conceivable that the more complex a
category, the more likely it is to be a mixture of both types of
categories. The simplistic stimuli evade this issue by using
categories that are, indeed, binary.

Applied considerations

A full understanding of how to optimize the category learning
process inform training practices in applied settings. Indeed,
there is a history of researchers and educators seeking to apply
research on category learning techniques to professional
fields, such as in medicine (Baghdady, Carnahan, Lam, &
Woods, 2014; Evered, Walker, Watt, & Perham, 2014;
Hatala et al., 2003; Kok et al., 2013; Monteiro, Melvin,
Manolakos, Patel, & Norman, 2017; Roads et al., 2018;
Rozenshtein, et al., 2016) and forensics (Searston & Tangen,
2017; Tangen et al., 2011). As with studies exploring learning
techniques with artificial stimuli, these studies are character-
ized by divergent findings. For example, when learning to
categorize abnormalities on electrocardiograms, one study
documented a benefit of interleaving over blocking (Hatala
et al., 2003) and another observed the opposite (Monteiro
et al., 2017). Similarly, with categories of chest X-rays, inter-
leaving has been shown to enhance learning (Rozenshtein
et al., 2016) or confer no benefit (Shah et al., 2016). Making
sense of these discrepant results could be accomplished by
considering the similarity and type of the categories used in
these studies.
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Conclusion

Research suggests that the efficacy of learning techniques de-
pends on two factors: (1) the degree of within- and between-
category similarity of the stimuli, and (2) whether the rules
distinguishing categories can be learned and articulated ex-
plicitly/verbally, versus implicitly/nonverbally. We offer evi-
dence for an interaction between these two factors. For rule-
based categories, the efficacy of a learning technique depends
on whether task difficulty is driven primarily by low within-
category or high between-category similarity. When the for-
mer is true, the best learning techniques highlight within-
category commonalities. When the latter is true, learning tech-
niques should emphasize between-category differences.
However, the research we reviewed suggests that this pattern
does not hold for information-integration categories. The na-
ture of this difference between types of categories is unclear. It
is possible that for information-integration categories, the op-
posite pattern will hold. Alternatively, the processes that are
involved in learning information-integration categories may
be so fundamentally distinct that the difference is not so
straightforward. Future research must be conducted to target
these questions empirically.
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