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Abstract
Artificial intelligence powered by deep neural networks has reached a level of complexity where it can be difficult or
impossible to express how a model makes its decisions. This black-box problem is especially concerning when the model
makes decisions with consequences for human well-being. In response, an emerging field called explainable artificial
intelligence (XAI) aims to increase the interpretability, fairness, and transparency of machine learning. In this paper, we
describe how cognitive psychologists can make contributions to XAI. The human mind is also a black box, and cognitive
psychologists have over 150 years of experience modeling it through experimentation. We ought to translate the methods
and rigor of cognitive psychology to the study of artificial black boxes in the service of explainability. We provide a review
of XAI for psychologists, arguing that current methods possess a blind spot that can be complemented by the experimental
cognitive tradition. We also provide a framework for research in XAI, highlight exemplary cases of experimentation within
XAI inspired by psychological science, and provide a tutorial on experimenting with machines. We end by noting the
advantages of an experimental approach and invite other psychologists to conduct research in this exciting new field.

Keywords Hypothesis testing · Comparative cognition

In the history of science and technology, the engi-
neering artifacts have almost always preceded the
theoretical understanding

- Yann LeCun

Introduction

Machine learning (ML) is changing modern living at a rapid
pace. Medicine, finance, and transportation are among the
many fields poised for transformation by the proliferation of
machine learning models that can outperform their human
counterparts. These algorithms make decisions that have
significant consequences for the health and happiness of the
people who use them—for example, identifying whether a
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blip on a scan has the potential to be cancerous, to apply
the brakes in an autonomous vehicle, or to award a loan.
One challenge facing the creators of these algorithms is
that modern artificial intelligence (AI) solves problems in
inscrutable ways–the so-called black-box problem. Because
these models refine themselves autonomously and with an
idiosyncrasy beyond the scope of human comprehension
and computation, it is often impossible for a model’s user or
even creator to explain the model’s decision.

Due to the transformative promise of AI at scale and
the urgent lack of satisfying explanations for AI decision-
making, there is increasing political, ethical, economical,
and curiosity-driven theoretical pressure on ML researchers
to solve the black-box problem, creating a sub-field called
explainable artificial intelligence (XAI). In this paper,
we advance an interdisciplinary approach to XAI known
as Artificial Cognition (cf. Ritter et al., 2017), drawing
heavily on the tradition of experimentation developed within
cognitive psychology. This is a call for a new field.

In short, we draw parallels between the black-box
problem in XAI and a similar epistemic challenge faced by
cognitive psychologists. This paper is specifically written
to engage cognitive psychologists in a current and applied
challenge where their skill set should prove invaluable:
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solving black-box problems. Although XAI is producing a
large literature that attempts to explain machine behavior,
we note that contributions from psychology have been
scarce; we hope this paper will motivate other researchers
to join us. To get started, we establish a case for cognitive
psychology’s contribution to XAI; we provide a review and
taxonomy of the current state of XAI and offer suggestions
for how psychologists can contribute; we define Artificial
Cognition and propose guidelines for how to conduct
experiments with machines and highlight excellent cases
from the ML literature; and we provide a short tutorial
on some critical differences between experimentation with
humans and machines and the advantages of the Artificial
Cognition approach.

The black-box problem in machine learning &
psychology

An automotive engineer would have no difficulty explaining
the function of an automobile were they able to look under
the hood and see the components involved. The same cannot
be said for a computer engineer and modern deep neural
networks. After millions of training iterations, once the
model has reached competence on a given task, the resultant
set of parameters and operations that characterize the model
would be so complex that no human could meaningfully say,
from looking “under the hood”, how it makes a decision1.
Indeed, if we arbitrarily assume the reader has 50 years
left to live, they would not be able to read a full list of
parameters in some practical convolutional neural networks
(CNNs) trained for image classification in the time they
have left on Earth. This is what we mean by the black-box
problem: We currently cannot meaningfully understand an
AI’s behavior as a function of its inner workings. Lillicrap
and Kording (2019) expressed it eloquently:

“After training we have the full set of weights and
elementary operations. We can also compute and
inspect any aspect of the representations formed by the
trained network. In this sense we can have a complete
description of the network and its computations. And
yet, neither we, nor anyone we know feels that they
grasp how processing in these networks truly works.”

The above formulation of the black-box problem is also
the best-case scenario, where the researcher could feasibly
“look under the hood” of the AI in question. As has been
noted, much of the source code for the models and agents
we are interested in are proprietary and understandably
secret, further complicating the challenge of XAI (Rahwan
et al., 2019). In most cases, we only have access to input

1There are some notable examples of analyzing small neural networks
by hand in the days before “deep learning” (cf. Hinton, 1986).

and output, and must infer the decision-making process.
As researchers interested in explaining AI decisions, we
have access to the input, the output, and a mass of hidden
functions that are either inscrutable because we are not
allowed to look at them, uninterpretable because we have no
way to understand them, or both.

This formulation of the black box problem is the same
epistemic challenge championed by cognitive psychologists
for the last 150 years. Going back to at least 1868,
psychologists have used behavioral experiments to infer the
properties of invisible mental processes, as when Donders
recorded response times and used the subtractive method
to identify stages of perceptual processing and response
selection (Donders, 1868). In the intervening century-and-
a-half, cognitive psychology has yielded robust models
of perception, attention, memory, language, and decision-
making, all without ever observing these processes directly.
The tradition of inferring cognitive models of human
behavior from experimental data is a different version of the
same black-box problem faced by XAI.

We advance an alternative and complementary approach
to XAI inspired by the success of cognitive psychology
and cognitive neuroscience. Our proposal is to describe
black-box processing in AI with experimental methods from
psychology, the same way we do it with humans. Whereas
computer scientists explain artificial intelligence by tinker-
ing under the hood of the black box, cognitive psychologists
have developed a science of behavior that works without
opening its black box. Using the experimental method, cog-
nitive psychology employs carefully crafted stimuli (input)
and measures the corresponding behavior (output) to make
causal inferences about the structure and function of the
human mind. We should apply the same approach to artifi-
cial minds. Instead of altering AI architecture or generating
post hoc explanations for how AI reaches its decisions, we
can develop satisfying models of mind without interfering
with the AI’s black box. In addition to providing models
for artificial minds with the goal of explaining their deci-
sions and processes, an experimental approach to XAI could
provide guiding insights for advancing new design.

Ethical and political need for XAI

Why should we care how AI makes decisions, so long as it
makes good decisions? Deep learning algorithms are wired
to detect even the faintest meaningful correlations in a data
set, so decisions based on a trained model’s parameters
ought to reflect correlations in reality. The challenge is that
the parameters represent truth in a training data set, rather
than truth in the world. There are numerous vulnerabilities
to users that arise from this discrepancy. For example,
data sets that are biased against a particular group will
yield predictions that are biased against that particular
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group (Barocas et al., 2019); commercial models that are
trained on biased data sets will treat underrepresented
groups unfairly and inaccurately (Buolamwini & Gebru,
2018); vehicles that are trained in test circuits may not
generalize adequately to real roads (Kalra & Paddock,
2016); and machines that are vulnerable to adversarial
attacks may backfire or behave dangerously (Gu et al.,
2019). It behooves us as creators, vendors, and users of
these technologies to understand how and why things can
go wrong.

The black-box problem in AI has recently motivated
legislative bodies to give their citizens a right to know
how AI makes its decisions. In 2018, the first such
legislation came into effect in the EU, a major market
for AI products (of the European Union, 2016; Goodman
& Flaxman, 2017), with more stringent versions in other
jurisdictions. These laws give citizens a right to understand
how AI makes decisions when it makes decisions on
their behalf. France’s take on right-to-know legislation
includes the communication of parameters, weights, and
operations performed by the AI in some circumstances
(Digital Republic Act, law no. 2016-1321). Policy analysts
currently debate to what extent these laws are legal or even
helpful (Edwards & Veale, 2018). XAI is a case where an
ethical need gave rise to a political promise that has become
a legal quagmire.

We believe the mandated communication of black-
box parameters and operations would be meaningless to
any user, harmful to the scientific and entrepreneurial
potential of developers, and completely beside the point
of delivering explanations of behavior. The real legal and
ethical challenge for XAI is to reveal explanations that
users find satisfactory and that make accurate and reliable
predictions about AI behavior in general and fairness and
safety in particular.

Satisfaction is an important consideration because it
determines trust and use. Human trust in machine behavior
depends on many factors, including whether the task is
deemed formulaic (Castelo et al., 2019), and whether the
agent is anthropomorphic (de Visser et al., 2016), not
whether the math is transparent. For some people, trust will
be determined by how the machine behaves in sensitive
situations. In these cases, a satisfactory explanation must
be able to balance different outcomes. For example, we
might expect that when users are endangered, the AI should
evaluate the best outcome to minimize harm. Satisfactory
explanation in the case of car accidents resulting in harm
are complicated by the fact that people have different ideas
of how AI should act in ethical quandaries depending on
their culture (Awad et al., 2018), or whether they’ve been
primed to take the perspective of passenger or pedestrian
(Frank et al., 2019). In other words, trust and ethics are
both flexibly interpreted, and explanations will only be

satisfactory if they allow a user to judge whether the decision
was appropriate in that situation. To this end, we argue that
explanations must be causal, rather than correlative (Pearl,
2019). We contend that, as in human psychology, correlation
is insufficient to explain behavior in machine psychology. It
is not enough to say “we think your loan was denied by the
bank’s AI because your profile is low on variables x, y, and
z, but we can’t be sure.” We ought to have a causal model
that survives experimental attempts at falsification.

Machine behavior as XAI

The researchers who explain AI behavior have historically
been the same researchers who invent, develop, and train
AI. A large sector of XAI research (reviewed more fully
in “A review of XAI for psychologists”) aims to generate
explanations through more interpretable architectures, or by
introducing a second AI that examines another AI’s decision
and learns to generate explanations for it. In other words, a
popular approach to explainability in AI is more AI. Some
XAI researchers are beginning to explore alternate paths to
explanation, as evidenced by recent calls for the primacy of
empirical study.

In 2017, Tim Miller published an influential call to
improve the quality of explanations in XAI by drawing on
the vast literature of philosophy, psychology, and cognitive
science (Miller, 2017a). In this review, Miller outlined what
makes a good explanation and established the need for
validation of XAI models with human data. This review
was followed by a survey that assessed the degree to
which this nascent literature is integrated with the social
sciences. The researchers asked whether the references of
this small corpus dealt with explanations that humans found
satisfying, whether the explanation data was validated with
humans, and whether the referred articles were published
in journals or conference proceedings outside computer
science (Miller et al., 2017b). As of 2017, XAI and
the social sciences were largely disconnected, establishing
a case for an interdisciplinary approach. Around the
same time, popular press articles began to capture public
attention in the need for human-centric XAI (Rahwan
& Cebrian, 2018; Kuang & Can, 2017), and questions
about explainability became more common in media and
interviews with popular figures in the machine learning
world. Consider this quotation from a 2017 interview with
Peter Norvig, a Director of Research at Google, presaging
the proposal for machine behavior as an alternative to
AIs that try to explain themselves (emphasis ours; Norvig,
2017):

What cognitive psychologists have discovered is that
when you ask a human [how they made a decision]
you’re not really getting at the decision process. They
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make a decision first and then you ask and then they
generate an explanation and it may not be the true
explanation. So we might end up being in the same
place with machine learning systems where we retrain
one system to get an answer and then we train another
system to say ‘given the input of this first system now
it’s your job to generate an explanation’. We certainly
have other ways to probe. Because we have the system
available to us we could say ‘well what if the input
was a little bit different—would the output be different
or would it be the same?’ So in that sense there’s
lots of things that we can probe. And I think having
explanations will be good. We need better approaches
to that—it should be its own field of study.

Recently, an interdisciplinary group of researchers
outlined their vision for a new field aimed at integrating the
work of engineers, who invent, train, and develop ML, with
the work of social scientists and behavioral researchers from
biological sciences. The umbrella term Machine Behavior
was adopted by a large group of researchers advocating for
an ethological approach to explaining AI (Rahwan et al.,
2019). In biological ethology, researchers aim to understand
animal behavior at four non-exclusive levels: function,
mechanism, development, and evolution (Tinbergen, 1963).
For example, one might explain mammalian herding as
a learned behavior (bison herd because they find social
contact rewarding) or as the result of natural selection by
predation against loners (bison herd because solo bison fail
to reproduce). In Machine Behavior, Rahwan and colleagues
(2019) argue XAI would benefit from an adapted ethology
for machines. For example, we can explain behavior as
a function of the model’s development (e.g., behaviors
caused by idiosyncrasies in the training data, or the way
feedback is incorporated into behavior), function, evolution
(e.g., market forces or hardware capabilities that selected for
certain types of algorithms), or mechanism (e.g., knowledge
about architecture from under the hood). Our proposal for
an experimental approach to XAI inspired by the study
of human cognition can be nested within the ethology of
Machine Behavior, and can similarly be leveled at different
types of explanations. We can conduct experiments that
explain behavioral consequences of being trained for certain
tasks (development; e.g., fovea-like processing filters
emerge naturally from learning to attend in visual scenes,
Cheung et al., 2016) or experiments that identify behavioral
consequences of different architectures (mechanism; e.g.,
visual crowding occurs in basic deep convolutional neural
networks, but not eccentricity-dependent models, Volokitin
et al., 2017). The study of human cognition has similarly
found ways to explain behavior at different ethological
levels (e.g., structure vs. function, Nairne, 2011). In

summary, the experimental approach we are proposing is
a natural extension of Machine Behavior and other recent
efforts in XAI to benefit from behavioral science, and
we expect this field to gain popularity at a rapid pace.
It differs from other efforts at XAI in the emphasis on
inferring cognitive models and causal explanations from
experimental methods, analogous to the way cognitive
psychologists study human behavior.

There is already a small group of researchers in machine
learning who are doing the type of work for which we
advocate. These are machine learning and computer science
researchers who have taken inspiration from insights and
methods popular in psychology and are actively publishing
in major ML and computer vision conference venues
(e.g., NeurIPS, ICML, ICLR, CVPR), so researchers who
are considering whether a science of machine behavior is
a viable path to publishing should not be dissuaded. We
review this work extensively in “Artificial cognition”, and
provide a framework for using their efforts as a model going
forward. Given that psychology is the science of behavior,
broadly construed (including non-human animal behavior,
computational modeling, etc.), there is no reason that work
in Artificial Cognition should not also be published in
psychology journals.

A review of XAI for psychologists

In this section, we provide a selective review of XAI that is
intended to be accessible to readers without a background
in ML and to illustrate the strength of a psychology-
inspired approach to explanation. This section is meant
to establish the case that the current state of XAI has a
blind spot that artificial cognition could help fill. Readers
already convinced in the case for artificial cognition can
advance to “Artificial cognition”. Note that there is a large
family of explainable AI models that do not incorporate
a ‘deep’ architecture. Models like linear regression,
decision trees, and many types of clustering describe the
relationships between variables in mathematically simple
terms: either as a linear or monotonic function, or as the
consequence of some quantitative decision threshold or
rule-based logic (Molnar, 2019). While these models are
interpretable, in many realistic settings their performance
does not compete with deep neural networks (DNNs).
There is a tradeoff between performance and model
complexity (Gunning, 2017), matching the intuition that
deep learning models perform well because they capture
complicated relationships that cannot be easily represented.
We explicitly limit our review to XAI for DNNs, which
are the focus of most XAI research given their opaque
nature, exemplary performance, and market excitement.
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XAI research has undergone a recent explosion, slightly
delayed but concomitant with the rise in popularity of deep
learning’s black boxes (see Fig. 1).

We cannot review the entirety of XAI methods, but
we have selected a representative sample of state-of-the-
art techniques for explaining predictions made by DNNs.
For a more exhaustive review of XAI, we refer interested
readers to several excellent, more thorough reviews, some
of which we have drawn from for this section (Gilpin et al.,
2018; Gunning & Aha, 2019; Guidotti et al., 2018; Mueller
et al., 2019; Molnar, 2019; Lipton, 2017). Notably, each
of these reviews presents a slightly different taxonomy for
categorizing approaches to explanation (Hoffman et al.,
2018b). For example, some emphasize the importance of
explanations for global versus local behaviors, whereas
others categorize XAI techniques based on whether they are
model-agnostic or model-specific. These are all reasonable
approaches, but note that there is a good deal of overlap
between categories (Guidotti et al., 2018). Our goal
is to advocate for an experimental psychology-inspired
approach to generating explanations, so our taxonomy
tactically categorizes approaches to XAI by what they
can’t explain or do, emphasizing the strength of our
proposed approach. Note that we believe existing XAI
approaches can be powerful, intuitive, and ingenious, and
we are not recommending that they be abandoned in
favor of psychological methods. We are merely arguing

Fig. 1 Citations by year, via Google Scholar search for the quoted
search terms. Deep learning and XAI have grown at a similar rate,
although the deep learning research corpus is an order of magnitude
larger and had a head start. Note the difference in the scale of the red
and blue axes. Citation query occurred on January 10, 2020

that current best practices possess a blind spot that is
complemented by an experimental approach inspired by
cognitive psychology. Specifically, XAI currently lacks the
practice of causal inference by the attempted falsification of
a priori hypotheses.

Proxy models

An intuitive approach to explaining DNNs is to create
an adjacent model with an interpretable architecture and
to build it such that it makes similar decisions as the
black box of interest. We then use the simpler model’s
interpretable decisions as a proxy for the black box’s
decision-making process. The simplest case of this would
be using a linear regression, generalized linear models, or
generalized additive models, which are very interpretable, to
approximate a more complicated function. We do this all the
time in psychology when we model behavior, which is no
doubt a non-linear, non-convex function. As a general rule,
these models sacrifice some predictive power in the service
of explainability (Gunning, 2017).

If the approximation made by the linear proxy models is
too severe, we can train the proxy network to convert the
NNs choices into a decision tree. This effectively distills
a neural network’s approximated function into a series
of conditional if-then rules. With a notional idea of the
neuronal receptive fields in a model, we can distill the
activity of a neural network into an and-or decision tree that
explains how a class was chosen; the and-or graph learns the
activity-related contingencies from a pre-trained DNN (Si
& Zhu, 2013). At each level of such a hybrid DNN/decision
tree model, we can observe what alternatives each node
of the model is choosing between, and infer its purpose.
For example, within a network that classifies handwritten
digits, a node with possible outputs “3” or “8” responds
to information that would join the ends of the 3 (Frosst &
Hinton, 2017). Even without the ability to inspect a neuron’s
receptive field, abstract rules can be extracted automatically
and pruned into a more digestible representation of the
larger network (Zilke et al., 2016). By ditching unnecessary
nodes and connections, pruning can result in a simplified
network, more conducive to explanation. The critical idea
is that neural networks contain highly efficient subnetworks
that perform similarly to larger, more redundant networks
by virtue of a lucky random initialization. Discovering them
within a network highlights simpler processes (Frankle &
Carbin, 2019).

Introspective models

XAI has reached a point where researchers are training
DNNs to interpret the decisions of other DNNs (Zhang
et al., 2018). We refer to these types of explanations as
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introspective2 because they suffer from the same drawback
as introspection for human behavior: The process by which
we introspect might not actually capture the function of
the mind—it also requires an explanation. These AI-for-
XAI solutions provide appealing explanations but have the
obvious drawback of adding an additional black box to the
system, inviting more explanation. Another complication
with such methods is that the workhorse of deep learning,
supervised learning, is generally not an option. As we
have remarked earlier, people have trouble explaining their
own decisions, which makes obtaining the required “ground
truth” explanations for training very difficult.

Notwithstanding, these techniques form appealing expla-
nations. We might have the introspective network learn to
associate semantic labels to the nodes of hidden layers in a
visual classifier, or train an adjacent NN suited for natural
language processing to attach verbal descriptions to a DNN
for image classification. This might result in explanations
like “this bird is a Kentucky Warbler because it is yellow...”
Hendricks et al. (2018). Users can easily see what the intro-
spective network has learned about the first black box. The
process can be applied to reinforcement learning agents as
well; the introspective network learns to caption the inter-
nal state representation of the agent using sentiment analysis
(Krening et al., 2016). As noted by Lipton (2017), this intro-
spective network is optimized for generating explanations
according to previously observed ground truth from human
agents, which may not faithfully reproduce the artificial
agent’s internal state.

Correlative techniques & saliency maps

Unlike proxy models, which sacrifice some predictive
power to incorporate an interpretable architecture, or
introspective models, which train a second black box to
explain the first one, many correlative techniques paint a
picture of black box processing as is, without altering model
design. These methods display the relationships models
have learned and in some cases can highlight the subset
of information in the input the model’s correlations are
weighting heavily in its predictions. Users must be careful to
avoid causal logic when using correlative XAI techniques.
Specifically, correlative techniques are susceptible to the
threat of multicollinearity: there are often many possible
causes for a given correlation.

Partial dependence plots (PDPs) illustrate the importance
of a feature or variable to a model by displaying its output
in response to iterative perturbations to the given input
feature. For example, we might take a parameterized model

2NB Computer scientists will sometimes use the term “introspective
analysis” to refer to any process that examines internal activations,
which is separate from what we are describing here.

trained to predict likelihood of car accidents based on driver
data, then ask it to make predictions for a dataset where
the variable representing years of experience is set to 0
for all drivers, then again at 1, 2, and so on. The resultant
predictions are collapsed into a function that describes the
model’s treatment of driving experience over the entire
range of inputs. The technique is extremely flexible and
can be applied to any ML model using tabular data, such
as predicting risk of developing diabetes based on blood
glucose levels (Krause et al., 2016). We categorize PDPs
as a correlative method because the conclusions about
feature importance are expressing something about the
correlations the machine has already learned. This means
any conclusions drawn from these explanations must be
tempered with the same caveats we apply to correlative
logic in psychological science: Partial dependence does not
indicate that the perturbed variable causes the outcome
in the real world, and multicollinearity in the training
data, which seems likely in large data sets, can complicate
interpretation. Moreover, as noted by Molnar (2019),
because PDPs present the average predicted output across
the range of perturbed values, they can hide heterogeneous
effects.

One way to circumvent the challenge attached to
potentially heterogeneous effects is to display not the mean
of perturbed predictions but the entire distribution. This
technique, called individual conditional expectation, plots
partial dependencies for all instances of the perturbed input
rather than the model’s global prediction (Goldstein et al.,
2015). A similar approach, permutation feature importance,
illustrates the increase in prediction error of a model
following the iterative permutation of its features (Fisher
et al., 2018). A similar concept is employed in iterative
orthogonal feature projections, where an n-dimensional
dataset is reproduced n times by transforming n-1 input
features into an orthogonal projection, essentially removing
the nth feature’s effect on the prediction. The resultant
relative dependencies are ranked to list the contribution of
different input features (Adebayo & Kagal, 2016). These
methods all apply a causal logic by manipulating input
features one at a time, but the ranked feature importance
is still based on the correlations of an internally consistent
model. In other words, these methods do not retrain
on new data with input features selectively removed.
They estimate which features the model cares about by
displaying hypothetical predictions based on previously
learned correlations; they allow us to see when a model
may be unfairly over-indexing on protected attributes, like
gender or race. The XAI techniques listed above are black-
box techniques, meaning they can be performed without
access to the model internals.

Perhaps the most popular correlative technique is the
family of gradient and activation visualizations generally
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referred to as saliency maps (Simonyan et al., 2013;
Ancona et al., 2018). DNNs rely on the backpropagation
algorithm to compute the gradients required for parameter
updates during training. The error function that specifies
the difference between a model’s prediction and the
ground truth of the labeled data also determines, through
differentiation, the direction that weights need to change
to improve performance. So at every layer of the model,
including the highly interpretable input layer, we can
visualize the relationship between those neurons’ activity
and the ultimate decision. This is known as sensitivity: the
degree to which changing a neuron’s activity would affect
the model’s outcome (Simonyan et al., 2013; Selvaraju
et al., 2017). Saliency maps generate highly intuitive
explanations, as one can “see” which elements of a stimulus
are related to the decision. Our challenge to the adequacy
of saliency explanations is that they point to a manifold
of explanations, with no ability to specify the cause of
a model’s ultimate decision; many different combinations
of data could produce the depicted correlation. Correlative
explanations can be misleading when features exhibit
high multicollinearity, which seems likely with the larger
datasets that enable deep learning. Others have criticized
saliency methods as being insensitive to model architecture
and data randomization (Adebayo et al., 2018). The output
of some popular saliency maps resembles the output of
simple edge detectors, which require no training and no
special data processing. The argument, then, is that the
correlations highlighted by visualization techniques are
neither diagnostic nor causal.

Post hoc explanations

Post hoc methods invite a human user to rationalize the
cause of a model’s behavior after having observed the
explanation. Most XAI methods fall into this category
(Sheh & Monteath, 2018), which is similar to how
humans anecdotally rationalize their own decisions (Lipton,
2017), and are subject to the same flaws. Like correlative
techniques, post hoc explanations do not sacrifice predictive
power in the service of explanation. Unlike correlative
techniques, they introduce some causal logic into the
explanation in the form of systematic perturbations,
deliberate bottlenecks, or other manipulations. Anecdotally,
these explanations feel very compelling. The downside is
that these methods invite the user to project their biases onto
the explanation, especially the confirmation bias.

Post hoc explanations perform systematic perturbations
to a stimulus and observe changes to the model’s prediction.
These perturbations can take the form of progressive
occlusion (systematically applying a small mask to every
part of the input; Zeiler & Fergus 2013), ablation (zeroing
out the activation vector of neurons or layers in the

model), sensitivity (iteratively removing segments of an
image that produce the smallest decrement in the correct
classification vector until the classification changes; Zhou
et al., 2015), or noise-injected perturbations (Fong &
Vedaldi, 2017). In the case of an image classifier, the
resulting explanation is another image representing the
subset of essential information required for the original
classification. A very popular version of this approach is
Local-Interpretable Model-Agnostic Explanation (LIME),
which uses perturbation logic to generate linear, local
explanations for the decisions of any classifier (Ribeiro
et al., 2016). The technique approximates a learned model’s
complex decision boundary by zooming in to the point
where a linear approximation can be made. Decisions in
the neighborhood of the zoomed-in portion inform the
generation of a linear rule via iterative perturbation. The
technique can only inform local explanations, which (for
image classification) take the form of images where any
contiguous area of pixels not weighted heavily in the
generation of the linear approximation is omitted. We have
categorized LIME and other perturbation methods as post
hoc explanations because they invite the user to rationalize
why the remaining pixels cause the classification. For
example, in a case explaining which pixels of a guitar-
playing dog image contribute to the decision acoustic
guitar, parts of the dog’s face remain highlighted by
the explanation. Even though the explanation highlights
pixels in both the dog face and the guitar, we venture a
guess that most human interpreters would not admit the
dog-face pixels as part of their explanation. Additionally,
there is considerable risk of injecting bias in defining the
neighborhood of the local explanation: “for each application
you have to try different kernel settings and see for yourself
if the explanation makes sense” (Molnar, 2019). A related
technique by the creators of LIME finds “anchors” for a
classifier’s decision, which are simple, interpretable rules
that specify a local decision boundary by finding the subset
of the feature space for which changes to other features do
not alter the decision (Ribeiro et al., 2018). In Fig. 2, we
used LIME to generate explanations for image classification
that illustrate vulnerabilities to human interpretation that we
expect are common to post hoc explanation techniques.

Attention in DNNs has gained popularity within ML
research, allowing for a different approach to explainability.
Like its human inspiration, attention allows neural networks
to focus on a subset of the available information (Mnih
et al., 2014) and has lead to widespread performance
improvements across a variety of tasks. In short, attention
models learn to generate a guidance map not unlike modern
theories of human attention (e.g., Wolfe & Gray, 2007),
that is based on data-to-data correlations in the input.
Attention can be used as an explanatory mechanism because
it tells us which information the model or agent weighted
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Fig. 2 a Input of a puppy doing taxes. b LIME’s explanation for Incep-
tionv3’s classification of “golden retriever”. These are the superpixel
areas that LIME has decided are most important for that class. The
explanation matches our intuition because it contains parts of the input
that include a golden retriever. c LIME’s explanation for the class “toi-
let tissue”. The long receipt is visually similar to toilet tissue, and we
expect that most interpreters would be happy with this explanation.
However, the explanation also includes a large area of the puppy’s
head. LIME determined this area is vitally explanatory, but we expect
many observers would ignore this part of the explanation because it

does not confirm the expectation of what an explanation for “toilet tis-
sue” ought to include. d Input of a pug wrapped in a blanket. e LIME’s
explanation for InceptionV3’s classification of “bath towel”, its best
guess for this difficult input. f LIME’s explanation for InceptionV3’s
classification of “three-toed sloth”, its fourth-best guess, which is iden-
tical to the explanation in (e). Does your confidence in the explanation
for (e) change after seeing the explanation for (f)? These criticisms are
not of LIME but of how we expect humans will interact with post hoc
explanations

heavily (and which information it omitted) to perform its
task (Mott et al., 2019). This process limits the range of
possible explanations as it reduces the effective input space.
In practice, this technique can be used to highlight the
input an autonomous car relied on to update its steering
angle (Kim & Canny, 2017), or to illustrate long-range
dependencies that guide effective language translation (Lee
et al., 2017). The bottleneck logic for attention as an
explanatory tool has gained popularity, but critics have
noted that the approach has some flaws despite its intuitive
logic: learned attention weights—the values that ‘guide’
the attentional bottleneck—are often uncorrelated with
gradient-based feature importance, meaning those areas
of input do not drive the model’s decision; and different
attention patterns can lead to the same decision, questioning
their diagnosticity (Jain & Wallace, 2019; Serrano & Smith,
2019). Even if attention gave us a completely reliable
bottleneck—if nothing outside the window could influence
model behavior—we would still be faced with the challenge
of generating an explanation from within that narrowed
range.

Another compelling post hoc rationalization is a class of
a explanations that reverse-engineer exemplars of a neuron
or layer’s receptive field. This can be done using activation
maximization techniques that find the maximum value of
the dot product between an activation vector and some
iteratively sampled image set (Erhan et al., 2009; Yosinski
et al., 2015) or an iteratively generated image (Nguyen et al.,
2016; Despraz et al., 2017). The maximal argument is taken
as that neuron’s receptive field, or preferred stimulus. The
technique produces unmistakably identifiable yet surreal
visualizations (Olah et al., 2018). These receptive-field
exemplars can be further enhanced with human-annotated
or automatically extracted conceptual information (Kim
et al., 2018; Ghorbani et al., 2019). One shortcoming
of these methods is that they only reveal compelling
visualizations for concepts that are represented by single
neurons, when some representations are achieved by
distributed superposition over multiple neurons. Moreover,
adversarial cases show us how images that elicit activation
can mismatch human intuition about what such an image
contains (Nguyen et al., 2015). There is growing evidence
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that humans can identify adversarial images above chance
in n-alternative forced-choice tasks, suggesting that humans
can form intuition for how a computer vision model treats an
adversarial example (e.g., Zhou & Firestone, 2019; Elsayed
et al., 2018). Notwithstanding, there can be surprising
heterogeneity among images that activate the same neuron
as indicated by feature visualization, which calls their
usefulness as explanations into question.

Example-based explanations

The above methods create explanations by trying to express
how models and agents work. Example-based explanations
find the limits of function and explain black box processing
by illustrating ML constructs such as decision boundaries
with counterfactual, adversarial, and critical examples as
well as prototypical ones. The downside to these example-
based explanations is that they generate these exemplars
automatically from a massive stimulus space, so human-
level interpretations of these explanations are ad hoc.

A simple way to gain intuition for a model’s decision
boundary is to see which inputs it treats as belonging to
the same or similar classes. This is not causal logic, but
it provides a gist of the shape of the categories the model
has learned. A simple approach is to find the k-nearest
neighbors or to follow another (dis)similarity metric (most
commonly Euclidean). The intuition gained from exploring
similarity space is vague, but powerfully intuitive (e.g., I
can see these are all dogs, but what is it about dogs that
the model is using to classify them as such?). But it also
illustrates important failures when nonconforming inputs
are found to be similar by the model. Nearest-neighbor
algorithms follow an intuitive logic that can be baked into
a more sophisticated example-generating approach; because
it provides a measure of input homogeneity, it can be used
by a deep network to learn to recognize nonconforming
instances, including out-of-distribution test cases (Papernot
& McDaniel, 2018). Nearest-neighbor algorithms feel
deeply intuitive but fall short when expressing similarity
in more than three dimensions. Instead, we can rely on
the popular t-distributed stochastic neighbor embedding (t-
SNE) method for capturing n-dimensional representational
similarity in low-dimensional space (Maaten & Hinton,
2008). t-SNE solves the multidimensionality problem by
mapping data points into a space conductive to visualization
while preserving local similarity structure.

Deep learning is a powerful method for non-linear
function approximation. The above methods are useful to
express a convoluted decision boundary in low-dimensional
space, but simplification can obscure some of a model’s
intricacies. One way to do this without dimensionality
reduction is to present a user with inputs corresponding
to local peaks in the output distribution. These prototypes

present actual members of the dataset that are discovered
using a clustering algorithm and are selected to represent
the model predictions closely (Bien & Tibshirani, 2011).
For example, with the MNIST dataset for hand-written
numerals, we can use prototype methods to see which
examples from the input space best represent the model’s
interpretations of the numerals 1-9. Alternatively, we can
use a similar process to identify criticisms, which are also
elements of the input space but are presented to the user
when they do not fit the distribution of output labels to
which they belong (Kim et al., 2016). In other words,
criticisms present the user with outliers—cases where the
model’s behavior defies expectation.

Prototypes and criticisms are drawn from the input space,
but we can also generate stimuli that tell us something
about the model’s decision boundary. Counterfactuals
answer the question: How far do we need to perturb a
stimulus before the model’s decision changes? This can be
achieved by iteratively perturbing an input feature until the
decision changes, and minimizing the required change (Van
Looveren & Klaise, 2019). The resultant stimuli tend to
appear very similar to the original stimulus, and they impart
a useful intuition for the decision boundary. Adversarial
examples are similar, except the intent is to generate
input that tricks a trained network into making mistakes
(Szegedy et al., 2014). The adversarial input therefore tells
us something about the decision boundary of the model
under attack.

We are very excited by example-based XAI techniques,
as they are epistemically aligned with the approach we
advocate for in “Artificial cognition”. We agree with the
growing consensus that abductive and contrastive logic have
a role to play in XAI (Hoffman et al., 2018a; Ilyas et al.,
2019). By definition, these methods work iteratively and
automatically, producing many examples of failure to form
an idea of the boundary; they describe model function
by illustrating its limits. So intuiting model behavior
as a function of similarity, counterfactuals, adversaries,
and criticisms involves interpretation with many observer
degrees of freedom. In contrast, we advocate for an a priori
approach, where scientists falsify select hypotheses rather
than automatically generate many hypotheses.

Artificial cognition

Given the need for satisfying explanations to black-
box behavior, recognizing the appetite for a science of
machine behavior within computer science, and recognizing
cognitive psychology’s rich history of developing models
of the mind through experimentation, we advance a hybrid
discipline called Artificial Cognition, first coined by Ritter
et al. (2017). Artificial Cognition can be thought of as a
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branch of the Machine Behavior movement toward XAI,
unique in its emphasis on cognitive models that are inferred
from data elicited via experimentation rather than directly
observed. Psychologists may recognize the distinction as
being similar to the historic transformation that psychology
endured in the 1950s when early cognitivists objected to the
contemporary dominant view that mental processes were
inadmissible as topics of scientific study; psychology at the
time was limited to behaviorism and its models of stimulus
and response. New perspectives (e.g., Chomsky et al.,
1959) gave cognitive psychologists permission to invoke
mental constructs, opening the door to novel predictions
and powerful theories of the mind. We can say things like
“I was distracted because my attention was divided,” or
“I avoided the collision because the looming motorcycle
captured my attention.” These explanations are intuitive
and imply causation, and lead to falsifiable hypotheses
about human behavior. We can apply the same discipline to
machine behavior.

Benchmarking versus experimentation

As we have discussed, an important tool in ML research is
benchmarking, where researchers measure the performance
of different models or agents on standardized tasks.
Benchmarking compares new models to the established
state-of-the-art, and is an indispensable practice for
engineers vying to produce the best product. However,
benchmarking has also been wrongfully employed as a
tool for explainability. We have observed cases with an
epistemic logic of this format: If I can build it to be
better, I understand it3. The reason benchmarking yields
unsatisfying explanations is because a model or agent may
be effective for reasons having nothing to do with the
inventor’s latest innovation. The logic is confirmatory, and
qualifies as verificationism.

The reason experimentation produces satisfying expla-
nations is because it is inherently falsifying. Cognitive
psychology has a strong Popperian tradition of falsifica-
tionism (Popper, 2014), where we gain confidence not by
finding confirmation of our theory but by defeating alterna-
tives against it. A good explanation should have survived
fair attempts to falsify it. It is at this point we think it may be
helpful to describe what we mean by experimentation. We
have observed that ML researchers sometimes use the word
“experiment” to mean “let’s expose an agent/model to an
environment/input and see how it performs,” or “let’s see if
our new agent/model can out-perform the state-of-the-art.”

3n.b. while we reject this logic, we note the negative form of this
argument may be true: Feynman’s famous “what I cannot create, I do
not understand.”

When cognitive psychologists talk about experimentation,
they are referring to attempts to falsify null or compet-
ing hypotheses to shape their theories. Our purpose is not
to benchmark the state-of-the-art but to look for reason-
able counter-explanations to our working theory, any one
of which should be fatal if supported. A similar abductive
approach has been called for by scholars advocating for
cross-disciplinary approaches to XAI (Klein, 2018).

A framework for explanation in artificial cognition

What should research in Artificial Cognition look like?
Artificial Cognition can be a sub-discipline dedicated to
inferring causal behavioral models for AI following a
domain-general scientific framework. We suggest a research
pipeline that identifies a behavior and its environmental
correlates, infers its cause, and identifies its boundary
conditions. These steps mimic the arc of research programs
in prominent psychology laboratories and science in
general. These should be followed by informed attempts
to alter behavior by changing the machine according to
our theory of the machine’s mind, which is something
that psychology researchers typically cannot do4. Once
we have an idea of the cause of a behavior, we
should be able to change that behavior by changing
the machine. Cogent experimentation following this arc
should produce satisfying, causal explanations of machine
behavior. Moreover, this research arc avoids the common
causal reasoning pitfalls reviewed in “A review of XAI for
psychologists”.

We would not presume to teach science to readers.
The purpose of this section is not to re-invent the wheel
but rather to highlight exemplary cases of behavioral
science at work in XAI, often with methods adapted
explicitly from cognitive psychology, for each step of the
recommended scientific framework. This section, therefore,
doubles as a review of exemplary cases of XAI using
artificial cognition. Please note there is nothing unique
in this framework to psychology—it is a domain-general
scientific framework that should feel familiar to researchers
from many disciplines. The reason psychology may be
specifically adaptable to XAI is because of its tradition
developing experiments for black-box models. Small groups
of ML researchers have already been adapting psychology
experiments to suit their black-box models, and we review
these cases here as examples of how psychologists can
continue this work.

4This last step will likely require collaboration with ML researchers.
Alternatively, it is becoming easier to learn and do-it-yourself with the
proliferation of free online courses, improved and well-documented
software frameworks, and the open-sourcing of most models/agents.
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Document variations in behavior

First, we must identify behaviors and establish them as
subjects of study by correlating them with changes in the
machine’s task, training, architecture, or environment. The
effect must be real and it must not be random.

Standardized tasks are very helpful for these purposes.
In cognitive psychology, dominant paradigms produce
thousands of published studies every year, which are
subtle variations on a relatively small set of tasks. ML
researchers have also produced batteries of tests that are
useful for assessing performance on a variety of tasks. The
popular Arcade Learning Environment (Bellemare et al.,
2013) offers RL researchers multiple Atari games with a
desirably small action space (nine joystick directions with or
without button press) and a variety of behaviors to learn. In
supervised learning, a popular task for image classification
is top-5 error rate on ImageNet (which forms the basis
of the famous ImageNet Large Scale Image Recognition
Challenge that, until 2017, benchmarked the state-of-the-
art on an annual basis and produced a watershed moment
for deep learning in 2012). Presently, ML researchers are
developing batteries of tests that measure more general
behaviors, which will be very useful for developing models
of mind. For example, Deep Sea is a common test of an
RL agent’s ability to explore an environment efficiently.
The travelling salesman task is one of the oldest problems
studied in combinatorial optimization and many heuristic
solutions have been developed. Yet it has been recently
revisited in the context of learning agents (Vinyals et al.,
2017). Furthermore, the new PsychLab package directly
imports classic visual search tasks and other paradigms
(e.g., Treisman & Gelade, 1980) into an RL environment to
measure elements of visual cognition (Leibo et al., 2018).
Access to a variety of well-understood paradigms is an
important step toward identifying curious behaviors that
will form the subjects of inquiry for artificial cognition.

A good example of using standardized tasks to identify
a behavior worth explaining is Behaviour Suite for
Reinforcement Learning (bsuite, Osband et al., 2019).
The authors documented the relative performance of
three different RL agent architectures (actor-critic RNN,
bootstrapped deep Q-network, and deep Q-network) on
tasks that intuitively measure different faculties (e.g., the
Memory Length experiment to measure long-term memory,
Deep Sea for exploration). The researchers correctly
predicted that a bootstrapped deep Q-network would exhibit
specifically superior exploration in a new environment,
whereas the A2C RNN performed better on the memory
task.

This exploratory approach to documenting variations in
behavior can also be used to identify vulnerabilities and

areas to improve DNN functionality. Using three well-
known DNNs (ResNet-152, VGG-19, and GoogLeNet),
Geirhos et al. illustrated two important shortcomings
in deep neural networks’ ability to generalize (Geirhos
et al., 2018). Whereas humans can maintain perception
through different visual noise distortions, they showed
that DNN accuracy for most of the distortion categories
rapidly dropped off with increasing signal-to-noise—more
so than the humans in their study. More interestingly,
when the machines were trained on datasets that included
one or more of the 12 distortion types, they only gained
robustness against those particular distortions. This second
investigation suggests that the DNN vulnerability to noise
distortions is not simply a consequence of the high-quality
images in datasets we normally train DNNs with. If that
were the case, then re-training the DNNs with the various
noise assaults should have conferred some protection
against other distortions. Instead, across the board, the
DNNs learned robustness only against the specific distortion
present in their training set.

These examples illustrate how researchers should begin
the path to explainability by documenting changes in behav-
ior that correspond to differences in task or stimulus. Other
promising starting points involve correlating behavior with
changes in data composition (e.g., identifying bias emerg-
ing from supervised learning between different data sets),
learning algorithm, architecture (e.g., establishing that A2C
and b-DQN RL agents excel at different tasks Osband
et al. 2019), or, in RL, changes in environment (e.g., show-
ing that introducing additional obstacles and environmen-
tal features in a game of hide and seek causes agents
to learn surprising fort-building behaviors; Baker et al.
2019).

Infer the cause

Correlations are insufficient to infer the existence of black
box processes that cause behavior. Instead, hypothesized
processes must survive a fair test of falsification by expos-
ing the machine to carefully controlled circumstances
designed to rule out alternative explanations. The experi-
menter must curate sets of stimuli, environments, or agents
that have and do not have the variables hypothesized to
be affected by the proposed process; all other variables
between stimulus sets must be controlled. Designing exper-
iments for behavior should be familiar to cognitive psychol-
ogists, but there are some critical differences between exper-
imenting on machines versus humans, which we discuss in
“Getting started”.

We have seen some excellent cases of falsifying
experiments in ML research. PilotNet is NVIDIA’s neural
network-based steering algorithm for autonomous vehicles,
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which takes images of the oncoming road as input and
outputs steering angles (Bojarski et al., 2017). Its creators
wanted to understand what features in the visual input
caused PilotNet to vary its output. The activity of neurons in
the higher layers of their network correlated strongly with
features in the input images that they anecdotally identified
as ground-level contours. Recognizing that the correlation
does not necessarily imply a causal relationship between
those features and steering angle output, the researchers
formalized their observation into a testable and falsifiable
hypothesis by subjecting PilotNet to an experiment. Input
images were modified three ways: (a) displacing pixels that
were identified as salient by their correlative technique;
(b) displacing all other pixels, or (c) displacing the entire
image. If the authors’ correlative technique was incorrectly
identifying crucial visual features for steering, then we
would expect similar performance between comparisons of
[a,b], [b,c], and/or [a,b,c]. The data showed that a and c were
similarly responsive in steering updates, with condition b
making minimal adjustments, failing to reject the alternative
hypotheses and lending confidence to their explanation that
ground-level contours identified by their saliency algorithm
cause changes in PilotNet’s steering.

We have also seen cases where causal explanations
are inferred from a model’s behavior under competition
between controlled features within a stimulus (rather than
between stimuli in different conditions). Seeking an expla-
nation for why CNNs for object recognition can identify
inputs without difficulty using only local texture clues—
where the global shape is completely destroyed (Brendel &
Bethge, 2019), Geirhos and colleagues conducted a clever
experiment that directly pitted global shape and local tex-
ture cues against each other (Geirhos et al., 2018). The
logic of their manipulation mirrored many experiments in
visual cognition, where we present the observer with a stim-
ulus containing two conflicting features and see which one
the visual system ‘prefers’—such as in Navon’s ambiguous
stimuli containing both global and local structure (e.g., a big
arrow pointing left made up of little arrows pointing right)
(Navon, 2003). In this case, Geirhos created stimuli using
a style-transfer algorithm that applied one input’s texture to
another input’s shape, resulting in chimeric stimuli, such as
a cat-shaped image with elephant skin texture. The question
then was whether the DNNs classified the inputs as belong-
ing to the shape-defined class (cat) or the texture-defined
class (elephant). Humans in their study exhibited a strong
shape bias, consistent with the psychology literature (Lan-
dau et al., 1988), but DNNs tended to classify the chimeric
image as belonging to the texture’s class. Models retrained
on the chimeric style-transferred images were more robust
against the texture bias, as they were more likely to catego-
rize using shape than a standard ImageNet-trained model.

Because the behavior changes following retraining on care-
fully crafted datasets, we can attribute the predominant
texture bias in CNNs to regularities in ImageNet training
data rather than some principle innate to their design.

Another exemplary case of experimentation in ML
research comes from Ritter et al.’s investigation into
shape bias in one-shot object recognition (Ritter et al.,
2017). Those authors, who coined the phrase Artificial
Cognition and advanced the use of insights from cognitive
psychology for understanding ML, devised an experiment
to determine whether DNNs would exhibit the same biases
as humans when learning new objects. Specifically, they
hypothesized that shape, rather than color, would be a
biasing feature when generalizing from known to novel
objects. They borrowed stimulus sets modeled after tasks
from developmental psychology laboratories that feature
novel objects that can vary in shape or color but control
other major variables such as background (Landau et al.,
1988, 1992). They also fashioned their own stimulus set
following these principles to generalize to more naturalistic
stimuli (as opposed to novel nonsense stimuli). The model
in this case was pre-trained with a state-of-the-art image
classifier to provide basic feature detection. The model
was then asked to identify the most similar image from a
novel support set that included shape-matching and color-
matching stimuli. Results showed that the model was much
more likely to identify the shape-matching novel object as
belonging to the same category, confirming a human-like
shape bias in object identity learning. The crucial design
feature was the perfect experimental control provided by
the shape- and color-matching probe, isolating the causal
variable.

Investigations using psychology-inspired experimenta-
tion have also been used to discover properties of Gestalt
perception in neural networks (Kim et al., 2019). These
researchers asked whether DNNs for image classification
exhibited the law of closure (Wertheimer, 1923). They
hypothesized that closure would emerge spontaneously in
neural networks trained on natural images. The authors
examined how different networks trained under carefully
controlled conditions would process pairs of triangle stim-
uli. Critically, the pairs were a complete triangle and either
an incomplete triangle with Gestalt closure or an incom-
plete triangle without closure due to the rotation of its vertex
elements. The networks’ response similarity was greatest
for complete and illusory triangles when the network had
been trained on natural images versus networks with ran-
dom weights or networks trained on random visual stimuli.
This is an exemplary experiment with clear predictions,
independent and dependent variables, and conclusions.

Many of the studies reviewed here reveal compelling
explanations for AI behavior by tinkering with the model.
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But how should we approach XAI in cases where, whether
for practical or proprietary reasons, we cannot look inside
the black box? We recently showed that it is possible to
conduct XAI using techniques from cognitive psychology
from completely outside the black box (Taylor et al., 2020).
One common question faced by XAI researchers is how
and where does a model represent different hierarchical
features? A common approach to answering this question
is to visualize the receptive fields of neurons throughout a
model (e.g., Olah et al., 2018), but this is only possible with
access to the model’s internals. We reasoned that models
using conditional computation—the ability to short-circuit
the forward pass, making an early exit at an intermediate
classifier—should show response time effects in their
response corresponding to feature space. We theorized
that models with early exit architecture should exhibit
faster response times for stimuli that can be classified
using features that are composed in earlier layers. In
a proof of concept, we showed that MSDNet (Huang
et al., 2017) was much faster to classify stimuli from
ImageNet versus the much more challenging ObjectNet
test set (Barbu et al., 2019), which was explicitly created
to contain a less homogeneous and more intricate feature
space. In a more controlled second experiment, we showed
that MSDNet is sensitive to the statistical regularities in
object-object and object-scene relationships that populate
stereotypical scenes resulting in scene grammar effects
in humans (Võ & Wolfe, 2013). The SCEGRAM test
set (Öhlschläger & Võ, 2017) presents 62 scenes in four
different versions, one with consistent scene grammar, and
one with inconsistent semantics, syntax, or both. Building
on the finding that NNs for scene and object recognition
struggle with visual inconsistencies in SCEGRAM (Bayat
et al., 2018), we found that, like humans, ANNs with
early exit architecture exhibit RT effects in classifying
objects across the four conditions. The ANOVA revealed
that MSDNet was specifically challenged by semantic
inconsistencies, which makes sense given that it is trained
for object recognition. This means that on average the
features required to correctly classify objects in scenes
with inconsistent semantics could not have been accessed
by the earlier classifiers. We were therefore able to make
inferences about the relationship between feature space and
model depth without inspecting model internals.

So far we have reviewed experimentation for computer
vision, which represents our bias as vision researchers, but
artificial cognition can be equally effective in explaining
model behavior for other tasks. Gulordava et al. asked
whether recurrent NNs for natural language processing
learn shallow patterns between word frequencies or whether
they learn grammar (Gulordava et al., 2018). They showed
that their RNN made reliable predictions for difficult long-

term dependencies in four languages. In a throwback to the
cognitive revolution, they showed this was true even for
sentences where meaning had been divorced from grammar,
as in Chomsky’s famous nonsense sentence demonstrations
(e.g., “colorless green ideas sleep furiously; Chomsky,
1957). The experiment shows that RNNs with long-term
memory can extract grammatical rules from simple text-
based training data without any prior toward or explicit
instruction to attend to syntax.

The process of designing and deploying experiments to
infer the cause of machine behaviors is currently underuti-
lized. We contend this represents a major opportunity for
cognitive psychologists to contribute to a growing field with
a hunger for experimentation.

Identify boundary conditions

If you believe you can explain when a behavior happens,
then you should also be able to account for when the
behavior stops. Identifying the boundary conditions of a
behavior is an important element of explaining it, because
it narrows the range of viable alternative explanations.
More practically, it helps describe when a model or agent
is likely to change its behavior, which is important for
users, regulators, insurers, and developers. For example, an
autonomous vehicle may perform above human level under
normal conditions, but how does it perform under low light,
in snow, or through road work?

Broadly speaking, there are two ways to establish
the boundaries of an effect in psychology. One is by
adjusting the intensity of a stimulus to titrate the level
required to elicit an effect using psychophysical techniques
(Macmillan & Creelman, 2004) or tuning curves. This
approach delivers characteristic functions that describe how
and whether a person perceives a stimulus given a range
of intensities. The other approach is to expose the subject
to a range of conditions with controlled alternatives, asking
whether differences in behavior emerge under different
circumstances. In the example above, we might compare
an autonomous vehicle’s performance on the same road
under two different conditions, asking whether it behaves
similarly, rain or shine.

The use of psychophysics to characterize an effect’s
boundaries is beginning to take hold in XAI (Rajalingham
et al., 2018; Scheirer et al., 2014). An illustrative case that
uses both boundary-defining techniques described above
is RichardWebster et al.’s recent release of PsyPhy, a
visual psychophysics package implementation available in
Python (RichardWebster et al., 2019), which has already
been applied to characterize the boundaries of different
facial recognition software (RichardWebster et al., 2018).
In that study, the authors psychometrically evaluated the
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item-response curves of five different face recognition
algorithms (and human performance) under different
degradation assaults, including Gaussian blur, contrast, pink
noise, brown noise, and variable facial expression (e.g.,
degree of emotion or degree of eye-blink), resulting in a
detailed description of the models’ abilities and faults. The
detailed item-response curves illuminated some surprising
conclusions, too. The authors originally predicted that deep
learning CNNs would be uniformly superior to shallower
networks or models with handcrafted feature detectors. The
psychophysical approach showed that VGG-Face, a type of
deep CNN designed to process images of faces, was the best
algorithm in most circumstances for most intensities, but for
a wide swath of the stimulus space, the handcrafted feature
detector OpenBR outperformed several other deep CNNs.
The psychophysical approach also revealed the surprising
discrepancy between OpenFace and FaceNet, which share
architectural similarities: both are variants of the same
CNN architecture originally developed by Google. This
empirical discovery prompted the researchers to propose
that differences in the training sets used by these sibling
models might explain the difference in performance. In
short, the use of psychophysics prompted the discovery
of several surprising boundaries and caveats to the face
recognition algorithms’ abilities.

Another approach to quantifying boundary conditions
involves introducing systematic perturbations and measur-
ing associated decrements in performance. This can be done
with artificial perturbations such as deleting swatches of
input or scale transformation (Zeiler & Fergus, 2013), or
with naturalistic perturbations such as introducing visual
clutter (Volokitin et al., 2017). In the latter case, researchers
produced detailed functions describing the relationship
between target eccentricity, flanker similarity, and flanker
separation, much in the same way that humans experience
visual crowding (Whitney & Levi, 2011). They concluded
that targets and flankers in the input were often grouped by
pooling functions often used throughout ANN processing
hierarchies. Moreover, they were able to identify a combina-
tion of conditions required for robustness against crowding
in a DNN trained on images without clutter: an eccentricity-
dependent DNN where receptive field size of convolutional
filters varies (classic vanilla DNNs do not have this multi-
scale feature), with targets centrally-presented (like a human
fovea), and spatial and scale pooling only at the end of the
model’s hierarchy (as opposed to throughout). This type of
explanation, based on a psychophysical exploration for the
boundaries of successful performance, is desirable in cases
where we want to understand how and when a model will
fail or succeed in naturalistic scenarios, which is a top prior-
ity for explainability research and responsible deployment
of AI.

Toy with the brain

Finally, we recommend a fourth step in the research
program arc that is normally not possible with humans.
Machines offer us the freedom to alter neural networks.
Showing that selective tinkering corresponds to falsifiable
predictions for subsequent behavior provides a strong test
of any working explanation, and should be regarded as
the highest level of explainability. Psychologists do not
have the ability to alter their black box for obvious ethical
reasons5, so this is an exciting opportunity for psychologists
to test the strength of experimentally derived models of
mind. For ML researchers and creators, this level of
explainability describes next-steps for development. Having
strong predictions about how the machine should behave
under different alterations can lead directly to improvements
in design and performance.

For a strong example of toying with the brain in ML,
consider Leibo et al.’s deployment of their UNREAL RL
agent in the newly designed PsychLab environment (Leibo
et al., 2018). Those authors imported some classic visual
cognition experiments into an RL environment with the
hope of characterizing machine behavior against well-
studied human phenomena. While UNREAL outperformed
humans on many tasks (including exhibiting efficient visual
search for feature conjunctions!), it had worse visual acuity
than humans. Consequently, the authors hypothesized that
UNREAL would preferentially learn large objects at the
expense of smaller objects in the environment, and they
confirmed this with an experiment that asked UNREAL
to perform a localization task in the presence of small or
large distractors. Results showed that UNREAL learned
the task, which was to point to the object on the left
side of space, slower in the large distractor condition. This
finding confirmed their hypothesis that UNREAL’s low
acuity causes it to repeat the surprising and undesirable
behavior of identifying the larger object, rather than
the leftward object which was actually more rewarding.
Critically, the researchers used this experimentally derived
causal insight to further develop UNREAL. Rather than
allowing UNREAL to view the entire field, which is
computationally expensive at higher resolution input and is
also the likely cause of UNREAL’s fixation on large objects,
they programmed an input processing filter inspired by the
human fovea. Doing so increased performance on tasks in
dynamic environments with higher input resolution without
the prohibitive cost of distributed weight sharing. In short,

5Unless in animal or computational models, or in rare circumstances
through drugs, transcranial magnetic or direct current stimulation,
deep brain stimulation, or as a corollary to medically necessary
surgery.
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experimentation lead to a theory of mind for UNREAL’s
visual cognition that directly inspired better AI.

Another approach to manipulating a network in the
service of explainability is retraining an identical model
with different data. This affords testing hypotheses relating
to the composition of data-dependent features. In order
to explain the superiority of visual acuity for horizontal
and vertical information in artificial and biological neural
networks, Henderson & Serences tested whether ANNs
would learn a similar bias and whether that bias depended
on statistical regularities in the training datasets (Henderson
& Serences, 2020). First, they showed that their pre-trained
ANN did exhibit a bias toward over-representing cardinal
orientations by measuring the distribution of tuning centers
across neurons. The cardinal bias was correlated with layer
depth. This was contrasted with the same distributions
for a randomly instantiated version of the same model—
a control condition designed to rule out the possibility
that the orientation bias is incidental to the model’s
parameterization. Next, the authors re-trained VGG-16 on
orientation-shifted versions of ImageNet, predicting that
the cardinal orientation bias would match the perturbations
on the training sets. In a compelling demonstration, they
showed that the new models’ orientation bias perfectly
matched the shifted datasets’ perturbation, which offers a
tidy explanation for why neural networks develop these
preferences.

Advantages of artificial cognition

Artificial cognition is model-agnostic

Experimentation, in the hypothesis-falsifying sense, is
model-agnostic. We can seek explanations through exper-
iments on any ML algorithm, whether it is supervised or
unsupervised, or an RL agent, or a hybrid of the above.
All the experimenter needs is the ability to manipulate
input (stimuli) and observe output (behavior). Knowledge
about the model’s architecture is advantageous, in the way
that knowledge from neuroscience can guide the space of
feasible hypotheses in cognition, but not strictly necessary.

Artificial cognition does not constrain design

Explanations from Artificial Cognition do not come at the
cost of constraining design. As we have seen with some
XAI methods, more interpretable architectures sacrifice
performance in the service of explainability (Gunning,
2017). All conclusions are drawn from outside the black
box. Cognitive psychologists have learned to explain
behavior without changing the software because we cannot.

Artificial cognition tests hypotheses a priori

Artificial Cognition is hypothesis-driven, resulting in a
priori rather than post hoc explanations of behavior.
Many of the explanatory mechanisms we have seen in
the XAI literature are in the form of visualizations that
correlate neuronal activity with a decision likelihood,
or visualizations that display decision likelihood as a
function of local perturbations (Ribeiro et al., 2016). These
visualizations are a powerful tool in forming intuition for
how certain nodes and layers interact with the data, but we
must recognize that these intuitions form post hoc, posing
a risk of confirmation bias (Wason, 1960). We urge caution
when interpreting correlative visualizations, as they are not
causal. We are also wary of automated perturbation-based
explanations, as the causal mechanism is always inferred ad
hoc. That is not to say that these tools are not useful in the
service of explanation: They are indispensable in that they
point toward early theories and hypotheses. In contrast, truly
experimental methods employ falsifying logic and produce
causal explanations, which align with how people explain
events in the world (Sloman, 2005) and have been shown
to produce more satisfying explanations of AI behavior
(Madumal et al., 2019).

Caveats

Mechanisms of behavior & cognition

We might reasonably be concerned that these methods will
not uncover the mechanisms underlying AI behavior, but
instead describe behavior as a function of various inputs
and patterns of learning, not unlike behaviorism. But, to
the extent that cognitive psychologists have uncovered said
mechanisms, artificial cognition should produce similar
results without issue. We say this confidently because the
process is identical: curate experiments, observe behavior,
and infer the underlying processes.

Cognitive psychology deals in mechanisms all the time.
Covert orienting is described as a mechanism of attention
(Posner, 1980). The inhibitory processes in retrieval is
described as a mechanism for remembering things stored
in long-term memory (Bjork, 1989). Cognitive explanations
give us useful metaphors to understand behavior. They
are decidedly not behavioristic because the behaviorists
famously forbade the consideration of mental constructs,
such as long-term memory.

We can object to the critique on even stronger grounds.
There are cases where psychology experiments can be used
to uncover properties of the structure of a ML model. We
recently applied response time analyses to a model designed
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for object recognition. We wanted to make inferences
about how the model processed semantic features using the
SCEGRAM database (Öhlschläger & Võ, 2017). Examining
the RT distribution in the model’s response revealed five
clear RT plateaus, which could only occur if the model
had exactly five intermediate classifiers and an early exit
architecture (Taylor et al., 2020). This illustrates how black-
box experiments can reveal both cognitive-type analogies
for the mechanisms of behavior and also the physical
neuroscience-type mechanisms of the machine.

On transferring principles of human cognition to AI

It is vitally important that we are not interpreted as saying
that the discoveries of research on human cognition should
apply to AI. Unless the AI in question is explicitly modeled
after the human brain and/or mind, there is no reason to
expect that it should exhibit similar behaviors (and even
then it might not). Artificial Cognition will work because
the methods from psychology are good for developing
black-box explanations for behavior. These are methods
for learning about cognition, broadly construed—not just
human cognition.

Ecological validity in human and artificial cognition

Psychology has been appropriately criticized for making
generalizations about behavior from overly artificial settings
and stimuli (Kingstone et al., 2008; Neisser, 1978) and
unrepresentative populations (Henrich et al., 2010). These
charges have been met with calls for an increase in applied
research (Wolfe, 2016) where findings from psychological
science inform human behavior in the real world. It
would be counterproductive if artificial cognition inherited
psychology’s controversies along with the strengths of
its method. As such, we encourage newcomers to take
advantage of the “fresh start” in the study of behavior
for machines and be mindful of the pros and cons of
investigating behavior with different levels of ecological
validity. Naturalistic stimuli will be vital to explain how
models ought to behave in their intended use. Contrived
stimuli will be important for anticipating edge cases and
informing thorough models of behavior.

We speculate that it ought to be easier to achieve
ecological validity with machines. It is a challenge in
human psychology because research in laboratories is
more tractable and grants us precious control. In AI, the
naturalistic task the model is created for could more feasibly
be perfectly recreated during experimentation (at least
compared to human explainability research).

Getting started

In this section, we describe some practical considerations in
making the transition from research on human cognition to
research on artificial cognition, point to useful resources in
getting started in XAI, and provide a concrete walkthrough
from our own empirical work. We hope it can provide some
useful insights for behavioral scientists studying machines
for the first time.

Educational resources and useful code

Producing performant AI is the domain of ML research,
where aspects of model design such as architecture,
loss functions, learning and optimization algorithms are
studied extensively. Reviewing these topics is outside
the scope of this article, but a cursory understanding
(at least) of ML principles is required to be making
inferences about how machines make decisions, in the
same way that neuroscience is part of every education in
human psychology. To that end, we will recommend some
resources here for psychologists to familiarize themselves
with the principles of ML. Luckily, ML has a strong culture
of making educational resources free and open-source.

Deep learning involves an intimidating mixture of math-
ematics drawn from linear algebra, calculus, and statistics.
Fortunately, the entry-level requirements for understand-
ing basic DNNs is a high school or undergraduate level
understanding of each domain, common to many bachelors
degrees in science. And instead of learning or refreshing
each discipline independently, you can refer to helpful open-
source texts6, and intuition-building video lectures7. Before
conducting research on DNNs, psychologists should under-
stand linear transformations and basic matrix operations
from linear algebra, the chain rule in multivariate calculus
for understanding backpropagation8, and gradient descent
and regression from statistics, with which psychologists are
already familiar. This is an egregious oversimplification of
the math involved in deep learning, but those are the basics.
Deep dives into academic material on deep learning are
also available through high profile open courseware9. For

6e.g., Deisenroth et al. (2020), available at https://mml-book.com/
7e.g., 3Blue1Brown’s inimitable YouTube series
8NB this is probably the most intimidating material but you also
probably learned the chain rule in high school
9e.g., Stanford’s CS231n at http://cs231n.stanford.edu/syllabus.html
covers visual recognition architectures, which are the most heavily
explored type of model in XAI
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a math-based review of XAI methods specifically, consult
Molnar’s excellent ebook10 (Molnar, 2019).

We don’t expect that most psychologists will gravitate
toward building new AI—that is the domain of ML
researchers. Instead, artificial cognition will seek to explain
extant models’ decision-making, and to that end we
will be experimenting with other creators’ work. This
means the bulk of the artificial cognitivist’s work will
require getting their hands on popular models and datasets.
Fortunately, it is relatively easy to download pre-trained
versions of most popular models from the literature for
research purposes. Continuing ML’s culture of open-access,
when new breakthroughs are achieved they are often
uploaded to public repositories for other researchers to
replicate results. The most common repository is GitHub,
and PapersWithCode provides a clean and searchable
directory connecting publicly available models with the
research papers that report them. Finding popular datasets
for machine learning is also facilitated by open-access
repositories, including Google’s new dataset search11.
Machine learning researchers are partial to the practice
of using “awesome lists”, which are lists of resources in
a GitHub readme tagged with a subject and the word
“awesome”12. We do not know the whole story behind the
practice, but it certainly simplifies searching GitHub.

Finally, the vast majority of research in AI is con-
ducted on models and agents written in Python. Many
psychologists will already be using Python to program their
experiments and analyses, but we suspect the majority are
using MATLAB or a GUI-based environment to create their
experiments and MATLAB, SPSS, or R for analyses. Python
is completely essential to interact with deep learning mod-
els. Users migrating from MATLAB will appreciate the
similarity of the Spyder13 environment for writing Python,
which is available through the free and open-source Python
distribution platform, Anaconda14. Transitioning to Python
is relatively easy for anyone who has already taught them-
selves MATLAB or R, and there are useful guides specif-
ically for this conversion; NumPy, the main package for
scientific computing with Python, hosts a useful guide for
converting from MATLAB15. The Scipy Lecture Notes16

are a free and evolving entry point to the Python for sci-
entific computing ecosystem, organized into a series of
self-contained tutorials.

10https://christophm.github.io/interpretable-ml-book/
11https://datasetsearch.research.google.com/
12e.g., https://github.com/lopusz/awesome-interpretable-machine-learning
13https://www.spyder-ide.org/
14https://www.anaconda.com/
15https://numpy.org/doc/stable/user/numpy-for-MATLAB-users.html
16https://scipy-lectures.org/

We also want to share two hands-on tutorials that show
how to interact with DNNs. The first is a simple python
script that loads a pre-trained DNN for visual classification
(InceptionV3), specifies a function for converting any image
into a readable format by the model, performs a forward
pass using any image as input, and returns the model’s
decision. Clone the linked repository17, open and run the
Python script in Spyder or the environment of your choice.

The second tutorial is more advanced, describing an
experiment from start to finish, including loading large
datasets, building, training, and testing a complete model18.
This code describes the process of training, validating, and
testing MSDNet for the response time methods study we
described in “Artificial cognition” (Taylor et al., 2020).
The output from this code is saved as a .csv, which
is readable by any analysis software. Our analysis was
written in Python using the NumPy and SciPy packages,
and is practically indistinguishable from interacting with
output from human subjects in various spreadsheet formats
(e.g., .mat or .sav); no additional training or guidance is
needed for psychologists. The output contained RT, classes,
and confidence from each intermediate classifier. For 100
steps of confidence form 0 to 1, we found the minimum
speed at which the model would confidently supply
an answer. Responses were pooled across images from
different experimental conditions (ObjectNet vs. ImageNet
in Experiment 1; 2x2 factorial ANOVA for scene grammar
conditions in Experiment 2) and analyzed using statistical
packages in SciPy.

Considerations for analysis of artificial minds

One of the fundamental tools of experimental psychology
is inferential statistics. Every psychology undergraduate
receives extensive training in how to infer behavior in
the population from patterns in a sample. The assumption
underlying the pervasive use of inferential statistics is that
there is a fundamental commonality between minds in
the population: Our minds are alike, so your behavior in
the laboratory informs my behavior in the world. Most
psychologists would agree that the assumption is justified
by the shared architecture of our brains, and is demonstrably
robust against observation. However, the assumption of
a common mind is impossible in artificial intelligence,
where the diversity of “brains” is matched only by the
ingenuity of computer scientists. It does not make sense
to infer the behavior of one algorithm from the behavior
of other algorithms with explicitly different architectures.
Consequently, Artificial Cognition must dispense with
the common use of inferential statistics, where measures

17https://tinyurl.com/yxehuera
18https://tinyurl.com/y2pgwygk
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of central tendency are compared between samples of
individuals assigned to experimental and control groups,
and where deviations from these measures are treated as
statistical error to be minimized rather than signal to be
analyzed. In contrast, Artificial Cognition will be more
akin to the psychology of individual differences, where
deviations from the mean represent true data. With humans,
we often treat the error associated with different stimuli
from the same group as a fixed effect in our analyses.
For example with scene grammar studies in humans, all
observations from a single individual are pooled across
images from the same category; this data is expressed as a
single mean entered into the ANOVA, with means for each
level of the independent variables. In our RT study on scene
grammar in CNNs, we instead studied the error attached to
the 62 different scenes as a random effect. The resultant
ANOVA allowed us to infer how MSDNet would treat
unforeseen scenes drawn from a distribution with similar
scene grammar. Additionally, we often take a measure of
central tendency over many observations of identical stimuli
to reduce the error in our observation. In the majority of
cases, there is no need to repeat exposure to a pre-trained
algorithm. Unless there is stochasticity embedded in the
model, such as in RL agents programmed to explore their
environments, it will react to identical stimuli the same way
each time.

In addition to the re-purposing of inferential statistics,
we can quantify AI behavior with techniques developed
to characterize individual differences. ML researchers have
recently recognized the appeal of psychometric and other
psychology-inspired techniques for measuring performance
(Hérnandez-Orallo et al., 2017). Item response theory
(IRT) provides a superior method to assess individual-level
performance on decision-related tasks that goes beyond
simply averaging performance over test items (Wilmer
et al., 2012). Instead, IRT measures performance as a
function of item-related difficulty and respondent-related
ability (Lord, 2012). Recognizing this duality is important
because all ML ability is a function of the data it was
trained on. Because IRT can be used to estimate the item-
level difficulties and respondent ability separately, it is
an excellent candidate method for comparing individual
differences in AI, especially for classifiers, where latent
variables guide decision-making (Martı́nez-Plumed et al.,
2019). When known variables guide decision-making,
evidenced by varying performance as a function of stimulus
intensity, classic psychophysics methods can be used to
provide detailed descriptions of ability. RichardWebster
et al. (2019) used psychophysical methods to characterize
model performance as a function of stimulus degradation.
The result was a family of performance-based curves
that made comparing models easy and intuitive. Finally,
researchers should consider using signal detection theory

(SDT) to model individual-level performance when the AI
is required to make decisions under uncertainty (Macmillan
& Creelman, 2004). Originally used to model radar
monitoring—a noisy visual perception task—SDT gives us
a tool to specify perceptual sensitivity and decision-related
biases by measuring the distribution of hits and false alarms
(Witt et al., 2015).

Practical & ethical considerations in the laboratory

Human subjects research, and to a lesser extent non-
human animal research, is regulated by extensive ethical
mandates enforced by internal review boards at universities
and other research institutions. These review boards are
empowered by governments to ensure the safety, well-
being, and privacy of human subjects, in response to
psychology and medicine’s histories of unethical practices
(General Assembly of the World Medical Association,
2014). Machines, on the other hand, currently have no
rights, and IRBs that regulate machine learning research
are rare (Metcalf & Crawford, 2016). This is not to say
that there are no ethical guidelines in machine learning. A
growing field is dedicating itself to the ethical treatment and
collection of data, the fairness and debiasing of the data,
and the way machines are deployed. But there are no limits
to what can be done to an algorithm for the purposes of
research.

Another consideration that will differ for psychology
research on machines versus humans is the rate of data
acquisition. A majority of human subjects research in
cognitive psychology is carried out on undergraduate
psychology students (Rad et al., 2018; Henrich et al., 2010),
who participate in exchange for course credit or money.
This subject pool is a limited, time-sensitive resource that
anecdotally peaks at the start of the Fall semester, when
students are racing to complete their requirements (n.b. this
manuscript was written pre-COVID, which has changed
the way psychologists collect data, with many moving
entirely online. It is too early to tell whether this will
increase or decrease the rate of human data acquisition
and what impact it will have on the timelines of research
projects). If the reader generously assumes that training and
debriefing a participant requires 10 min, and that a trial
of an experimental protocol takes 10 s, a researcher can
gather only 300 observations from any given participant,
introducing a danger of underpowering estimates of central
tendency and variability or restricting the number of cells in
the experimental design. This problem must seem absurd to
a machine learning researcher, who can collect massive data
sets from any given subject. In comparison, OpenAI’s hide-
and-seek RL agents’ behavior evolved over 500 million
test trials (Baker et al., 2019); literally a tireless, sleepless
human lifetime of laboratory-equivalent behavior. All of this

471Psychon Bull Rev  (2021) 28:454–475



is to say that research in Artificial Cognition has a different
set of operational bottlenecks compared to human cognitive
psychology. There is no time-limited crush of intro-psych
students getting research credits in September, there is no
summer lull, and there is no need to spend grant money on
paid participants. There is no protracted IRB review, and
no tedious data storage and management. Machine Learning
researchers face a different set of bottlenecks: access to rich
datasets, which is always accelerating, and where training
AI is part of the experiment, access to computing resources,
which can mean time, money, and/or access to dedicated
clusters. Often, experiments in Artificial Cognition will
not require training anything new—for example when
experimenting on existing, parameterized models. In these
cases, conducting psychology experiments on machines will
be limited only by the researcher’s imagination and how
quickly they can design and deploy a new experiment.

Conclusions

This paper was written as an open-ended research pro-
posal with the goal of motivating other psychologists to
participate in this new field. We have described the simi-
larities between the black box challenge in deep learning
and human cognition. Consumers, legislators, and machine
learning researchers are interested in new approaches to
XAI, and we think that cognitive psychologists have the
tools and the tradition to produce satisfying models of
behavior. To that end, we have provided justification for a
cognition-inspired approach to XAI, we have reviewed the
XAI field with non-computer scientists as a target audi-
ence, and we have suggested a framework for performing
experiments on machines with an accompanying tutorial
noting critical differences versus experimenting on humans.
We hope that we have convinced the reader that artificial
cognition presents a unique opportunity for cognitive psy-
chologists to engage in a rigorous academic pursuit in an
applied setting with an urgent need.

Open Practices Statement

There is no empirical work reported herein, but the two
tutorials are open and accessible at the links provided in
“Getting started”.
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