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Abstract
Adult semantic memory has been traditionally conceptualized as a relatively static memory system that consists of knowledge
about the world, concepts, and symbols. Considerable work in the past few decades has challenged this static view of semantic
memory, and instead proposed a more fluid and flexible system that is sensitive to context, task demands, and perceptual and
sensorimotor information from the environment. This paper (1) reviews traditional and modern computational models of seman-
tic memory, within the umbrella of network (free association-based), feature (property generation norms-based), and distribu-
tional semantic (natural language corpora-based) models, (2) discusses the contribution of these models to important debates in
the literature regarding knowledge representation (localist vs. distributed representations) and learning (error-free/Hebbian
learning vs. error-driven/predictive learning), and (3) evaluates how modern computational models (neural network, retrieval-
based, and topic models) are revisiting the traditional “static” conceptualization of semantic memory and tackling important
challenges in semantic modeling such as addressing temporal, contextual, and attentional influences, as well as incorporating
grounding and compositionality into semantic representations. The review also identifies new challenges regarding the abun-
dance and availability of data, the generalization of semantic models to other languages, and the role of social interaction and
collaboration in language learning and development. The concluding section advocates the need for integrating representational
accounts of semantic memory with process-based accounts of cognitive behavior, as well as the need for explicit comparisons of
computational models to human baselines in semantic tasks to adequately assess their psychological plausibility as models of
human semantic memory.
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Introduction

What does it mean to know what an ostrich is? The question
of how meaning is represented and organized by the human
brain has been at the forefront of explorations in philosophy,
psychology, linguistics, and computer science for centuries.
Does knowing the meaning of an ostrich involve having a
prototypical representation of an ostrich that has been created
by averaging over multiple exposures to individual ostriches?
Or does it instead involve extracting particular features that are
characteristic of an ostrich (e.g., it is big, it is a bird, it does not
fly, etc.) that are acquired via experience, and stored and

activated upon encountering an ostrich? Further, is this
knowledge stored through abstract and arbitrary symbols such
as words, or is it grounded in sensorimotor interactions with
the physical environment? The computation of meaning is
fundamental to all cognition, and hence it is not surprising
that considerable work has attempted to uncover the mecha-
nisms that contribute to the construction of meaning from
experience.

There have been several important historical seeds that
have laid the groundwork for conceptualizing how meaning
is learned and represented. One of the earliest attempts to
study how meaning is represented was by Osgood (1952;
also see Osgood, Suci, & Tannenbaum, 1957) through the
use of the semantic differential technique. Osgood collected
participants’ ratings of concepts (e.g., peace) on several polar
scales (e.g., hot-cold, good-bad, etc.), and using multidimen-
sional scaling, showed that these ratings aligned themselves
along three universal dimensions: evaluative (good-bad), po-
tency (strong-weak), and activity (active-passive). Osgood’s
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work was important in the following two ways: (1) it intro-
duced an empirical tool to study the nature of semantic repre-
sentations; (2) it provided early evidence that the meaning of a
concept or word may actually be distributed across several
dimensions, in contrast to being represented through a localist
representation, i.e., through a single dimension, feature, or
node. As subsequently discussed, this contrast between
localist and distributed meaning representations has led to
different modeling approaches to understanding howmeaning
is learned and represented.

Another important milestone in the study of meaning was
the formalization of the distributional hypothesis (Harris,
1970), best captured by the phrase “you shall know a word
by the company it keeps” (Firth, 1957), which dates back to
Wittgenstein’s early intuitions (Wittgenstein, 1953) about
meaning representation. The idea behind the distributional
hypothesis is that meaning is learned by inferring how words
co-occur in natural language. For example, ostrich and egg
may become related because they frequently co-occur in nat-
ural language, whereas ostrich and emu may become related
because they co-occur with similar words. This distributional
principle has laid the groundwork for several decades of work
in modeling the explicit nature of meaning representation.
Importantly, despite the fact that several distributional models
in the literature do make use of distributed representations, it
is their learning process of extracting statistical redundancies
from natural language that makes them distributional in
nature.

Another historically significant event in the study of mean-
ing was Tulving’s (1972) classic distinction between episodic
and semantic memory. Tulving proposed two subdivisions of
declarative memory: episodic memory, consisting of memo-
ries of experiences linked to specific times and places (e.g.,
seeing an ostrich at the zoo last month), and semantic memo-
ry, storing general knowledge about the world and what verbal
symbols (i.e., words) mean in an amodal (i.e., not linked to
any specific modality) memory store (e.g., storing what an
ostrich is, what it looks like, etc. through words). Although
there are long-standing debates regarding the strong distinc-
tion between semantic and episodic memory (e.g., McKoon,
Ratcliff, & Dell, 1986), this dissociation was supported by
early neuropsychological studies of amnestic patients who
were able to acquire new semantic knowledge without having
any concrete memory for having learned this information
(Gabrieli, Cohen, & Corkin, 1988; O’Kane, Kensinger, &
Corkin, 2004). Indeed, the relative independence of these
two types of memory systems has guided research efforts for
many years, as is evidenced by early work on computational
models of semantic memory. As described below, this per-
spective is beginning to change with the onset of more recent
modeling perspectives.

These theoretical seeds have driven three distinct ap-
proaches to modeling the structure and organization of

semantic memory: associative network models, distributional
models, and feature-based models. Associative network
models are models that represent words as individual nodes
in a large memory network, such that words that are related in
meaning are connected to each other through edges in the
network (e.g., Collins & Loftus, 1975; Collins & Quillian,
1969). On the other hand, inspired by the distributional hy-
pothesis, Distributional SemanticModels (DSMs) collectively
refer to a class of models where the meaning of a word is
learned by extracting statistical redundancies and co-
occurrence patterns from natural language. Importantly,
DSMs provide explicit mechanisms for how words or features
for a concept may be learned from the natural environment.
Finally, feature models assume that words are represented in
memory as a distributed collection of binary features (e.g.,
birds have wings, whereas cars do not), and the correlation
or overlap of these features determines the extent to which
words have similar meanings (Smith, Shoben, & Rips, 1974;
Tversky, 1977). Overall, the network-based, feature-based,
and distributional approaches to semantic modeling have
sparked important debates in the literature and informed our
understanding of the different facets involved in the construc-
tion of meaning. Therefore, this review attempts to highlight
important milestones in the study of semantic memory, iden-
tify challenges currently facing the field, and integrate tradi-
tional ideas with modern approaches to modeling semantic
memory.

In a recent article, Günther, Rinaldi, and Marelli (2019)
reviewed several common misconceptions about distribution-
al semantic models and evaluated the cognitive plausibility of
modern DSMs. Although the current review is somewhat sim-
ilar in scope to Günther et al.’s work, the current paper has
different aims. Specifically, this review is a comprehensive
analysis of models of semantic memory across multiple fields
and tasks and so is not focused only on DSMs. It ties together
classic models in psychology (e.g., associative network
models, standard DSMs, etc.) with current state-of-the-art
models in machine learning (e.g., transformer neural net-
works, convolutional neural networks, etc.) to elucidate the
potential psychological mechanisms that these fields posit to
underlie semantic retrieval processes. Further, the present
work reviews the literature on modern multimodal semantic
models, compositional semantics, and newer retrieval-based
models, and therefore assesses these newer models and appli-
cations from a psychological perspective. Therefore, while
Günther et al.’s review serves the role of clarifying how
DSMs may indeed represent a cognitively plausible account
of how meaning is learned, the present review serves the role
of presenting a more comprehensive assessment and synthesis
of multiple classes of models, theories, and learning mecha-
nisms, as well as drawing closer ties between the rapidly
progressing machine-learning literature and the constraints
imposed by psychological research on semantic memory –
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two fields that have so far been only loosely connected to each
other. Therefore, the goal of the present review is to survey the
current state of the field by tying together work from psychol-
ogy, computational linguistics, and computer science, and al-
so identify new challenges to guide future empirical research
in modeling semantic memory.

Overview

This review emphasizes five important areas of research in
semantic memory. The first section presents a modern per-
spective on the classic issues of semantic memory representa-
tion and learning. Associative, feature-based, and distribution-
al semantic models are introduced and discussed within the
context of how these models speak to important debates that
have emerged in the literature regarding semantic versus as-
sociative relationships, prediction, and co-occurrence. In par-
ticular, a distinction is drawn between distributional models
that propose error-free versus error-driven learning mecha-
nisms for constructingmeaning representations, and the extent
to which these models explain performance in empirical tasks.
Overall, although empirical tasks have partly informed com-
putational models of semantic memory, the empirical and
computational approaches to studying semantic memory have
developed somewhat independently. Therefore, the first sec-
tion attempts to bridge this gap by integrating empirical find-
ings from lexical decision, pronunciation, and categorization
tasks, with modeling approaches such as large-scale associa-
tive semantic networks (e.g., De Deyne, Navarro, Perfors,
Brysbaert, & Storms, 2019; Steyvers & Tenenbaum, 2005),
error-free learning-based DSMs (e.g., Jones & Mewhort,
2007; Landauer & Dumais, 1997), as well as error-driven
learning-based models (e.g., Mikolov, Chen, Corrado, &
Dean, 2013).

The second section presents an overview of psycho-
logical research in favor of conceptualizing semantic
memory as part of a broader integrated memory system
(Jamieson, Avery, Johns, & Jones, 2018; Kwantes, 2005;
Yee, Jones, & McRae, 2018). The idea of semantic
memory representations being context-dependent is
discussed, based on findings from episodic memory
tasks, sentence processing, and eye-tracking studies
(e.g., Yee & Thompson-Schill, 2016). These empirical
findings are then integrated with modern approaches to
modeling semantic memory as a dynamic system that is
sensitive to contextual dependencies, and can account for
polysemy and attentional influences through topic
models (Griffiths, Steyvers, & Tenenbaum, 2007), recur-
rent neural networks (Elman, 1991; Peters et al., 2018),
and attention-based neural networks (Devlin, Chang, Lee,
& Toutanova, 2019; Vaswani et al., 2017). The remain-
der of the section discusses the psychological plausibility
of a relatively new class of models (retrieval-based

models, e.g., Jamieson et al., 2018) that question the
need for “learning” meaning at all, and instead propose
that semantic representations are merely a product of
retrieval-based operations in response to a cue, therefore
blurring the traditional distinction between semantic and
episodic memory (Tulving, 1972).

The third section discusses the issue of grounding, and
how sensorimotor input and environmental interactions
contribute to the construction of meaning. First, empirical
findings from sensorimotor priming and cross-modal
priming studies are discussed, which challenge the static,
amodal, lexical nature of semantic memory that has been
the focus of the majority of computational semantic
models. There is now accumulating evidence that mean-
ing cannot be represented exclusively through abstract,
amodal symbols such as words (Barsalou, 2016).
Therefore, important critiques of amodal computational
models are clarified in the extent to which these models
represent psychologically plausible models of semantic
memory that include perceptual motor systems. Next,
s t a t e -o f - the -a r t computa t iona l mode l s such as
convolutional neural networks (Collobert et al., 2011),
feature-integrated DSMs (Andrews, Vigliocco, &
Vinson, 2009; Howell, Jankowicz, & Becker, 2005;
Jones & Recchia, 2010), and multimodal DSMs (Bruni,
Tran, & Baroni, 2014; Lazaridou, Pham, & Baroni, 2015)
are discussed within the context of how these models are
incorporating non-linguistic information in the learning
process and tackling the grounding problem.

The fourth section focuses on the issue of compositionality,
i.e., how words can be effectively combined and scaled up to
represent higher-order linguistic structures such as sentences,
paragraphs, or even episodic events. In particular, some early
approaches to modeling compositional structures like vector
addition (Landauer & Dumais, 1997), frequent phrase extrac-
tion (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013), and
finding linguistic patterns in sentences (Turney & Pantel,
2010) are discussed. The rest of the section focuses onmodern
approaches to representing higher-order structures through hi-
erarchical tree-based neural networks (Socher et al., 2013) and
modern recurrent neural networks (Elman & McRae, 2019;
Franklin, Norman, Ranganath, Zacks, & Gershman, 2019).

The fifth and final section focuses on some open issues in
semantic modeling, such as proposing models that can be
applied to other languages, issues related to data abundance
and availability, understanding the social and evolutionary
roles of language, and finding mechanistic process-based ac-
counts of model performance. These issues shed light on im-
portant next steps in the study of semantic memory and will be
critical in advancing our understanding of how meaning is
constructed and guides cognitive behavior.
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Many tasks, many models

Before delving into the details of each of the sections, it is
important to emphasize here that models of semantic memory
are inextricably tied to the behaviors and tasks that they seek
to explain. For example, associative network models and early
feature-based models explained response latencies in sentence
verification tasks (e.g., deciding whether “a canary is a bird” is
true or false). Similarly, early semantic models accounted for
higher-order semantic relationships that emerge out of simi-
larity judgments (e.g., Osgood, Suci, & Tannenbaum, 1957),
although several of these models have since been applied to
other tasks. Indeed, the study of meaning has spanned a vari-
ety of tasks, models, and phenomena, including but not limit-
ed to semantic priming effects in lexical decision tasks (Balota
& Lorch, 1986), false memory paradigms (Deese, 1959;
Roediger & McDermott, 1995), sentence verification (Smith
et al., 1974), sentence comprehension (Duffy, Morris, &
Rayner, 1988; Rayner & Frazier, 1989), and argument reason-
ing (Niven & Kao, 2019) tasks. Importantly, the cognitive
processes underlying the sentence verification task may vastly
differ from those underlying similarity judgments, which in
turn may also differ from the processes underlying other com-
plex tasks like reading comprehension and argument reason-
ing, and it is unclear whether and how a model of semantic
memory that can successfully explain behavior in one task
would be able to explain behavior in an entirely different task.

Of course, the ultimate goal of the semantic modeling en-
terprise is to propose onemodel of semantic memory that can
be flexibly applied to a variety of semantic tasks, in an attempt
to mirror the flexible and complex ways in which humans use
knowledge and language (see, e.g., Balota & Yap, 2006).
However, it is important to underscore the need to separate
representational accounts from process-based accounts in the
field. Modern approaches to modeling the representational
nature of semantic memory have come very far in describing
the continuum in which meaning exists, i.e., from the lowest-
level input in the form of sensory and perceptual information,
to words that form the building blocks of language, to high-
level structures like schemas and events. However, process
models operating on these underlying semantic representa-
tions have not received the same kind of attention and have
developed somewhat independently from the representation
modeling movement. For example, although process models
like the drift-diffusion model (Ratcliff & McKoon, 2008), the
optimal foraging model (Hills, 2006), and the temporal con-
text model (Howard & Kahana, 2002) have been applied to
some semantic tasks like verbal fluency (Hills, Jones, & Todd,
2012), free association (Howard, Shankar, & Jagadisan,
2011), and semantic judgments (e.g., Pirrone, Marshall, &
Stafford, 2017), their application to different tasks remains
limited and most research has instead focused on representa-
tional issues. Ultimately, combining process-based accounts

with representational accounts is going to be critical in ad-
dressing some of the current challenges in the field, an issue
that is emphasized in the final section of this review.

I. Semantic memory representation
and learning

How individuals represent knowledge of concepts is one of the
most important questions in semantic memory research and
cognitive science. Therefore, significant research on human
semantic memory has focused on issues related to memory
representation and given rise to three distinct classes of models:
associative network models, feature-based models, and distri-
butional semantic models. This section presents a broad over-
view of these models, and also discusses some important de-
bates regarding memory representation that these models have
sparked in the field. Another related fundamental question in
semantic memory research is regarding the learning of con-
cepts, and the remainder of this section focuses on semantic
models that subscribe to two broad psychological mechanisms
(error-free and error-driven learning) that have been posited to
underlie the learning of meaning representations.

Semantic memory representation

Network-based approaches Network-based approaches to se-
mantic memory have a long and rich tradition rooted in
psychology and computer science. Collins and Quillian
(1969) investigated how individuals navigate through seman-
tic memory to verify the truth of sentences (e.g., the time taken
to verify that a shark <has fins>), and found that retrieval
times were most consistent with a hierarchically organized
memory network (see Fig. 1), where nodes represented words,
and links or edges represented semantic propositions about the
words (e.g., fish was connected to animal by an “is a” link,
and fish also had its own attributes such as <has fins> and
<can swim>). The mechanistic account of these findings
was through a spreading activation framework (Quillian,
1967, 1969), according to which individual nodes in the net-
work are activated, which in turn leads to the activation of
neighboring nodes, and the network is traversed until the
desired node or proposition is reached and a response is
made. Interestingly, the number of steps taken to traverse the
path in the proposed memory network predicted the time
taken to verify a sentence in the original Collins and
Quillian (1969) model. However, the original model could
not explain typicality effects (e.g., why individuals respond
faster to “robin <is a> bird” compared to “ostrich <is a>
bird”), and also encountered difficulties in explaining differ-
ences in latencies for “false” sentences (e.g., why individuals
are slower to reject “butterfly <is a> bird” compared to
“dolphin <is a> bird”). Collins and Loftus (1975) later
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proposed a revised network model where links between words
reflected the strength of the relationship, thereby eliminating
the hierarchical structure from the original model to better
account for behavioral patterns. This network/spreading acti-
vation framework was extensively applied to more general
theories of language, memory, and problem solving (e.g.,
Anderson, 2000).

Computational network-basedmodels of semantic memory
have gained significant traction in the past decade, mainly due
to the recent popularity of graph theoretical and network-
science approaches to modeling cognitive processes (for a
review, see Siew, Wulff, Beckage, & Kenett, 2018). Modern
network-based approaches use large-scale databases to con-
struct networks and capture large-scale relationships between
nodes within the network. This approach has been used to
empirically study the World Wide Web (Albert, Jeong, &
Barabási, 2000; Barabási & Albert, 1999), biological systems
(Watts & Strogatz, 1998), language (Steyvers & Tenenbaum,
2005; Vitevitch, Chan, & Goldstein, 2014), and personality
and psychological disorders (for reviews, see Fried et al.,
2017). Within the study of semantic memory, Steyvers and
Tenenbaum (2005) pioneered this approach by constructing
three different semantic networks using large-scale free-asso-
ciation norms (Nelson, McEvoy, & Schreiber, 2004), Roget’s
Thesaurus (Roget, 1911), and WordNet (Fellbaum, 1998;
Miller, 1995). They presented several analyses to indicate that
semantic networks possessed a “small-world structure,” as
indexed by high clustering coefficients (a parameter that esti-
mates the likelihood that neighbors of two nodes will be
neighbors themselves) and short average path lengths (a pa-
rameter that estimates the average number of steps from one

node in the network to another), similar to several naturally
occurring networks. Importantly, network metrics such as
path length and clustering coefficients provide a quantitative
way of estimating the large-scale organizational structure of
semantic memory and the strength of relationships between
words in a network (see Fig. 2), and have also proven to be
successful in explaining performance across a wide variety of
tasks, such as relatedness judgments (De Deyne & Storms,
2008; Kenett, Levi, Anaki, & Faust, 2017; Kumar, Balota,
& Steyvers, 2019), verbal fluency (Abbott, Austerweil, &
Griffiths, 2015; Zemla & Austerweil, 2018), and naming
(Steyvers & Tenenbaum, 2005).Other work in this area has
explored the influence of semantic network metrics on psy-
chological disorders (Kenett, Gold, & Faust, 2016), creativity
(Kenett, Anaki, & Faust, 2014), and personality (Beaty et al.,
2016).

Despite the success of modern semantic networks at
predicting cognitive performance, there is some skepticism
in the field regarding the use of free-association norms to
create network representations (Jones, Hills, & Todd, 2015;
Siew et al., 2018). Specifically, it is not clear whether net-
works constructed from association norms are indeed a
representational account of semantic memory or simply re-
flect the product of a retrieval-based process on an underlying
representation of semantic memory. For example, producing
the response ostrich to the word emu represents a retrieval-
based process cued by the word emu, and may not necessarily
reflect how the underlying representation of the words came to
be closely associated in the first place. Therefore, it appears
that associative network models lack an explicit mechanism
through which concepts were learned in the first place.

Fig. 1 Original network proposed by Collins and Quillian (1969). Reprinted from Balota and Coane (2008)
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A recent example of this fundamental debate regarding the
origin of the representation comes from research on the se-
mantic fluency task, where participants are presented with a
natural category label (e.g., “animals”) and are required to
generate as many exemplars from that category (e.g., lion,
tiger, elephant…) as possible within a fixed time period.
Hills, Jones, and Todd (2012) proposed that the temporal pat-
tern of responses produced in the fluency task mimics optimal
foraging techniques found among animals in natural environ-
ments. They provided a computational account of this search
process based on the BEAGLE model (Jones & Mewhort,
2007). However, Abbott et al. (2015) contended that the be-
havioral patterns observed in the task could also be explained
by a more parsimonious random walk on a network represen-
tation of semantic memory created from free-association
norms. This led to a series of rebuttals from both camps
(Jones, Hills, & Todd, 2015; Nematzadeh, Miscevic, &
Stevenson, 2016), and continues to remain an open debate in
the field (Avery & Jones, 2018). However, Jones, Hills, and
Todd (2015) argued that while free-association norms are a
useful proxy for memory representation, they remain an out-
come variable from a search process on a representation and
cannot be a pure measure of how semantic memory is
organized. Indeed, Avery and Jones (2018) showed that when
the input to the network and distributional space was con-
trolled (i.e., both were constructed from text corpora), random
walk and foraging-based models both explained semantic flu-
ency data, although the foraging model outperformed several
different random walk models. Of course, these findings are
specific to the semantic fluency task and adequately controlled
comparisons of network models to DSMs remain limited.
However, this work raises the question of whether the success
of association networks in explaining behavioral performance
in cognitive tasks is a consequence of shared variance with the
cognitive tasks themselves (e.g., fluency tasks can be thought

of as association tasks constrained to a particular category) or
truly reflects the structural representation of semantic memo-
ry, an issue that is discussed in detail in the section summary.
Nonetheless, recent work in this area has focused on creating
network representations using a learning model instead of
behavioral data (Nematzadeh et al., 2016), and also advocated
for alternative representations that incorporate such learning
mechanisms and provide a computational account of how
word associations might be learned in the first place.

Feature-based approaches Feature-based models depart from
the traditional notion that a word has a localized representation
(e.g., in an association network). The core idea behind feature
models is that words are represented in memory as a collection
of binary features (e.g., birds have wings, whereas cars do
not), and the correlation or overlap of these features deter-
mines the extent to which words have similar meanings.
Smith et al. (1974) proposed a feature-comparison model in
which concepts had two types of semantic features: defining
features that are shared by all concepts, and characteristic
features that are specific to only some exemplars. For exam-
ple, all birds <have wings> (defining feature) but not all birds
<fly> (characteristic feature). Similarity between concepts in
this model was computed through a feature comparison pro-
cess, and the degree of overlap between the features of two
concepts directly predicted sentence verification times, typi-
cality effects, and differences in response times in responding
to “false” sentences. This notion of featural overlap as an
index of similarity was also central to the theory of feature
matching proposed by Tversky (1977). Tversky viewed sim-
ilarity as a set-theoretical matching function, such that the
similarity between a and b could be conceptualized through
a contrast model as a function of features that are common to
both a and b (common features), and features that belong to a
but not b, as well as features that belong to b but not a

Fig. 2 Large-scale visualization of a directed semantic network created by Steyvers and Tenenbaum (2005) and shortest path between RELEASE to
ANCHOR. Adapted from Kumar, Balota, and Steyvers (2019)
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(distinctive features). Tversky’s contrast model successfully
accounted for asymmetry in similarity judgments and judg-
ments of difference for words, shapes, and letters.

Although early feature-based models of semantic memory
set the groundwork for modern approaches to semantic
modeling, none of the models had any systematic way of
measuring these features (e.g., Smith et al., 1974, applied
multidimensional scaling to similarity ratings to uncover
underlying features). Later versions of feature-based models
thus focused on explicitly coding these features into compu-
tational models by using norms from property-generation
tasks (McRae, De Sa, & Seidenberg, 1997). To obtain these
norms, participants were asked to list features for concepts
(e.g., for the word ostrich, participants may list <is a> bird,
<has wings>, <is heavy>, and <does not fly> as features), the
idea being that these features constitute explicit knowledge
participants have about a concept. McRae et al. then used
these features to train a model using simple correlational learn-
ing algorithms (see next subsection) applied over a number of
iterations, which enabled the network to settle into a stable
state that represented a learned concept. A critical result of
this modeling approach was that correlations among features
predicted response latencies in feature-verification tasks in
human participants as well as model simulations.
Importantly, this approach highlighted how statistical regular-
ities among features may be encoded in a memory represen-
tation over time. Subsequent work in this line of research
demonstrated how feature correlations predicted differences
in priming for living and nonliving things and explained typ-
icality effects (McRae, 2004).

Despite the success of computational feature-based
models, an important limitation common to both network
and feature-based models was their inability to explain how
knowledge of individual features or concepts was learned in
the first place. For example, while feature-based models can
explain that ostrich and emu are similar because both <have
feathers>, how did an individual learn that <having feathers>
is a feature that an ostrich or emu has? McRae et al. claimed
that features were derived from repeated multimodal interac-
tions with exemplars of a particular concept, but how this
learning process might work in practice was missing from
the implementation of these models. Still, feature-based
models have been very useful in advancing our understanding
of semantic memory structure, and the integration of feature-
based information with modern machine-learning models
continues to remain an active area of research (see Section III).

Distributional approaches Distributional Semantic Models
(DSMs) refer to a class of models that provide explicit mech-
anisms for howwords or features for a concept may be learned
from the natural environment. Therefore, unlike associative
network models or feature-based models, DSMs do not use
free-association responses or feature norms, but instead build

representations by directly extracting statistical regularities
from a large natural language corpus (e.g., books, newspapers,
online articles, etc.), the assumption being that large text cor-
pora are a good proxy for the language that individuals are
exposed to in their lifetime. The principle of extracting co-
occurrence patterns and inferring associations between
concepts/words from a large text-corpus is at the core of all
DSMs, but exactly how these patterns are extracted has im-
portant implications for how these models conceptualize the
learning process. Specifically, two distinct psychological
mechanisms have been proposed to account for associative
learning, broadly referred to as error-free and error-driven
learning mechanisms. Error-free learning mechanisms refer
to a class of psychological mechanisms that posit that learning
occurs by identifying clusters of events that tend to co-occur in
temporal proximity, and dates back to Hebb’s (1949; also see
McCulloch & Pitts, 1943) proposal of how individual neurons
in the brain adjust their firing rates and activations in response
to activations of other neighboring neurons. This Hebbian
learningmechanism is at the heart of several classic and recent
models of semantic memory, which are discussed in this sec-
tion. On the other hand, error-driven learning mechanisms
posit that learning is accomplished by predicting events in
response to a stimulus, and then applying an error-correction
mechanism to learn associations. Error-correction mecha-
nisms often vary across learning models but broadly share
principles with Rescorla and Wagner’s (1972) model of ani-
mal cognition, where they described how learning may actu-
ally be driven by expectation error, instead of error-free asso-
ciative learning (Rescorla, 1988). This section reviews DSMs
that are consistent with the error-free and error-driven learning
approaches to constructing meaning representations, and the
summary section discusses the evidence in favor of and
against each class of models.

Semantic memory learning

Error-free learning-based DSMsOne of the earliest DSMs, the
Hyperspace Analogue to Language (HAL; Lund & Burgess,
1996), built semantic representations by counting the co-
occurrences of words within a sliding window of five to ten
words, where co-occurrence between any two words was in-
versely proportional to the distance between the two words in
that window. These local co-occurrences produced a word-by-
word co-occurrence matrix that served as a spatial representa-
tion of meaning, such that words that were semantically relat-
ed were closer in a high-dimensional space (see Fig. 3; ear,
eye, and nose all acquire very similar representations). This
relatively simple error-free learning mechanism was able to
account for a wide variety of cognitive phenomena in tasks
such as lexical decision and categorization (Li, Burgess, &
Lund, 2000). However, HAL encountered difficulties in ac-
counting for mediated priming effects (Livesay & Burgess,
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1998; see section summary for details), which was considered
as evidence in favor of semantic network models. However,
despite its limitations, HAL was an important step in the on-
going development of DSMs.

Another popular distributional model that has been widely
applied across cognitive science is Latent Semantic Analysis
(LSA; Landauer & Dumais, 1997), a semantic model that has
successfully explained performance in several cognitive tasks
such as semantic similarity (Landauer & Dumais, 1997), dis-
course comprehension (Kintsch, 1998), and essay scoring
(Landauer, Laham, Rehder, & Schreiner, 1997). LSA begins
with a word-document matrix of a text corpus, where each
row represents the frequency of a word in each corresponding
document, which is clearly different from HAL’s word-by-
word co-occurrence matrix. Further, unlike HAL, LSA first
transforms these simple frequency counts into log frequencies
weighted by the word’s overall importance over documents,
to de-emphasize the influence of unimportant frequent words
in the corpus. This transformed matrix is then factorized using
truncated singular value decomposition, a factor-analytic tech-
nique used to infer latent dimensions from a multidimensional
representation. The semantic representation of a word can then
be conceptualized as an aggregate or distributed pattern across
a few hundred dimensions. The construction of a word-by-
document matrix and the dimensionality reduction step are
central to LSA and have the important consequence of
uncovering global or indirect relationships between words
even if they never co-occurred with each other in the original
context of documents. For example, lion and stripesmay have
never co-occurred within a sentence or document, but because
they often occur in similar contexts of the word tiger, they
would develop similar semantic representations. Importantly,
the ability to infer latent dimensions and extend the context

window from sentences to documents differentiates LSA from
a model like HAL.

Despite its widespread application and success, LSA has
been criticized on several grounds over the years, e.g., for
ignoring word transitions (Perfetti, 1998), violating power
laws of connectivity (Steyvers & Tenenbaum, 2005), and for
the lack of a mechanism for learning incrementally (Jones,
Willits, & Dennis, 2015). The last point is particularly impor-
tant, as the LSA model assumes that meaning is learned and
computed after a large amount of co-occurrence information
is available (i.e., in the form of a word-by-document matrix).
This is clearly unconvincing from a psychological standpoint
and is often cited as a reason for distributional models being
implausible psychological models (Hoffman, McClelland, &
Lambon Ralph, 2018; Sloutsky, Yim, Yao, & Dennis, 2017).
However, as Günther et al. (2019) have recently noted, this is
an argument against batch-learning models like LSA, and not
distributional models per se. In principle, LSA can learn in-
crementally by updating the co-occurrence matrix as each
input is received and re-computing the latent dimensions (for
a demonstration, see Olney, 2011), although this process
would be computationally very expensive. In addition, there
are several modern DSMs that are incremental learners and
propose psychologically plausible accounts of semantic
representation.

One such incremental approach involves developing ran-
dom representations of words that slowly accumulate infor-
mation about meaning through repeated exposure to words in
a large text corpus. For example, Bound Encoding of the
Aggregate Language Environment (BEAGLE; Jones &
Mewhort, 2007) is a random vector accumulation model that
gradually builds semantic representations as it processes text
in sentence-sized context windows. BEAGLE begins by
assigning a random, static environmental vector to a word
the first time it is encountered in the corpus. This environmen-
tal vector does not change over different exposures of the
word and is hypothesized to represent stable physical charac-
teristics about the word. When words co-occur in a sentence,
their environmental vectors are added to each other’s repre-
sentations, and, thus, their memory representations become
similar over time. Further, even if two words never co-occur,
they develop similar representations if they co-occur with the
same words. This leads to the formation of higher-order rela-
tionships between words, without performing any LSA-type
dimensionality reduction. Importantly, BEAGLE integrates
this context-based information with word-order information
using a technique called circular convolution (an effective
method to combine two n-dimensional vectors into an associ-
ated vector of the same dimensions). BEAGLE computes or-
der information by binding together all word chunks (formally
called n-grams) that a particular word is part of (e.g., for the
sentence “an ostrich flapped its wings”, the two-gram convo-
lution would bind the representations for <an, ostrich> and

Fig. 3 The high-dimensional space produced by HAL from co-
occurrence word vectors. Adapted from Lund and Burgess (1996)
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<ostrich, flapped> together) and then summing this order vec-
tor with the word’s context vector to compute the final seman-
tic representation of the word. Thus, words that co-occur in
similar contexts as well as in the same syntactic positions
develop similar representations as the model acquires more
experience through the corpus. BEAGLE outperforms several
classic models of word representation (e.g., LSA and HAL),
and explains performance on several complex tasks, such as
mediated priming effects in lexical decision and pronunciation
tasks, typicality effects in exemplar categorization, and read-
ing times in stem completion tasks (Jones & Mewhort, 2007).
Importantly, through the addition of environmental vectors of
words whenever they co-occur, BEAGLE also indirectly in-
fers relationships between words that did not directly co-oc-
cur. This process is similar in principle to inferring indirect co-
occurrences across documents in LSA and can be thought of
as an abstraction-based process applied to direct co-
occurrence patterns, albeit through different mechanisms.
Other incremental models use ideas similar to BEAGLE for
accumulating semantic information over time, although they
differ in their theoretical underpinnings (Howard et al., 2011;
Sahlgren, Holst, & Kanerva, 2008) and the extent to which
they integrate order information in the final representations
(Kanerva, 2009). It is important to note here that the DSMs
discussed so far (HAL, LSA, and BEAGLE) all share the
principle of deriving meaning representations through error-
free learning mechanisms, in the spirit of Hebbian associative
learning. The following section discusses other DSMs that
also produce rich semantic representations but are instead
based on error-driven learning mechanisms or prediction.

Error-driven learning-based DSMs In contrast to error-free
learning DSMs, a different approach to building semantic rep-
resentations has focused on how representations may slowly
develop through prediction and error-correction mechanisms.
These models are also referred to as connectionistmodels and
propose that meaning emerges through prediction-based
weighted interactions between interconnected units
(Rumelhart, Hinton, & McClelland, 1986). Most connection-
ist models typically consist of an input layer, an output layer,
and one or more intervening units collectively called the
hidden layers, each of which contains one or more “nodes”
or units. Activating the nodes of the input layer (through an
external stimulus) leads to activation or suppression of units
connected to the input units, as a function of the weighted
connection strengths between the units. Activation gradually
reaches the output units, and the relationship between output
units and input units is of primary interest. Learning in con-
nectionist models (sometimes called feed-forward networks if
there are no recurrent connections, see section II), can be ac-
complished in a supervised or unsupervisedmanner. In super-
vised learning, the network tries to maximize the likelihood of
a desired goal or output for a given set of input units by

predicting outputs at every iteration. The weights of the sig-
nals are thus adjusted to minimize the error between the target
output and the network ’s output , through error
backpropagation (Rumelhart, Hinton, & Williams, 1988). In
unsupervised learning, weights within the network are adjust-
ed based on the inherent structure of the data, which is used to
inform the model about prediction errors (e.g., Mikolov,
Chen, et al., 2013; Mikolov, Sutskever, et al., 2013).

Rumelhart and Todd (1993) proposed one of the first feed-
forward connectionist models of semantic memory. To train
the network, all facts represented in a traditional semantic
network (e.g., Collins & Quillian, 1969) were first converted
to input-output training pairs (e.g., the fact bird <has wings>
was converted to term 1: bird – relation: has – term 2: wings).
Then, the network learned semantic representations in a su-
pervised manner, by turning on the input and relation units,
and backpropagating the error from predicted output units
through two hidden layers. For example, the words oak and
pine acquired a similar pattern of activation across the hidden
units because their node-relations pairs were similar during
training. Additionally, the network was able to hierarchically
learn information about new concepts (e.g., adding the
sparrow <is a> bird link in the model formed a new represen-
tation for sparrow that also included relations like <has
wings>, <can fly>, etc.). Connectionist networks are some-
times also called neural networks (NNs) to emphasize that
connectionist models (old and new) are inspired by neurobi-
ology and attempt to model how the brain might process in-
coming input and perform a particular task, although this is a
very loose analogy andmodern researchers do not view neural
networks as accurate models of the brain (Bengio,
Goodfellow, & Courville, 2015).

A feed-forward NN model, word2vec, proposed by re-
searchers at Google (Mikolov, Chen, et al., 2013) has gained
immense popularity in the last few years due to its impressive
performance on a variety of semantic tasks. Word2vec is a
two-layer NN model that has two versions: continuous bag-
of-words (CBOW) and skip-gram. The objective of the
CBOW model is to predict a target word, given four context
words before and after the intended word, using a classifier.
The skip-gram model reverses this objective and attempts to
predict the surrounding context words, given an input word
(see Figs. 4 and 5). In this way, word2vec trains the network
on a surrogate task and iteratively improves the word repre-
sentations or “embeddings” (represented via the hidden layer
units) formed during this process by computing stochastic
gradient descent, a common technique to compute prediction
error for backpropagation in NN models. Further, word2vec
tweaks several hyperparameters to achieve optimal perfor-
mance. For example, it uses dynamic context windows so that
words that are more distant from the target word are sampled
less frequently in the prediction task. Additionally, word2vec
de-emphasizes the role of frequent words by discarding
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frequent words above a threshold with some probability.
Finally, to refine representations, word2vec uses negative
sampling, by which the model randomly samples a set of
unrelated words and learns to suppress these words during
prediction. These sophisticated techniques allow word2vec
to develop very rich semantic representations. For example,
word2vec is able to solve verbal analogy problems, e.g., man:
king :: woman: ??, through simple vector arithmetic (but see
Chen, Peterson, & Griffiths, 2017), and also model human
similarity judgments. This indicates that the representations
acquired by word2vec are sensitive to complex higher-order
semantic relationships, a characteristic that had not been pre-
viously observed or demonstrated in other NN models.
Further, word2vec is a very weakly supervised (or unsuper-
vised) learning algorithm, as it does not require labeled or
annotated data but only sequential text (i.e., sentences) to gen-
erate the word embeddings. word2vec’s pretrained embed-
dings have proven to be useful inputs for several downstream
natural language-processing tasks (Collobert & Weston,
2008) and have inspired several other embedding models.
For example, fastText (Bojanowski, Grave, Joulin, &
Mikolov, 2017) is a word2vec-type NN that incorporates

character-level information (i.e., n-grams) in the learning pro-
cess, which leads to more fine-grained representations for rare
words and words that are not in the training corpus. However,
the psychological validity of some of the hyperparameters
used by word2vec has been called into question by some
researchers. For example, Johns, Mewhort, and Jones (2019)
recently investigated how negative sampling, which appears
to be psychologically unintuitive, affects semantic representa-
tions. They argued that negative sampling simply establishes a
more accurate base rate of word occurrence and proposed
solutions to integrate base-rate information into BEAGLE
without the need to randomly sample unrelated words or even
a prediction mechanism. However, as discussed in subsequent
sections, prediction appears to be a central mechanism in cer-
tain tasks that involve sequential dependencies, and it is pos-
sible that NNmodels based on prediction are indeed capturing
these long-term dependencies.

Another modern distributional model, Global Vectors
(GloVe), which was recently introduced by Pennington,
Socher, and Manning (2014), shares similarities with both
error-free and NN-based error-driven models of word repre-
sentation. Similar to several DSMs, GloVe begins with a

Fig. 5 Ratio of co-occurrence probabilities for ice and steam, as de-
scribed in Pennington et al. (2014)

Fig. 4 A depiction of the skip-gram version of the word2vec model architecture. The model is creating a vector representation for the word lived by
predicting its surrounding words in the sentence “Jane’s mother lived in Paris.” Theweights of the hidden layer represent the vector representation for the
word lived, as the model performs the prediction task and adjusts the weights based on the prediction error. Adapted from Günther et al. (2019)
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word-by-word co-occurrence matrix. But, instead of using
raw counts as a starting point, GloVe estimates the ratio of
co-occurrence probabilities between words. To give an exam-
ple used by the authors, based on statistics from text corpora,
ice co-occurs more frequently with solid than it does with gas,
whereas steam co-occurs more frequently with gas than it
does with solid. Further, both words (ice and steam) co-
occur with their shared property water frequently, and both
co-occur with the unrelated word fashion infrequently. The
critical insight that GloVE capitalizes on is that words like
water and fashion are non-discriminative, but the words gas
and solid are important in differentiating between ice and
steam. The ratio of probabilities highlights these differences,
such that large values (much greater than 1) correspond to
properties specific to ice, and small values (much less than
1) correspond to properties specific of steam (see Fig. 4). In
this way, co-occurrence ratios successfully capture abstract
concepts such as thermodynamic phases. GloVe aims to
predict the logarithm of these co-occurrence ratios between
words using a regression model, in the same spirit as
factorizing the logarithm of the co-occurrence matrix in
LSA. Therefore, while incorporating global information in
the learning process (similar to LSA), GloVe also uses error-
driven mechanisms to minimize the cost function from the
regression model (using a modified version of stochastic gra-
dient descent, similar to word2vec), and therefore represents a
type of hybrid model. Further, to de-emphasize the overt in-
fluence of frequent and rare words, GloVe penalizes words
with very high and low frequency (similar to importance
weighting in LSA). The final abstracted representations or
“embeddings” that emerge from the GloVe model are partic-
ularly sensitive to higher-order semantic relationships, and the
GloVe model has been shown to perform remarkably well at
analogy tasks, word similarity judgments, and named entity
recognition (Pennington et al., 2014), although there is little
consensus in the field regarding the relative performance of
GloVe against strictly prediction-based models (e.g.,
word2vec; see Baroni, Dinu, & Kruszewski, 2014; Levy &
Goldberg, 2014)

Summary

This section provided a detailed overview of traditional and
recent computational models of semantic memory and
highlighted the core ideas that have inspired the field in the
past few decades with respect to semantic memory represen-
tation and learning. While several models draw inspiration
from psychological principles, the differences between them
certainly have implications for the extent to which they ex-
plain behavior. This summary focuses on the extent to which
associative network and feature-based models, as well as
error-free and error-driven learning-based DSMs speak to

important debates regarding association, direct and indirect
patterns of co-occurrence, and prediction.

Semantic versus associative relationshipsWithin the network-
based conceptualization of semantic memory, concepts that
are related to each other are directly connected (e.g., ostrich
and emu have a direct link). An important insight that follows
from this line of reasoning is that if ostrich and emu are indeed
related, then processing one of the words should facilitate
processing for the other word. This was indeed the observa-
tion made by Meyer and Schvaneveldt (1971), who reported
the first semantic priming study, where they found that indi-
viduals were faster to make lexical decisions (deciding
whether a presented stimulus was a word or non-word) for
semantically related (e.g., ostrich-emu) word pairs, compared
to unrelated word pairs (e.g., apple-emu). Given that individ-
uals were not required to access the semantic relationship
between words to make the lexical decision, these findings
suggested that the task potentially reflected automatic retrieval
processes operating on underlying semantic representations
(also see Neely, 1977). The semantic priming paradigm has
since become the most widely applied task in cognitive psy-
chology to examine semantic representation and processes
(for reviews, see Hutchison, 2003; Lucas, 2000; Neely, 1977).

An important debate that arose within the semantic priming
literature was regarding the nature of the relationship that pro-
duces the semantic priming effect as well as the basis for
connecting edges in a semantic network. Specifically, does
processing the word ostrich facilitate the processing of the
word emu due to the associative strength of connections be-
tween ostrich and emu, or because the semantic features that
form the concepts of ostrich and emu largely overlap? As
discussed earlier, associative relations are thought to reflect
contiguous associations that individuals likely infer from nat-
ural language (e.g., ostrich-egg). Traditionally, such associa-
tive relationships have been operationalized through re-
sponses in a free-association task (e.g., De Deyne et al.,
2019; Nelson et al., 2004). On the other hand, semantic rela-
tions have traditionally included only category coordinates or
concepts with similar features (e.g., ostrich-emu; Hutchison,
2003; Lucas, 2000). Given these different operationalizations,
some researchers have attempted to isolate pure “semantic”
priming effects by selecting items that are semantically related
(i.e., share category membership; Fischler, 1977; Lupker,
1984; Thompson-Schill, Kurtz, & Gabrieli, 1998) but not as-
sociatively related (i.e., based on free-association norms), al-
though these attempts have not been successful. Specifically,
there appear to be discrepancies in how associative strength is
defined and the locus of these priming effects. For example, in
a meta-analytic review, Lucas (2000) concluded that semantic
priming effects can indeed be found in the absence of associ-
ations, arguing for the existence of “pure” semantic effects. In
contrast, Hutchison (2003) revisited the same studies and
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argued that both associative and semantic relatedness can pro-
duce priming, and the effects largely depend on the type of
semantic relation being investigated as well as the task de-
mands (also see Balota & Paul, 1996).

Another line of research in support of associative influ-
ences underlying semantic priming comes from studies on
mediated priming. In a typical experiment, the prime (e.g.,
lion) is related to the target (e.g., stripes) only through a me-
diator (e.g., tiger), which is not presented during the task. The
critical finding is that robust priming effects are observed in
pronunciation and lexical decision tasks for mediated word
pairs that do not share any obvious semantic relationship or
featural overlap (Balota & Lorch, 1986; Livesay & Burgess,
1998; McNamara & Altarriba, 1988). Traditionally, mediated
priming effects have been explained through an associative-
network based account of semantic representation (e.g.,
Balota & Lorch, 1986), where, consistent with a spreading
activation mechanism, activation from the prime node (e.g.,
lion) spreads to the mediator node in the network (e.g., tiger),
which in turn activates the related target node (e.g., stripes).
Recent computational network models have supported this
conceptualization of semantic memory as an associative net-
work. For example, Kenett et al. (2017) constructed a Hebrew
network based on correlations of responses in a free-
association task, and showed that network path lengths in this
Hebrew network successfully predicted the time taken by par-
ticipants to decide whether two words were related or unrelat-
ed, for directly related (e.g., bus-car) and relatively distant
word pairs (e.g., cheater-carpet). More recently, Kumar,
Balota, and Steyvers (2019) replicated Kenett et al.’s work
in a much larger corpus in English, and also showed that
undirected and directed networks created by Steyvers and
Tenenbaum (2005) also account for such distant priming
effects.

While network models provide a straightforward account
for mediated (and distant) priming, such effects were tradi-
tionally considered a core challenge for feature-based and dis-
tributional semantic models (Hutchison, 2003; Masson, 1995;
Plaut & Booth, 2000). The argument was that in feature-based
representations that conceptualize word meaning through the
presence or absence of features, lion and stripes would not
overlap because lions do not have stripes. Similarly, in distri-
butional models, at least some early evidence from the HAL
model suggested that mediated word pairs neither co-occur
nor have similar high-dimensional vector representations
(Livesay & Burgess, 1998), which was taken as evidence
against a distributional representation of semantic memory.
However, other distributional models such as LSA and
BEAGLE have since been able to account for mediated prim-
ing effects (e.g., Chwilla & Kolk, 2002; Hutchison, 2003;
Jones, Kintsch, & Mewhort, 2006; Jones & Mewhort, 2007;
Kumar, Balota, & Steyvers, 2019). In fact, Jones et al. (2006)
showed that HAL’s greater focus on “semantic” relationships

contributes to its inability to account for mediated priming
effects, which are more “associative” in nature (also see
Sahlgren, 2008). However, LSA and other DSMs that sub-
scribe to a broader conceptualization of meaning that includes
both local “associative” as well as global “semantic” relation-
ships are indeed able to account for mediated priming effects.
The counterargument is that mediated priming may simply
reflect weak semantic relationships between words
(McKoon & Ratcliff, 1992), which can indeed be learned
from statistical regularities in natural language. Thus, even
though lion and stripes may have never co-occurred, newer
semantic models that capitalize on higher-order indirect rela-
tionships are able to extract similar vectors for these words
and produce the same priming effects without the need for a
mediator or a spreading activation mechanism (Jones et al.,
2006).

Therefore, an important takeaway from these studies on clar-
ifying the locus of semantic priming effects is that the tradition-
al distinction between associative and semantic relations may
need to be revisited. Importantly, the operationalization of as-
sociative relations through free-association norms has further
complicated this distinction, as only responses that are produced
in free-association tasks have been traditionally considered to
be associative in nature. However, free association responses
may themselves reflect a wide variety of semantic relations
(McRae, Khalkhali, & Hare, 2012; see also Guida & Lenci,
2007) that can produce different types of semantic priming
(Hutchison, 2003). Indeed, as McRae et al. (2012) noted, sev-
eral of the associative level relations examined in previous work
(e.g., Lucas, 2000) could in fact be considered semantically
related in the broad sense (e.g., scene, feature, and script rela-
tions). Within this view, it is unclear exactly how associative
relations operationalized in this way can be truly separated from
semantic relations, or conversely, how semantic relations could
truly be considered any different from simple associative co-
occurrence. In fact, it is unlikely that words are purely associa-
tive or purely semantically related. AsMcNamara (2005) noted,
“Having devoted a fair amount of time perusing free-
association norms, I challenge anyone to find two highly asso-
ciated words that are not semantically related in some plausible
way” (McNamara, 2005; pp. 86). Furthermore, the traditional
notion of what constitutes a “semantic” relationship has
changed and is no longer limited to only coordinate or
feature-based overlap, as is evidenced by the DSMs discussed
in this section. Therefore, it appears that both associative rela-
tionships as well as coordinate/feature relationships now fall
within the broader umbrella of what is considered semantic
memory.

There is one possible way to reconcile the historical dis-
tinction between what are considered traditionally associative
and “semantic” relationships. Some relationships may be sim-
ply dependent on direct and local co-occurrence of words in
natural language (e.g., ostrich and egg frequently co-occur in
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natural language), whereas other relationships may in fact
emerge from indirect co-occurrence (e.g., ostrich and emu
do not co-occur with each other, but tend to co-occur with
similar words). Within this view, traditionally “associative”
relationships may reflect more direct co-occurrence patterns,
whereas traditionally “semantic” relationships, or coordinate/
featural relations, may reflect more indirect co-occurrence pat-
terns. As discussed in this section, DSMs often distinguish
between and differentially emphasize these two types of rela-
tionships (i.e., direct vs. indirect co-occurrences; see Jones
et al., 2006), which has important implications for the extent
to which these models speak to this debate between associa-
tive vs. truly semantic relationships. The combined evidence
from the semantic priming literature and computational
modeling literature suggests that the formation of direct asso-
ciations is most likely an initial step in the computation of
meaning. However, it also appears that the complex semantic
memory system does not simply rely on these direct associa-
tions but also applies additional learning mechanisms (vector
accumulation, abstraction, etc.) to derive other meaningful,
indirect semantic relationships. Implementing such global
processes allows modern distributional models to develop
more fine-grained semantic representations that capture differ-
ent types of relationships (direct and indirect). However, there
do appear to be important differences in the underlying mech-
anisms of meaning construction posited by different DSMs.
Further, there is also some concern in the field regarding the
reliance on pure linguistic corpora to construct meaning rep-
resentations (De Deyne, Perfors, & Navarro, 2016), an issue
that is closely related to assessing the role of associative net-
works and feature-based models in understanding semantic
memory, as discussed below. Furthermore, it is also unlikely
that any semantic relationships are purely direct or indirect
and may instead fall on a continuum, which echoes the
arguments posed by Hutchison (2003) and Balota and Paul
(1996) regarding semantic versus associative relationships.

Value of associative networks and feature-based models
Another important part of this debate on associative relation-
ships is the representational issues posed by association net-
work models and feature-based models. As discussed earlier,
the validity of associative semantic networks and feature-
based models as accurate models of semantic memory has
been called into question (Jones, Hills, & Todd, 2015) due
to the lack of explicit mechanisms for learning relationships
between words. One important observation from this work is
that the debate is less about the underlying structure (network-
based/localist or distributed) and more about the input contrib-
uting to the resulting structure. Networks and feature lists in
and of themselves are simply tools to represent a particular set
of data, similar to high-dimensional vector spaces. As such,
cosines in vector spaces can be converted to step-based dis-
tances that form a network using cosine thresholds (e.g.,

Gruenenfelder, Recchia, Rubin, & Jones, 2016; Steyvers &
Tenenbaum, 2005) or a binary list of features (similar to “di-
mensions” in DSMs). Therefore, the critical difference be-
tween associative networks/feature-based models and DSMs
is not that the former is a network/list and the latter is a vector
space, but rather the fact that associative networks are con-
structed from free-association responses, feature-based
models use property norms, and DSMs learn from text corpo-
ra. Therefore, as discussed earlier, the success of associative
networks (or feature-based models) in explaining behavioral
performance in cognitive tasks could be a consequence of
shared variance with the cognitive tasks themselves.
However, associative networks also explain performance in
tasks that are arguably not based solely on retrieving associa-
tions or features – for example, progressive demasking
(Kumar, Balota, & Steyvers, 2019), similarity judgments
(Richie, Zou, & Bhatia, 2019), and the remote triads task
where participants are asked to choose the most related pair
among a set of three nouns (De Deyne, Perfors, & Navarro,
2016). This points to the possibility that the part of the vari-
ance explained by associative networks or feature-based
models may in fact be meaningful variance that distributional
models are unable to capture, instead of entirely being shared
task-based variance.

To the extent that DSMs are limited by the corpora they are
trained on (Recchia & Jones, 2009), it is possible that the
responses from free-association tasks and property-
generation norms capture some non-linguistic aspects of
meaning that are missing from standard DSMs, for example,
imagery, emotion, perception, etc. Therefore, even though it is
unlikely that associative networks and feature-based models
are a complete account of semantic memory, the free-
association and property-generation norms that they are con-
structed from are likely useful baselines to compare DSMs
against, because they include different types of relationships
that go beyond those observable in textual corpora (De Deyne,
Perfors, & Navarro, 2016). To that end, Gruenenfelder et al.
(2016) compared three distributional models (LSA,
BEAGLE, and Topic models) and one simple associative
model and indicated that only a hybrid model that combined
contextual similarity and associative networks successfully
predicted the graph theoretic properties of free-association
norms (also see Richie, White, Bhatia, & Hout, 2019).
Therefore, associative networks and feature-based models
can potentially capture complementary information compared
to standard distributional models, and may provide additional
cues about the features and associations other than co-
occurrence that may constitute meaning. For instance, there
is evidence to show that perceptual features such as size, color,
and texture that are readily apparent to humans and may be
used to infer semantic relationships, are not effectively cap-
tured by co-occurrence statistics derived from natural lan-
guage corpora (e.g., Baroni & Lenci, 2008; see Section III),
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suggesting that semantic memory may in fact go beyond sim-
ple co-occurrence. Indeed, as discussed in Section III, multi-
modal and feature-integrated DSMs that use different linguis-
tic and non-linguistic sources of information to learn semantic
representations are currently a thriving area of research and are
slowly changing the conceptualization of what constitutes se-
mantic memory (e.g., Bruni et al., 2014; Lazaridou et al.,
2015).

Error-free versus error-driven learning Prediction is another
contentious issue in semantic modeling that has gained a con-
siderable amount of traction in recent years, and the traditional
distinction between error-free Hebbian learning and error-
driven Rescorla-Wagner-type learning has been carried over
to debates between different DSMs in the literature. In partic-
ular, DSMs that are based on extracting temporally contiguous
associations via error-free learning mechanisms to derive
word meanings (e.g., HAL, LSA, BEAGLE, etc.) have been
referred to as “count-based” models in computational linguis-
tics and natural language processing, and have been contrasted
against DSMs that employ a prediction-based mechanism to
learn representations (e.g., word2vec, fastText, etc.), often re-
ferred to as “predict” models. It is important to note here that
the count versus predict distinction is somewhat artificial and
misleading, because even prediction-based DSMs effectively
use co-occurrence counts of words from natural language cor-
pora to generate predictions. The important difference be-
tween these models is therefore not that one class of models
counts co-occurrences whereas the other predicts them, but in
fact that one class of models employs an error-free Hebbian
learning process whereas the other class of models employs a
prediction-based error-driven learning process to learn direct
and indirect associations between words. Nonetheless, in an
influential paper, Baroni et al. (2014) compared 36 “count-
based” or error-free learning-based DSMs to 48 “predict” or
error-driven learning-based DSMs and concluded that error-
driven learning-based (predictive) models significantly
outperformed their Hebbian learning-based counterparts in a
large battery of semantic tasks. Additionally, Mandera,
Keuleers, and Brysbaert (2017) compared the relative perfor-
mance of error-free learning-based DSMs (LSA and HAL-
type) and error-driven learning-based models (CBOW and
skip-gram versions of word2vec) on semantic priming tasks
(Hutchison et al., 2013) and concluded that predictive models
provided a better fit to the data. They also argued that predic-
tive models are psychologically more plausible because they
employ error-driven learning mechanisms consistent with
principles posited by Rescorla and Wagner (1972) and are
computationally more compact.

However, the argument that predictivemodels employ psy-
chologically plausible learning mechanisms is incomplete, be-
cause error-free learning-based DSMs also employ equally
plausible learning mechanisms, consistent with Hebbian

learning principles. Further, there is also some evidence chal-
lenging the resounding success of predictive models. Asr,
Willits, and Jones (2016) compared an error-free learning-
based model (similar to HAL), a random vector accumulation
model (similar to BEAGLE), and word2vec in their ability to
acquire semantic categories when trained on child-directed
speech data. Their results indicated that when the corpus
was scaled down to stimulus available to children, the HAL-
like model outperformed word2vec. Other work has also
found little to no advantage of predictive models over error-
free learning-based models (De Deyne, Perfors, & Navarro,
2016; Recchia & Nulty, 2017). Additionally, Levy, Goldberg,
and Dagan (2015) showed that hyperparameters like window
sizes, subsampling, and negative sampling can significantly
affect performance, and it is not the case that predictive
models are always superior to error-free learning-based
models.

Collectively, these results point to two possibilities. First, it
is possible that large amounts of training data (e.g., a billion
words) and hyperparameter tuning (e.g., subsampling or neg-
ative sampling) are the main factors contributing to predictive
models showing the reported gains in performance compared
to their Hebbian learning counterparts. To address this possi-
bility, Levy and Goldberg (2014) compared the computational
algorithms underlying error-free learning-based models and
predictive models and showed that the skip-gram word2vec
model implicitly factorizes the word-context matrix, similar to
several error-free learning-based models such as LSA.
Therefore, it does appear that predictive models and error-
free learning-based models may not be as different as initially
conceived, and both approaches may actually converge on the
same set of psychological principles. Second, it is possible
that predictive models are indeed capturing a basic error-
driven learningmechanism that humans use to perform certain
types of complex tasks that require keeping track of sequential
dependencies, such as sentence processing, reading compre-
hension, and event segmentation. Subsequent sections in this
review discuss how state-of-the-art approaches specifically
aimed at explaining performance in such complex semantic
tasks are indeed variants or extensions of this prediction-based
approach, suggesting that these models currently represent a
promising and psychologically intuitive approach to semantic
representation.

Language is clearly an extremely complex behavior, and even
though modern DSMs like word2vec and GloVe that are trained
on vast amounts of data successfully explain performance across
a variety of tasks, adequate accounts of how humans generate
sufficiently rich semantic representations with arguably lesser
“data” are still missing from the field. Further, there appears to
be relatively little work examining how newly trained models on
smaller datasets (e.g., child-directed speech) compare to chil-
dren’s actual performance on semantic tasks. The majority of
the work in machine learning and natural language processing
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has focused on building models that outperform other models, or
how the models compare to task benchmarks for only young
adult populations. Therefore, it remains unclear how the mecha-
nisms proposed by these models compare to the language acqui-
sition and representation processes in humans, although subse-
quent sections make the case that recent attempts towards incor-
porating multimodal information, and temporal and attentional
influences are making significant strides in this direction.
Ultimately, it is possible that humans use multiple levels of rep-
resentation and more than one mechanism to produce and main-
tain flexible semantic representations that can be widely applied
across a wide range of tasks, and a brief review of how empirical
work on context, attention, perception, and action has informed
semantic models will provide a finer understanding on some of
these issues.

II. Contextual and Retrieval-Based Semantic
Memory

Despite the traditional notion of semantic memory being a
“static” store of verbal knowledge about concepts, accumulat-
ing evidence within the past few decades suggests that seman-
tic memory may actually be context-dependent. Consider the
meaning of the word ostrich. Does the conceptualization of
what the word ostrich means change when an individual is
thinking about the size of different birds versus the types of
eggs one could use to make an omelet? Although intuitively it
appears that there is one “static” representation of ostrich that
remains unchanged across different contexts, considerable ev-
idence on the time course of sentence processing suggests
otherwise. In particular, a large body of work has investigated
how semantic representations come “online” during sentence
comprehension and the extent to which these representations
depend on the surrounding context. For example, there is ev-
idence to show that the surrounding sentential context and the
frequency of meaning may influence lexical access for ambig-
uous words (e.g., bark has a tree and sound-related meaning)
at different timepoints (Swinney, 1979; Tabossi, Colombo, &
Job, 1987). Furthermore, extensive work by Rayner and col-
leagues on eye movements in reading has shown that the
frequency of different meanings of a word, the bias in the
linguistic context, and preceding modifiers can modulate the
extent to which multiple meanings of a word are automatically
activated (Binder, 2003; Binder & Rayner, 1998; Duffy et al.,
1988; Pacht & Rayner, 1993; Rayner, Cook, Juhasz, &
Frazier, 2006; Rayner & Frazier, 1989). Collectively, this
work is consistent with the two-process theories of attention
(Neely, 1977; Posner & Snyder, 1975), according to which a
fast, automatic activation process, as well as a slow, conscious
attention mechanism are both at play during language-related
tasks. The two-process theory can clearly account for findings
like “automatic” facilitation in lexical decisions for words

related to the dominant meaning of the ambiguous word in
the presence of biasing context (Tabossi et al., 1987), and
longer “conscious attentional” fixations on the ambiguous
word when the context emphasizes the non-dominant mean-
ing (Pacht & Rayner, 1993).

Another aspect of language processing is the ability to con-
sciously attend to different parts of incoming linguistic input
to form inferences on the fly. One line of evidence that speaks
to this behavior comes from empirical work on reading and
speech processing using the N400 component of event-related
brain potentials (ERPs). The N400 component is thought to
reflect contextual semantic processing, and sentences ending
in unexpected words have been shown to elicit greater N400
amplitude compared to expected words, given a sentential
context (e.g., Block & Baldwin, 2010; Federmeier & Kutas,
1999; Kutas & Hillyard, 1980). This body of work suggests
that sentential context and semantic memory structure interact
during sentence processing (see Federmeier & Kutas, 1999).
Other work has examined the influence of local attention,
context, and cognitive control during sentence comprehen-
sion. In an eye-tracking paradigm, Nozari, Trueswell, and
Thompson-Schill (2016) had participants listen to a sentence
(e.g., “She will cage the red lobster”) as they viewed four
colorless drawings. The drawings contained a local attractor
(e.g., cherry) that was compatible with the closest adjective
(e.g., red) but not the overall context, or an adjective-
incompatible object (e.g., igloo). Context was manipulated
by providing a verb that was highly constraining (e.g., cage)
or non-constraining (e.g., describe). The results indicated that
participants fixated on the local attractor in both constraining
and non-constraining contexts, compared to incompatible
control words, although fixation was smaller in more
constrained contexts. Collectively, this work indicates that
linguistic context and attentional processes interact and shape
semantic memory representations, providing further evidence
for automatic and attentional components (Neely, 1977;
Posner & Snyder, 1975) involved in language processing.

Given these findings and the automatic-attentional
framework, it is important to investigate how computation-
al models of semantic memory handle ambiguity resolution
(i.e., multiple meanings) and attentional influences, and
depart from the traditional notion of a context-free “static”
semantic memory store. Critically, DSMs that assume a
static semantic memory store (e.g., LSA, GloVe, etc.) can-
not straightforwardly account for the different contexts un-
der which multiple meanings of a word are activated and
suppressed, or how attending to specific linguistic contexts
can influence the degree to which other related words are
activated in the memory network. The following sections
will further elaborate on this issue of ambiguity resolution
and review some recent literature on modeling contextually
dependent semantic representations.
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Ambiguity resolution in error-free learning-based
DSMs

Virtually all DSMs discussed so far construct a single repre-
sentation of a word’s meaning by aggregating statistical reg-
ularities across documents or contexts. This approach suffers
from the drawback of collapsing multiple senses of a word
into an “average” representation. For example, the homonym
bark would be represented as a weighted average of its two
meanings (the sound and the trunk), leading to a representa-
tion that is more biased towards the more dominant sense of
the word. Homonyms (e.g., bark) and polysemes (e.g.,
newspapermay refer to the physical object or a national daily)
represent over 40% of all English words (Britton, 1978;
Durkin & Manning, 1989), and because DSMs do not appro-
priately model the non-dominant sense of a word, they tend to
underperform in disambiguation tasks and also cannot appro-
priately model the behavior observed in sentence-processing
tasks (e.g., Swinney, 1979). Indeed, Griffiths et al. (2007)
have argued that the inability to model representations for
polysemes and homonyms is a core challenge and may repre-
sent a key falsification criterion for certain distributional
models (also see Jones, 2018). Early distributional models like
LSA and HAL recognized this limitation of collapsing a
word’s meaning into a single representation. Landauer
(2001) noted that LSA is indeed able to disambiguate word
meanings when given surrounding context, i.e., neighboring
words (for similar arguments see Burgess, 2001). To that end,
Kintsch (2001) proposed an algorithm operating on LSA vec-
tors that examined the local context around the target word to
compute different senses of the word. While the approach of
applying a process model over and above the core distribu-
tional model could be criticized, it is important to note that
meaning is necessarily distributed across several dimensions
in DSMs and therefore any process model operating on these
vectors is using only information already contained within the
vectors (see Günther et al., 2019, for a similar argument).

An alternative proposal to model semantic memory and
also account for multiple meanings was put forth by Blei,
Ng, and Jordan (2003) and Griffiths et al. (2007) in the form
of topic models of semantic memory. In topic models, word
meanings are represented as a distribution over a set of mean-
ingful probabilistic topics, where the content of a topic is
determined by the words to which it assigns high probabilities.
For example, high probabilities for the words desk, paper,
board, and teacher might indicate that the topic refers to a
classroom, whereas high probabilities for the words board,
flight, bus, and baggage might indicate that the topic refers
to travel. Thus, in contrast to geometric DSMs where a word
is represented as a point in a high-dimensional space, words
(e.g., board) can have multiple representations across the dif-
ferent topics (e.g., classroom, travel) in a topic model.
Importantly, topic models take the same word-document

matrix as input as LSA and uncover latent “topics” in the same
spirit of uncovering latent dimensions through an abstraction-
based mechanism that goes over and above simply counting
direct co-occurrences, albeit through different mechanisms,
based on Markov Chain Monte Carlo methods (Griffiths &
Steyvers, 2002, 2003, 2004). Topic models successfully ac-
count for free-association norms that show violations of sym-
metry, triangle inequality, and neighborhood structure
(Tversky, 1977) that are problematic for other DSMs (but
see Jones et al., 2018) and also outperform LSA in disambig-
uation, word prediction, and gist extraction tasks (Griffiths
et al., 2007). However, the original architecture of topic
models involved setting priors and specifying the number of
topics a priori, which could lead to the possibility of experi-
menter bias in modeling (Jones, Willits, & Dennis, 2015).
Further, the original topic model was essentially a “bag-of-
words” model and did not capitalize on the sequential depen-
dencies in natural language, like other DSMs (e.g.,
BEAGLE). Recent work by Andrews and Vigliocco (2010)
has extended the topic model to incorporate word-order infor-
mation, yielding more fine-grained linguistic representations
that are sensitive to higher-order semantic relationships.
Additionally, given that topic models represent word mean-
ings as a distribution over a set of topics, they naturally ac-
count for multiple senses of a word without the need for an
explicit process model, unlike other DSMs such as LSA or
HAL (Griffiths et al., 2007).

Therefore, it appears that when DSMs are provided with
appropriate context vectors through their representation (e.g.,
topic models) or additional assumptions (e.g., LSA), they are
indeed able to account for patterns of polysemy and
homonymy. Additionally, there has been a recent movement
in natural language processing to build distributional models
that can naturally tackle homonymy and polysemy. For
example, Reisinger and Mooney (2010) used a clustering ap-
proach to construct sense-specific word embeddings that were
successfully able to account for word similarity in isolation
and within a sentential context. In their model, a word’s con-
texts were clustered to produce different groups of similar
context vectors, and these context vectors were then averaged
into sense-specific vectors for the different clusters. A slightly
different clustering approach was taken by Li and Jurafsky
(2015), where the sense clusters and embeddings were jointly
learned using a Bayesian non-parametric framework. Their
model used the Chinese Restaurant Process, according to
which a new sense vector for a word was computed when
evidence from the context (e.g., neighboring and co-
occurring words) suggested that it was sufficiently different
from the existing senses. Li and Jurafsky indicated that their
model successfully outperformed traditional embeddings on
semantic relatedness tasks. Other work in this area has
employed multilingual distributional information to generate
different senses for words (Upadhyay, Chang, Taddy, Kalai,
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& Zou, 2017), although the use of multiple languages to un-
cover word senses does not appear to be a psychologically
plausible proposal for how humans derive word senses from
language. Importantly, several of these recent approaches rely
on error-free learning-based mechanisms to construct seman-
tic representations that are sensitive to context. The following
section describes some recent work in machine learning that
has focused on error-driven learningmechanisms that can also
adequately account for contextually-dependent semantic
representations.

Ambiguity resolution in predictive DSMs

One particular drawback of multi-sense embeddings
discussed above is that the meaning of a word can vary across
multiple sentential contexts and enumerating all the different
senses for a particular word can be both subjective (Westbury,
2016) and computationally expensive. For example, the word
star can refer to its astronomical meaning, a film star, a
rockstar, as well as an asterisk among other things, and the
surrounding linguistic context itself may be more informative
in understanding the meaning of the word star, instead of
trying to enumerate all the different senses of star, which
was the goal of multi-sense embeddings. The idea of using
the sentential context itself to derive a word’s meaning was
first proposed in Elman’s (1990) seminal work on the Simple
Recurrent Network (SRN), where a set of context units that
contained the previous hidden state of the neural network
model served as “memory” for the next cycle. In this way,
the internal representations that the SRN learned were sensi-
tive to previously encountered linguistic context. This simple
recurrent architecture successfully predicted word sequences,
grammatical classes, and constituent structure in language
(Elman, 1990, 1991). Modern Recurrent Neural Networks
(RNNs) build upon the intuitions of the SRN and come in
two architectures: Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU). LSTMs introduced the idea of
memory cells, i.e., a vector that could preserve error signals
over time and overcome the problem of vanishing error sig-
nals over long sequences (Hochreiter & Schmidhuber, 1997).
Access to the memory cells is controlled through gates in
LSTMs, where gate values are linear combinations of the cur-
rent input and the previous model state. GRUs also have a
gated architecture but differ in the number of gates and how
they combine the hidden states (Olah, 2019). LSTMs and
GRUs are currently the most successful types of RNNs and
have been extensively applied to construct contextually sensi-
tive, compositional (discussed in Section IV) models of se-
mantic memory.

The RNN approach inspired Peters et al. (2018) to con-
struct Embeddings from LanguageModels (ELMo), a modern
version of recurrent neural networks (RNNs). Peters et al.’s
ELMo model uses a bidirectional LSTM combined with a

traditional NN language model to construct contextual word
embeddings. Specifically, instead of explicitly training to pre-
dict predefined or empirically determined sense clusters,
ELMo first tries to predict words in a sentence going sequen-
tially forward and then backward, utilizing recurrent connec-
tions through a two-layer LSTM. The embeddings returned
from these “pretrained” forward and backward LSTMs are
then combined with a task-specific NN model to construct a
task-specific representation (see Fig. 6). One key innovation
in the ELMo model is that instead of only using the topmost
layer produced by the LSTM, it computes a weighed linear
combination of all three layers of the LSTM to construct the
final semantic representation. The logic behind using all layers
of the LSTM in ELMo is that this process yields very rich
word representations, where higher-level LSTM states capture
contextual aspects of word meaning and lower-level states
capture syntax and parts of speech. Peters et al. showed that
ELMo’s unique architecture is successfully able to outperform
other models in complex tasks like question answering,
coreference resolution, and sentiment analysis among others.
The success of recent recurrent models such as ELMo in tack-
ling multiple senses of words represents a significant leap
forward in modeling contextualized semantic representations.

Modern RNNs such as ELMo have been successful at
predicting complex behavior because of their ability to
incorporate previous states into semantic representations.
However, one limitation of RNNs is that they encode the
entire input sequence at once, which slows down process-
ing and becomes problematic for extremely long se-
quences. For example, consider the task of text summari-
zation, where the input is a body of text, and the task of the
model is to paraphrase the original text. Intuitively, the
model should be able to “attend” to specific parts of the
text and create smaller “summaries” that effectively para-
phrase the entire passage. This intuition inspired the atten-
tion mechanism, where “attention” could be focused on a
subset of the original input units by weighting the input
words based on positional and semantic information. The
model would then predict target words based on relevant
parts of the input sequence. Bahdanau, Cho, and Bengio
(2014) first applied the attention mechanism to machine
translation using two separate RNNs to first encode the
input sequence and then used an attention head to explic-
itly focus on relevant words to generate the translated out-
puts. “Attention” was focused on specific words by com-
puting an alignment score, to determine which input states
were most relevant for the current time step and combining
these weighted input states into a context vector. This con-
text vector was then combined with the previous state of
the model to generate the predicted output. Bahdanau et al.
showed that the attention mechanism was able to outper-
form previous models in machine translation (e.g., Cho
et al., 2014), especially for longer sentences.
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Attention NNs are now at the heart of several state-of-the-
art language models, like Google’s Transformer (Vaswani
et al., 2017), BERT (Devlin et al., 2019), OpenAI’s GPT-2
(Radford et al., 2019) and GPT-3 (Brown et al., 2020), and
Facebook’s RoBERTa (Liu et al., 2019). Two key innovations
in these new attention-based NNs have led to remarkable per-
formance improvements in language-processing tasks. First,
these models are being trained on a much larger scale than
ever before, allowing them to learn from a billion iterations
and over several days (e.g., Radford et al., 2019). Second,
modern attention-NNs entirely eliminate the sequential recur-
rent connections that were central to RNNs. Instead, these
models use multiple layers of attention and positional infor-
mation to process words in parallel. In this way, they are able
to focus attention on multiple words at a time to perform the
task at hand. For example, Google’s BERT model assigns
position vectors to each word in a sentence. These position
vectors are then updated using attention vectors, which repre-
sent a weighted sum of position vectors of other words and
depend upon how strongly each position contributes to the
word’s representation. Specifically, attention vectors are com-
puted using a compatibility function (similar to an alignment
score in Bahdanau et al., 2014), which assigns a score to each
pair of words indicating how strongly they should attend to
one another. These computations iterate over several layers
and iterations with the dual goal of predicting masked words
in a sentence (e.g., I went to the [mask] to buy a [mask] of
milk; predict store and carton) as well as deciding whether
one sentence (e.g., They were out of reduced fat [mask], so I
bought [mask] milk) is a valid continuation of another sen-
tence (e.g., I went to the store to buy a carton of milk). By
computing errors bidirectionally and updating the position and
attention vectors with each iteration, BERT’s word vectors are
influenced by other words’ vectors and tend to develop

contextually dependent word embeddings. For example, the
representation of the word ostrich in the BERT model would
be different when it is in a sentence about birds (e.g., ostriches
and emus are large birds) versus food (ostrich eggs can be
used to make omelets), due to the different position and atten-
tion vectors contributing to these two representations.
Importantly, the architecture of BERT allows it to be flexibly
finetuned and applied to any semantic task, while still using
the basic attention-based mechanism. This framework has
turned out to be remarkably efficient and models based on
the general Transformer architecture (e.g., BERT,
RoBERTa, GPT-2, &GPT-3) outperform LSTM-based recur-
rent approaches in semantic tasks such as sentiment analysis
(Socher et al., 2013), sentence acceptability judgments
(Warstadt, Singh, & Bowman, 2018), and even tasks that are
dependent on semantic and world knowledge, such as the
Winograd Schema Challenge (Levesque, Davis, &
Morgenstern, 2012) or novel language generation (Brown
et al., 2020). However, considerable work is beginning to
evaluate these models using more rigorous test cases and
starting to question whether these models are actually learning
anything meaningful (e.g., Brown et al., 2020; Niven & Kao,
2019), an issue that is discussed in detail in Section V.

Although the technical complexity of attention-based NNs
makes it difficult to understand the underlying mechanisms
contributing to their impressive success, some recent work
has attempted to demystify these models (e.g., Clark,
Khandelwal, Levy, & Manning, 2019; Coenen et al., 2019;
Michel, Levy, & Neubig, 2019; Tenney, Das, & Pavlick,
2019). For example, Clark et al. (2019) recently showed that
BERT’s attention heads actually attend to meaningful seman-
tic and syntactic information in sentences, such as deter-
miners, objects of verbs, and co-referent mentions (see Fig.
7), suggesting that these models may indeed be capturing

Fig. 6 A depiction of the ELMo architecture. The hidden layers of two
long short-term memory networks (LSTMs; forward and backward) are
first concatenated, followed by a weighted sum of the hidden layers with

the embedding layer, resulting in the final three-layer representation for a
particular word. Adapted from Alammar (2018)
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meaningful linguistic knowledge, which may be driving their
performance. Further, some recent evidence also shows that
BERT successfully captures phrase-level representations, in-
dicating that BERT may indeed have the ability to model
compositional structures (Jawahar, Sagot, & Seddah, 2019),
although this work is currently in its nascent stages.
Furthermore, it remains unclear how this conceptualization
of attention fits with the automatic-attentional framework
(Neely, 1977). Demystifying the inner workings of attention
NNs and focusing on process-based accounts of how compu-
tational models may explain cognitive phenomena clearly rep-
resents the next step towards integrating these recent compu-
tational advances with empirical work in cognitive
psychology.

Collectively, these recent approaches to construct contex-
tually sensitive semantic representations (through recurrent
and attention-based NNs) are showing unprecedented success
at addressing the bottlenecks regarding polysemy, attentional
influences, and context that were considered problematic for
earlier DSMs. An important insight that is common to both
contextualized RNNs and attention-based NNs discussed
above is the idea of contextualized semantic representations,
a notion that is certainly at odds with the traditional concep-
tualization of context-free semantic memory. Indeed, the fol-
lowing section discusses a new class of models take this no-
tion a step further by entirely eliminating the need for learning

representations or “semantic memory” and propose that all
meaning representations may in fact be retrieval-based, there-
fore blurring the historical distinction between episodic and
semantic memory.

Retrieval-based models of semantic memory

Tulving’s (1972) episodic-semantic dichotomy inspired foun-
dational research on semantic memory and laid the ground-
work for conceptualizing semantic memory as a static mem-
ory store of facts and verbal knowledge that was distinct from
episodic memory, which was linked to events situated in spe-
cific times and places. However, some recent attempts at
modeling semantic memory have taken a different perspective
on how meaning representations are constructed. Retrieval-
basedmodels challenge the strict distinction between semantic
and episodic memory, by constructing semantic representa-
tions through retrieval-based processes operating on episodic
experiences. Retrieval-based models are based on Hintzman’s
(1988)MINERVA 2model, which was originally proposed to
explain how individuals learn to categorize concepts.
Hintzman argued that humans store all instances or episodes
that they experience, and that categorization of a new concept
is simply a weighted function of its similarity to these stored
instances at the time of retrieval. In other words, each episodic
experience lays down a trace, which implies that if an item is

Fig. 7 BERT attention heads that correspond to linguistic phenomena like attending to noun phrases and verbs. Arrows indicate specific relationships
that the heads are attending to within each sentence. Adapted from Clark et al. (2019)
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presented multiple times, it has multiple traces. At the time of
retrieval, traces are activated in proportion to its similarity
with the retrieval cue or probe. For example, an individual
may have seen an ostrich in pictures or at the zoo multiple
times and would store each of these instances in memory. The
next time an ostrich-like bird is encountered by this individu-
al, they would match the features of this bird to a weighted
sum of all stored instances of ostrich and compute the simi-
larity between these features to decide whether the new bird is
indeed an ostrich. Hintzman’s work was crucial in developing
the exemplar theory of categorization, which is often
contrasted against the prototype theory of categorization
(Rosch & Mervis, 1975), which suggests that individuals
“learn” or generate an abstract prototypical representation of
a concept (e.g., ostrich) and compare new examples to this
prototype to organize concepts into categories. Importantly,
Hintzman’s model rejected the need for a strong distinction
between episodic and semantic memory (Tulving, 1972) and
has inspired a class of models of semantic memory often re-
ferred to as retrieval-based models.

Kwantes (2005) proposed a retrieval-based alternative to
LSA-type distributional models by computing semantic rep-
resentations “on the fly” from a term-document matrix of ep-
isodic experiences. Based on principles from Hintzman’s
(1988) MINERVA 2 model, in Kwantes’ model, each word
has a context vector (i.e., memory trace) associated with it,
which contains its frequency of occurrence within each docu-
ment of the training corpus. When a word is encountered in
the environment, it is used as a cue to retrieve the context
vector, which activates the traces of all words in lexical mem-
ory. The activation of a trace is directly proportional to the
contextual similarity between their context vectors. Memory
traces are then weighted by their activations and summed
across the context vectors to construct the final semantic rep-
resentation of the target word. The resulting semantic repre-
sentations fromKwantes’model successfully captured higher-
order semantic relationships, similar to LSA, without the need
for storing, abstracting, or learning these representations at the
time of encoding.

Modern retrieval-based models have been successful at
explaining complex linguistic and behavioral phenomena,
such as grammatical constraints (Johns & Jones, 2015) and
free association (Howard et al., 2011), and certainly represent
a significant departure from the models discussed thus far. For
example, Howard et al. (2011) proposed a model that con-
structed semantic representations using temporal context.
Instead of defining context in terms of a sentence or document
like most DSMs, the Predictive Temporal Context Model
(pTCM; see also Howard & Kahana, 2002) proposes a con-
tinuous representation of temporal context that gradually
changes over time. Items in the pTCM are activated to the
extent that their encoded context overlaps with the context
that is cued. Further, context is also used to predict items that

are likely to appear next, and the semantic representation of an
item is the collection of prediction vectors in which it appears
over time. These previously learned prediction vectors also
contribute to the word’s future representations. Howard et al.
showed that the pTCM successfully simulates human perfor-
mance in word-association tasks and is able to capture long-
range dependencies in language that are problematic for other
DSMs. In its core principles of constructing representations
from episodic contexts, the pTCM is similar to other retrieval-
based models, but its ability to learn from previous states and
gradually accumulate information also shares similarities with
the SRN (Elman, 1990), BEAGLE (Jones &Mewhort, 2007),
and some of the recent error-driven learning DSMs discussed
in Section II (e.g., word2vec, ELMo, etc.).

More recently, Jamieson, Avery, Johns, and Jones et al.
(2018) proposed an instance-based theory of semantic mem-
ory, also based on MINERVA 2. In their model, word con-
texts are stored as n-dimensional vectors representingmultiple
instances in episodic memory. Memory of a document (or
conversation) is the sum of all word vectors, and a “memory”
vector stores all documents in a single vector. A word’s mean-
ing is retrieved by cueing the memory vector with a probe,
which activates each trace in proportion to its similarity to the
probe. The aggregate of all activated traces is called an echo,
where the contribution of a trace is directly weighted by its
activation. The retrieved echo, in response to a probe, is as-
sumed to represent a word’s meaning. Therefore, the model
exhibits “context sensitivity” by comparing the activations of
the retrieval probe with the activations of other traces in mem-
ory, thus producing context-dependent semantic representa-
tions without any mechanism for learning these representa-
tions. For example, Jamieson et al. showed that for the homo-
graph break (with three senses, related to stopping, smashing,
and news reporting), when their model is provided with a
disambiguating context using a joint probe (e.g., break/car),
the retrieved representation (or “echo”) is more similar to the
word stop, compared to the words report and smash, thus
producing a context-dependent semantic representation of
the word break. Therefore, Jamieson et al.’s model success-
fully accounts for some findings pertaining to ambiguity res-
olution that have been difficult to accommodate within tradi-
tional DSM-based accounts and proposes that meaning is cre-
ated “on the fly” and in response to a retrieval cue, an idea that
is certainly inconsistent with traditional semantic models.

Summary

Although it is well understood that prior knowledge or seman-
tic memory influences how individuals perceive events (e.g.,
Bransford & Johnson, 1972; Deese, 1959; Roediger &
McDermott, 1995), the notion that semantic memory may
itself be influenced by episodic events is relatively recent.
This section discussed how the conceptualization of semantic
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memory of being an independent and static memory store is
slowly changing, in light of evidence that context shapes the
structure of semantic memory. Retrieval-based models repre-
sent an important departure from the traditional notions about
semantic memory, and instead propose that the meaning of a
word is computed “on the fly” at retrieval, and do not sub-
scribe to the idea of storing or learning a static semantic rep-
resentation of a concept. This conceptualization is clearly at
odds with traditional accounts of semantic memory and
hearkens back to the distinction between prototype and exem-
plar theories of categorization briefly eluded to earlier.
Specifically, in the computational models of semantic memo-
ry discussed so far (with the exception of retrieval-based
models), the idea of inferring indirect co-occurrences and/or
latent dimensions, i.e., learning through abstraction emerges
as a core mechanism contributing to the construction of mean-
ing. This idea of abstraction has also been central to compu-
tational models that have been applied to understand category
structure. Specifically, prototype theories (Rosch, Mervis,
Gray, Johnson, & Boyes-Braem, 1976; Rosch & Lloyd,
1978; also see Posner & Keele, 1968) posit that as individual
concepts are experienced, humans gradually develop a proto-
typical representation that contains the most useful and repre-
sentative information about that category. This notion of con-
structing an abstracted, prototypical representation is at the
heart of several computational models of semantic memory
discussed in this review. For example, both LSA and
BEAGLE construct an “average” prototypical semantic repre-
sentation from individual linguistic experiences. Of course,
LSA uses a term-document matrix and singular value decom-
position whereas BEAGLE learns meaning by incrementally
combining co-occurrence and order information to compute a
composite representation, but both models represent a word as
a single point (prototype) in a high-dimensional space.
Retrieval-based models, on the other hand, are inspired by
Hintzman’s work and the exemplar theory of categorization
and assume that semantic representations are constructed in
response to retrieval cues and reject the idea of prototypical
representations or abstraction-like learning processes occur-
ring at the time of encoding. Given the success of retrieval-
based models at tackling ambiguity and several other linguis-
tic phenomena, these models clearly represent a powerful pro-
posal for how meaning is constructed.

However, before abstraction (at encoding) can be rejected
as a plausible mechanism underlying meaning computation,
retrieval-based models need to address several bottlenecks,
only one of which is computational complexity. Jones et al.
(2018) recently noted that computational constraints should
not influence our preference of traditional prototype models
over exemplar-based models, especially since exemplar
models have provided better fits to categorization task data,
compared to prototype models (Ashby & Maddox, 1993;
Nosofsky, 1988; Stanton, Nosofsky, & Zaki, 2002).

However, implementation is a core test for theoretical models
and retrieval-based models must be able to explain how the
brain manages this computational overhead. Specifically,
retrieval-based models argue against any type of “semantic
memory” at all and instead propose that semantic representa-
tions are created “on the fly” when words or concepts are
encountered within a particular context. As discussed earlier,
while there is evidence to suggest that the representations
likely change with every new encounter (e.g., for a review,
see Yee et al., 2018), it is still unclear why the brain would
create a fresh new representation for a particular concept “on
the fly” each time that concept is encountered, and not “learn”
something about the concept from previous encounters that
could aid future processing. It seems more psychologically
plausible that the brain learns and maintains a semantic repre-
sentation (stored via changes in synaptic activity; see
Mayford, Siegelbaum, & Kandel, 2012) that is subsequently
finetuned or modified with each new incoming encounter – a
proposal that is closer to the mechanisms underlying recurrent
and attention-NNs discussed earlier in this section.
Furthermore, in light of findings that top-down information
or previous knowledge does in fact guide cognitive behavior
(e.g., Bransford & Johnson, 1972; Deese, 1959; Roediger &
McDermott, 1995) and bottom-up processes interact with top-
down processes (Neisser, 1976), the proposal that there may
not be any existing semantic structures in place at all certainly
requires more investigation.

It is important to note here that individual traces for episodic
events may indeed need to be stored by the system for other
cognitive tasks, but the argument here is that retrieving themean-
ing of a concept need not necessarily require the storage of every
individual experience or trace. For example, consider the simple
memory task of remembering a list of words: train, ostrich,
lemon, and truth. Encoding a representation of this event likely
involves laying down a trace of this experience in memory.
However, retrieval-based models would posit that the represen-
tation of the word ostrich in this context would in fact be a
weighted sum of every other time the word or concept of ostrich
has been experienced, all of which have been stored in memory.
This conceptualization seems unnecessary, especially given that
other DSMs that instead use more compact learning-based rep-
resentations have been fairly successful at simulating perfor-
mance in semantic as well as non-semantic tasks (for a model
of LSA-type semantic structures applied to free recall tasks, see
Polyn, Norman, & Kahana, 2009).

Additionally, it appears that retrieval-based models cur-
rently lack a complete account of how long-term sequential
dependencies, sentential context, and multimodal information
might simultaneously influence the computation of meaning.
For example, how does multimodal information about an ob-
ject get stored in retrieval-basedmodels – does each individual
sensorimotor encounter also leave its own trace in memory
and contribute to the “context-specific” representation or is
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the scope of “context” limited to patterns of co-occurrence?
Further, it remains unclear how representations derived from
retrieval-based models differ from representations derived
frommodern RNNs and attention-based NNs, which also pro-
pose contextualized representations. It appears that these clas-
ses of models share similarities in their fundamental claim that
the retrieval context determines the representation of a concept
or word, although retrieval-based models do not subscribe to
any particular learning mechanism (with the exception of
Howard et al.’ s predictive pTCM model), whereas RNNs
and attention-NNs are based on error-driven learning mecha-
nisms. Specifically, RNNs and attention-NNs learn via pre-
diction and incrementally build semantic representations,
whereas retrieval-based models instead propose that represen-
tations are constructed solely at the time of retrieval, without
any learning occurring at the time of exposure or encoding.
Furthermore, while RNNs and attention-NNs take word order
and positional information (e.g., bidirectionality in BERT)
into account within their definition of “context” when con-
structing semantic representations, it appears that recent
retrieval-based models currently lack mechanisms to incorpo-
rate word order into their representations (e.g., Jamieson et al.,
2018), even though this may simply be a practical limitation at
this point.

Finally, it is unclear how retrieval-based models would
scale up to sentences, paragraphs, and other higher-order
structures like events, issues that are being successfully ad-
dressed by other learning-based DSMs (see Sections III and
IV). Clearly, more research is needed to adequately assess the
relative performance of retrieval-based models, compared to
state-of-the-art learning-based models of semantic memory
currently being widely applied in the literature to a large col-
lection of semantic (and non-semantic) tasks. Collectively, it
seems most likely that humans store individual exemplars in
some form (e.g., a distributed pattern of activation) or at least
to some extent (e.g., storing only traces above a certain thresh-
old of stable activation), but also learn a prototypical repre-
sentation as consistent exemplars are experienced, which fa-
cilitates faster top-down processing (for a similar argument,
see Yee et al., 2018) in cognitive tasks, although this issue
clearly needs to be explored further.

The central idea that emerged in this section is that seman-
tic memory representations may indeed vary across contexts.
The accumulating evidence that meaning rapidly changes
with linguistic context certainly necessitates models that can
incorporate this flexibility into word representations.
Attention-based NNs like BERT and GPT-2/3 represent a
promising step towards constructing such contextualized,
attention-based representations and appear to be consistent
with the automatic and attentional components of language
processing (Neely, 1977), although more work is needed to
clarify how these models compute meaningful representations
that can be flexibly applied across different tasks. The success

of attention-based NNs is truly impressive on one hand but
also cause for concern on the other. First, it is remarkable that
the underlying mechanisms proposed by these models at least
appear to be psychologically intuitive and consistent with em-
pirical work showing that attentional processes and predictive
signals do indeed contribute to semantic task performance
(e.g., Nozari et al., 2016). However, if the ultimate goal is to
build models that explain and mirror human cognition, the
issues of scale and complexity cannot be ignored. Current
state-of-the-art models operate at a scale of word exposure
that is much larger than what young adults are typically ex-
posed to (De Deyne, Perfors, & Navarro, 2016; Lake, Ullman,
Tenenbaum, & Gershman, 2017). Therefore, exactly how
humans perform the same semantic tasks without the large
amounts of data available to these models remains unknown.
One line of reasoning is that while humans have lesser
linguistic input compared to the corpora that modern semantic
models are trained on, humans instead have access to a pleth-
ora of non-linguistic sensory and environmental input, which
is likely contributing to their semantic representations. Indeed,
the following section discusses how conceptualizing semantic
memory as a multimodal system sensitive to perceptual input
represents the next big paradigm shift in the study of semantic
memory.

III. Grounding Models of Semantic Memory

Virtually all distributional and network-based semantic models
rely on large text corpora or databases to construct semantic
representations. Consequently, a consistent and powerful criti-
cism of distributional semantic models comes from the ground-
ed cognitionmovement (Barsalou, 2016), which rejects the idea
that meaning can be represented through abstract and amodal
symbols like words in a language. Instead, grounded cognition
researchers posit that sensorimotormodalities, the environment,
and the body all contribute and play a functional role in cogni-
tive processing, and by extension, the construction of meaning.
Grounded (or embodied) cognition is a rather broad enterprise
that attempts to redefine the study of cognition (Matheson &
Barsalou, 2018). Within the domain of semantic memory, dis-
tributional models in particular have been criticized because
they derive semantic representations from only linguistic texts
and are not grounded in perception and action, leading to the
symbol grounding problem (Harnad, 1990; Searle, 1980), i.e.,
how can the meaning of a word (e.g., an ostrich) be grounded
only in other words (e.g., big, bird, etc.) that are further ground-
ed in more words?

While there is no one theory of grounded cognition
(Matheson & Barsalou, 2018), the central tenet common to
several of them is that the body, brain, and physical environ-
ment dynamically interact to produce meaning and cognitive
behavior. For example, based on Barsalou’s account
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(Barsalou, 1999, 2003, 2008), when an individual first en-
counters an object or experience (e.g., a knife), it is stored in
the modalities (e.g., its shape in the visual modality, its sharp-
ness in the tactile modality, etc.) and the sensorimotor system
(e.g., how it is used as a weapon or kitchen utensil). Repeated
co-occurrences of physical stimulations result in functional
associations (likely mediated by associative Hebbian learning
and/or connectionist mechanisms) that form amultimodal rep-
resentation of the object or experience (Matheson & Barsalou,
2018). Features of these representations are activated through
recurrent connections, which produces a simulation of past
experiences. These simulations not only guide an individual’s
ongoing behavior retroactively (e.g., how to dice onions with
a knife), but also proactively influence their future or imagined
plans of action (e.g., how one might use a knife in a fight).
Simulations are assumed to be neither conscious nor complete
(Barsalou, 2003; Barsalou & Wiemer-Hastings, 2005), and
are sensitive to cognitive and social contexts (Lebois,
Wilson-Mendenhall, & Barsalou, 2015).

There is some empirical support for the grounded cognition
perspective from sensorimotor priming studies. In particular,
there is substantial evidence that modality-specific neural in-
formation is activated during language-processing tasks. For
example, it has been demonstrated that reading verbs like kick
(corresponding to feet) or pick (corresponding to hand) acti-
vates the motor cortex in a somatotopic fashion (Pulvermüller,
2005), passive reading of taste-related words (e.g., salt) acti-
vates gustatory cortices (Barros-Loscertales et al., 2011), and
verifying modality-specific properties of words (e.g., color,
taste, sound, and touch) activates the corresponding sensory
brain regions (Goldberg, Perfetti, & Schneider, 2006).
However, whether the activation of modality-specific infor-
mation is incidental to the task and simply a result of post-
representation processes, or actually part of the semantic rep-
resentation itself is an important question. Support for the
latter argument comes from studies showing that transcranial
stimulation of areas in the premotor cortex related to the hand
facilitates lexical decision performance for hand-related action
words (Willems, Labruna, D’Esposito, Ivry, & Casasanto,
2011), Parkinson’s patients show selective impairment in
comprehending motor action words (Fernandino et al.,
2013), and damage to brain regions supporting object-related
action can hinder access to knowledge about how objects are
manipulated (Yee, Chrysikou, Hoffman, & Thompson-Schill,
2013). Yee et al. also showed that when individuals performed
a concurrent manual task while naming pictures, there was
more naming interference for objects that are more manually
used (e.g., pencils), compared to objects that are not typically
manually used (e.g., tigers). Furthermore, Yee, Huffstetler,
and Thompson-Schill (2011) used a visual eye-tracking para-
digm to show that as an object unfolds over time (e.g., audi-
torily hearing frisbee), particular features (e.g., form-related)
come online in a temporally constrained fashion and can

influence eye fixation times for related words (e.g., e.g., par-
ticipants fixated longer on pizza, because frisbee and pizza are
both round). Taken together, these findings suggest that se-
mantic memory representations are accessed in a dynamic
way during tasks and different perceptual features of these
representations may be accessed at different timepoints, sug-
gesting a more flexible and fluid conceptualization (also see
Yee, Lahiri, & Kotzor, 2017) of semantic memory that can
change as a function of task. Therefore, it is important to
evaluate whether computational models of semantic memory
can indeed encode these rich, non-linguistic features as part of
their representations.

It is important to note here that while the sensorimotor stud-
ies discussed above provide support for the grounded cognition
argument, these studies are often limited in scope to processing
sensorimotor words and do not make specific predictions about
the direction of effects (Matheson&Barsalou, 2018;Matheson,
White, &McMullen, 2015). For example, although several stud-
ies show that modality-specific information is activated during
behavioral tasks, it remains unclear whether this activation leads
to facilitation or inhibition within a cognitive task. Indeed, both
types of findings are taken to support the grounded cognition
view, therefore leading to a lack of specificity in predictions
regarding the role of modality-specific information (Matheson
et al., 2015), although some recentwork has proposed that timing
of activation may be critical in determining how modality-
specific activation influences cognitive performance (Matheson
& Barsalou, 2018). Another strong critique of the grounded cog-
nition view is that it has difficulties accounting for how abstract
concepts (e.g., love, freedom etc.) that do not have any grounding
in perceptual experience are acquired or can possibly be simulat-
ed (Dove, 2011). Some researchers have attempted to “ground”
abstract concepts in metaphors (Lakoff & Johnson, 1999), emo-
tional or internal states (Vigliocco et al., 2013), or temporally
distributed events and situations (Barsalou & Wiemer-Hastings,
2005), but the mechanistic account for the acquisition of abstract
concepts is still an active area of research. Finally, there is a
dearth of formal models that provide specific mechanisms by
which features acquired by the sensorimotor system might be
combined into a coherent concept. Some accounts suggest that
semantic representations may be created by patterns of synchro-
nized neural activity, whichmay represent different sensorimotor
information (Schneider, Debener, Oostenveld, & Engel, 2008).
Other work has suggested that certain regions of the cortex may
serve as “hubs” or “convergence zones” that combine features
into coherent representations (Patterson, Nestor, & Rogers,
2007), and may reflect temporally synchronous activity within
areas to which the features belong (Damasio, 1989). However,
comparisons of such approaches to DSMs remain limited due to
the lack of formal grounded models, although there have been
some recent attempts at modeling perceptual schemas (Pezzulo
& Calvi, 2011) and Hebbian learning (Garagnani &
Pulvermüller, 2016).
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Proponents of the grounded cognition view have also pre-
sented empirical (Glenberg & Robertson, 2000; Rubinstein,
Levi, Schwartz, & Rappoport, 2015) and theoretical criticisms
(Barsalou, 2003; Perfetti, 1998) of DSMs over the years. For
example, Glenberg and Robertson (2000) reported three ex-
periments to argue that high-dimensional space models like
LSA/HAL are inadequate theories of meaning, because they
fail to distinguish between sensible (e.g., filling an old sweater
with leaves) and nonsensical sentences (e.g., filling an old
sweater with water) based on cosine similarity between words
(but see Burgess, 2000). Some recent work also shows that
traditional DSMs trained solely on linguistic corpora do in-
deed lack salient features and attributes of concepts. Baroni
and Lenci (2008) compared a model analogous to LSA with
attributes derived from McRae, Cree, Seidenberg, and
McNorgan (2005) and an image-based dataset. They provided
evidence that DSMs entirely miss external (e.g., a car <has
wheels>) and surface level (e.g., a banana <is yellow>) prop-
erties of objects, and instead focus on taxonomic (e.g., cat-
dog) and situational relations (e.g., spoon-bowl), which are
more frequently encountered in natural language. More re-
cently, Rubinstein et al. (2015) evaluated four computational
models, including word2vec and GloVE, and showed that
DSMs are poor at classifying attributive properties (e.g., an
elephant <is large>), but relatively good at classifying taxo-
nomic properties (e.g., apple <is a> fruit) identified by human
subjects in a property generation task (also see Collell &
Moens, 2016; Lucy & Gauthier, 2017).

Collectively, these studies appear to underscore the intui-
tions of the grounded cognition researchers that semantic
models based solely on linguistic sources do not produce suf-
ficiently rich representations.While this is true, it is important to
realize here that the failure of DSMs to encode these perceptual
features is a function of the training corpora they are exposed to,
i.e., a practical limitation, and not necessarily a theoretical one.
EarlyDSMswere trained on linguistic corpora not because it was
intrinsic to the theoretical assumptions made by the models, but
because text corpora were easily available (for more fleshed-out
arguments on this issue, see Burgess, 2000; Günther et al., 2019;
Landauer&Dumais, 1997). Therefore, themore important ques-
tion is whether DSMs can be adequately trained to derive statis-
tical regularities from other sources of information (e.g., visual,
haptic, auditory etc.), and whether such DSMs can effectively
incorporate these signals to construct “grounded” semantic
representations.

Grounding DSMs through feature integration

The lack of grounding in standard DSMs led to a resurging
interest in early feature-based models (McRae et al., 1997;
Smith et al., 1974). As discussed earlier, early feature-based
models represented words as a collection of binary features
(e.g., birds have wings, whereas cars do not), and words with

similar meanings had greater overlap in their constituent fea-
tures (McCloskey & Glucksberg, 1979; Smith et al., 1974;
Tversky, 1977), although these early models did not have
explicit mechanisms to account for how features were learned
in the first place. However, one important strength of feature-
based models was that the features encoded could directly be
interpreted as placeholders for grounded sensorimotor experi-
ences (Baroni & Lenci, 2008). For example, the representation
of a banana is distributed across several hundred dimensions
in a distributional approach, and these dimensionsmay or may
not be interpretable (Jones, Willits, & Dennis, 2015), but the
perceptual experience of the banana’s color being yellow can
be directly encoded in feature-based models (e.g., banana <is
yellow>).

However, it is important to note here that, again, the fact
that features can be verbalized and are more interpretable
compared to dimensions in a DSM is a result of the features
having been extracted from property generation norms, com-
pared to textual corpora. Therefore, it is possible that some of
the information captured by property generation norms may
already be encoded in DSMs, albeit through less interpretable
dimensions. Indeed, a systematic comparison of feature-based
and distributional models by Riordan and Jones (2011) dem-
onstrated that representations derived from DSMs produced
comparable categorical structure to feature representations
generated by humans, and the type of information encoded
by both types of models was highly correlated but also com-
plementary. For example, DSMs gave more weight to actions
and situations (e.g., eat, fly, swim) that are frequently encoun-
tered in the linguistic environment, whereas feature-based rep-
resentations were better are capturing object-specific features
(e.g., <is yellow>, <made of metal>) that potentially reflected
early sensorimotor experiences with objects. Riordan and
Jones argued that children may be more likely to initially
extract information from sensorimotor experiences.
However, as they acquire more linguistic experience, they
may shift to extracting the redundant information from the
distributional structure of language and rely on perception
for only novel concepts or the unique sources of information
it provides. This idea is consistent with the symbol interde-
pendency hypothesis (Louwerse, 2011), which proposes that
while words must be grounded in the sensorimotor action and
perception, they also maintain rich connections with each oth-
er at the symbolic level, which allows for more efficient lan-
guage processing by making it possible to skip grounded sim-
ulations when unnecessary. The notion that both sources of
information are critical to the construction of meaning pre-
sents a promising approach to reconciling distributional
models with the grounded cognition view of language (for
similar accounts, see Barsalou, Santos, Simmons, & Wilson,
2008; Paivio, 1991).

Recent work in computational modeling has attempted to
integrate featural information with distributional information
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to enrich semantic representations. For example, Andrews
et al. (2009) used a Bayesian probabilistic topic model to
jointly model semantic representations using experiential
feature-based (e.g., an ostrich <is big>, <does not fly>, <has
feathers> etc.) and linguistic (e.g., ostrich and emu co-occur)
data as complementary sources of information. Further,
Vigliocco, Meteyard, Andrews, and Kousta (2009) argued
that affective and internal states can serve as another data
source that could potentially enrich semantic representations,
particularly for abstract concepts that lack sensorimotor asso-
ciations (Kousta, Vigliocco, Vinson, Andrews, & Del Campo,
2011). The information integration approach has also been
applied to other types of DSMs. For example, Jones and
Recchia (2010) integrated feature-based information with
BEAGLE to show that temporal linguistic information plays
a critical role in generating accurate semantic representations.
Johns and Jones (2012) have also explored the integration of
perceptual information with linguistic information based on
simple associative mechanisms, borrowing principles from
Hintzman’s (1988) MINERVA architecture and Kwantes’
(2005) model. Their model provided a proof of concept that
perceptually rich semantic representations may be constructed
by grounding them in already formed or learned representa-
tions of other words (accessible via feature norms). This no-
tion of grounding representations in previously learned words
has also been explored by Howell et al. (2005) using a recur-
rent NN model. Using a modified version of the Elman’s
(1990) SRN with two additional output layers for noun and
verb features, Howell et al. trained the model to map phonet-
ically presented input words (nouns) to semantic features and
perform a grammatical word prediction task. Howell et al.
argued that this type of learning mechanism could be applied
to simulate a “propagation of grounding” effect, where senso-
rimotor information from early, concrete words acquired by
children feeds into semantic representations of novel words,
although this proposal was not formally tested in the paper.
Other work on integrating featural information has explored
training a recurrent NN model with sensorimotor feature in-
puts and patterns of co-occurrence to account for a wide vari-
ety of behavioral patterns consistent with normal and impaired
semantic cognition (Hoffman et al., 2018), implementing a
feedforward NN to apply feature learning to a simple word-
word co-occurrence model (Durda, Buchanan, & Caron,
2009) and using feature-based vectors as input to a random-
vector accumulation model (Vigliocco, Vinson, Lewis, &
Garrett, 2004).

Multimodal DSMs

Despite their considerable success, an important limitation of
feature-integrated distributional models is that the perceptual
features available are often restricted to small datasets (e.g.,
541 concrete nouns from McRae et al., 2005), although some

recent work has attempted to collect a larger dataset of feature
norms (e.g., 4436 concepts; Buchanan, Valentine, &
Maxwell, 2019). Moreover, the features produced in property
generation tasks are potentially prone to saliency biases (e.g.,
hardly any participant will produce the feature <has a head>
for a dog because having a head is not salient or distinctive),
and thus can only serve as an incomplete proxy for all the
features encoded by the brain. To address these concerns,
Bruni et al. (2014) applied advanced computer vision tech-
niques to automatically extract visual and linguistic features
from multimodal corpora to construct multimodal distribu-
tional semantic representations. Using a technique called
“bag-of-visual-words” (Sivic & Zisserman, 2003), the model
discretized visual images and produced visual units compara-
ble to words in a text document. The resulting image matrix
was then concatenated with a textual matrix constructed from
a natural language corpus using singular value decomposition
to yield a multimodal semantic representation. Bruni et al.
showed that this model was superior to a purely text-based
approach and successfully predicted semantic relations be-
tween related words (e.g., ostrich-emu) and clustering of
words into superordinate concepts (e.g., ostrich-bird).

This multimodal approach to semantic representation is
currently a thriving area of research (Feng & Lapata, 2010;
Kiela & Bottou, 2014; Lazaridou et al., 2015; Silberer &
Lapata, 2012, 2014). Advances in the machine-learning com-
munity have majorly contributed to accelerating the develop-
ment of these models. In particular, Convolutional Neural
Networks (CNNs) were introduced as a powerful and robust
approach for automatically extracting meaningful information
from images, visual scenes, and longer text sequences. The
central idea behind CNNs is to apply a non-linear function (a
“filter”) to a sliding window of the full chunk of information,
e.g., pixels in an image, words in a sentence, etc. The filter
transforms the larger window of information into a fixed d-
dimensional vector, which captures the important properties
of the pixels or words in that window. Convolution is follow-
ed by a “pooling” step, where vectors from different windows
are combined into a single d-dimensional vector, by taking the
maximum or average value of each of the d-dimensions across
the windows. This process extracts the most important fea-
tures from a larger set of pixels (see Fig. 8), or the most
informative k-grams in a long sentence. CNNs have been flex-
ibly applied to different semantic tasks like sentiment analysis
and machine translation (Collobert et al., 2011; Kalchbrenner,
Grefenstette, & Blunsom, 2014), and are currently being used
to develop multimodal semantic models.

Kiela and Bottou (2014) applied CNNs to extract the most
meaningful features from images from a large image database
(ImageNet; Deng et al., 2009) and then concatenated these
image vectors with linguistic word2vec vectors to produce
superior semantic representations compared to Bruni et al.
(2014); also see Silberer & Lapata, 2014). Lazaridou et al.
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(2015) constructed a multimodal word2vec model that was
trained to jointly learn visual and semantic representations
for a subset of words (using image-based CNNs and
word2vec), and this learning was then generalized to the entire
corpus, thus echoing Howell et al.’s (2005) intuitions of
“propagation of grounding.” Lazaridou et al. also demonstrat-
ed how the learning of abstract words might be grounded in
concrete scenes (e.g., freedom might be the inferred concept
from a scene of a person raising their hands in a protest), an
intuitively powerful proposal that can potentially demystify
the acquisition of abstract concepts but clearly needs further
exploration.

There is also some work within the domain of associative
network models of semantic memory that has focused on in-
tegrating different sources of information to construct the se-
mantic networks. One particular line of research has investi-
gated combining word-association norms with featural infor-
mation, co-occurrence information, and phonological similar-
ity to form multiplex networks (Stella, Beckage, & Brede,
2017; Stella, Beckage, Brede, & De Domenico, 2018). Stella
et al. (2017) demonstrated that the “layers” in such a multiplex
network differentially influence language acquisition, with all
layers contributing equally initially but the association layer
overtaking the word learning process with time. This proposal
is similar to the ideas presented earlier regarding how percep-
tual or sensorimotor experience might be important for
grounding words acquired earlier, and words acquired later
might benefit from and derive their representations through
semantic associations with these early experiences (Howell

et al., 2005; Riordan & Jones, 2011). In this sense, one can
think of phonological information and featural information
providing the necessary grounding to early acquired concepts.
This “grounding” then propagates and enriches semantic as-
sociations, which are easier to access as the vocabulary size
increases and individuals develop more complex semantic
representations.

Summary

Given the success of integrated and multimodal DSMs mem-
ory that use state-of-the-art modeling techniques to incorpo-
rate other modalities to augment linguistic representations, it
appears that the claim that semantic models are “amodal” and
“ungrounded” may need to be revisited. Indeed, the fact that
multimodal semantic models can adequately encode percep-
tual features (Bruni et al., 2014; Kiela & Bottou, 2014) and
can approximate human judgments of taxonomic and visual
similarity (Lazaridou et al., 2015), suggests that the lim-
itations of previous models (e.g., LSA, HAL etc.) were
more practical than theoretical. Of course, incorporating
other modalities besides vision is critical to this enter-
prise, and although there have been some efforts to
integrate sound and olfactory data into semantic repre-
sentations (Kiela, Bulat, & Clark, 2015; Kiela & Clark,
2015; Lopopolo & Miltenburg, 2015), these approaches
are limited by the availability of large datasets that cap-
ture other aspects of embodiment that may be critical
for meaning construction, such as touch, emotion, and

Fig. 8 A depiction of a typical convolutional neural network that detects
vertical edges in an image. A sliding filter is multiplied with the pixelized
image to produce a matrix, and then a pooling step combines results from
the convolved output into a smaller matrix by selecting the maximum

value from each 2 × 2 sub-matrix in the convolved matrix. This final 2 × 2
matrix represents the final representation of the image highlighting the
vertical edges
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taste. Investing resources in collecting and archiving
multimodal datasets (e.g., video data) is an important
next step for advancing research in semantic modeling
and broadening our understanding of the many facets
that contribute to the construction of meaning.

IV. Compositional Semantic Representations

An additional aspect of extending our understanding of mean-
ing by incorporating other sources of information is that
meaning may be situated within and as part of higher-order
semantic structures like sentence models, event models, or
schemas. Indeed, language is inherently compositional in that
morphemes combine to form words, words combine to form
phrases, and phrases combine to form sentences. Moreover,
behavioral evidence from sentential priming studies indicates
that the meaning of words depends on complex syntactic re-
lations (Morris, 1994). Further, it is well known that the mean-
ing of a sentence itself is not merely the sum of the words it
contains. For example, the sentence “John loves Mary” has a
different meaning to “Mary loves John,” despite both
sentences having the same words. Thus, it is important to
consider how compositionality can be incorporated into and
inform existing models of semantic memory.

Compositional linguistic approaches

Associative network models do not have any explicit way of
modeling compositionality, as they propose representations at
the word level that cannot be straightforwardly scaled to
higher-order semantic structures. On the other hand, distribu-
tional models have attempted to build compositionality into
semantic representations by assigning roles to different enti-
ties in sentences (e.g., in “Mary loves John,”Mary is the lover
and John is the lovee; Dennis, 2004, 2005), treating frequent
phrases as single units and deriving phrase-based representa-
tions (e.g., treating proper names like New York as a single
unit; Bannard, Baldwin, & Lascarides, 2003; Mikolov,
Sutskever, et al., 2013) or forming pair-pattern matrices
(e.g., encoding words that fulfil the pattern X cuts Y, i.e.,
mason: stone; Turney & Pantel, 2010). However, these ap-
proaches were either not scalable for longer phrases or lacked
the ability to model constituent parts separately (Mitchell &
Lapata, 2010). Vector addition (or averaging) is another com-
mon method of combining distributional semantic representa-
tions for different words to form higher-order vectors
(Landauer & Dumais, 1997), but this method is insensitive
to word order and syntax and produces a blend that does not
appropriately extract meaningful information from the constit-
uent words (Mitchell & Lapata, 2010).

An alternative method of combining word-level vectors is
through a matrix multiplication technique called tensor

products. Tensor products are a way of computing pairwise
products of the component word vector elements (Clark,
Coecke, & Sadrzadeh, 2008; Clark & Pulman, 2007;
Widdows, 2008), but this approach suffers from the curse of
dimensionality, i.e., the resulting product matrix becomes
very large as more individual vectors are combined.
Circular convolution is a special case of tensor products that
compresses the resulting product of individual word vectors
into the same dimensionality (e.g., Jones & Mewhort, 2007).
In a systematic review, Mitchell and Lapata (2010) examined
several compositional functions applied onto a simple high-
dimensional space model and a topic model space in a phrase
similarity rating task (judging similarity for phrases like vast
amount-large amount, start work-begin career, good place-
high point, etc.). Specifically, they examined how different
methods of combining word-level vectors (e.g., addition, mul-
tiplication, pairwise multiplication using tensor products, cir-
cular convolution, etc.) compared in their ability to explain
performance in the phrase similarity task. Their findings indi-
cated that dilation (a function that amplified some dimensions
of a word when combined with another word, by differentially
weighting the vector products between the two words) per-
formed consistently well in both spaces, and circular convo-
lution was the least successful in judging phrase similarity.
This work sheds light on how simple compositional opera-
tions (like tensor products or circular convolution) may not
sufficiently mimic human behavior in compositional tasks and
may require modeling more complex interactions between
words (i.e., functions that emphasize different aspects of a
word).

Recent efforts in the machine-learning community have
also attempted to tackle semantic compositionality using
Recursive NNs. Recursive NNs represent a generalization of
recurrent NNs that, given a syntactic parse-tree representation
of a sentence, can generate hierarchical tree-like semantic rep-
resentations by combining individual words in a recursive
manner (conditional on how probable the composition would
be). For example, Socher, Huval, Manning, and Ng (2012)
proposed a recursive NN to compute compositional meaning
representations. In their model, each word is assigned a vector
that captures its meaning and also a matrix that contains in-
formation about how it modifies the meaning of another word.
This representation for each word is then recursively com-
bined with other words using a non-linear composition func-
tion (an extension of work by Mitchell & Lapata, 2010). For
example, in the first iteration, the words very and goodmay be
combined into a representation (e.g., very good), which would
recursively be combined with movie to produce the final rep-
resentation (e.g., very good movie). Socher et al. showed that
this model successfully learned propositional logic, how ad-
verbs and adjectives modified nouns, sentiment classification,
and complex semantic relationships (also see Socher et al.,
2013). Other work in this area has explored multiplication-
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based models (Yessenalina & Cardie, 2011), LSTM models
(Zhu, Sobhani, & Guo, 2016), and paraphrase-supervised
models (Saluja, Dyer, & Ruvini, 2018). Collectively, this re-
search indicates that modeling the sentence structure through
NN models and recursively applying composition functions
can indeed produce compositional semantic representations
that are achieving state-of-the-art performance in some seman-
tic tasks.

Compositional Event Representations

Another critical aspect of modeling compositionality is being
able to extend representations at the word or sentence level to
higher-level cognitive structures like events or situations. The
notion of schemas as a higher-level, structured representation
of knowledge has been shown to guide language comprehen-
sion (Schank & Abelson, 1977; for reviews, see Rumelhart,
1991) and event memory (Bower, Black, & Turner, 1979;
Hard, Tversky, & Lang, 2006). The past few years have seen
promising advances in the field of event cognition (Elman &
McRae, 2019; Franklin et al., 2019; Reynolds, Zacks, &
Braver, 2007; Schapiro, Rogers, Cordova, Turk-Browne, &
Botvinick, 2013). Importantly, while most event-based ac-
counts have been conceptual, recent computational models
have attempted to explicitly specify processes that might gov-
ern event knowledge. For example, Elman and McRae (2019)
recently proposed a recurrent NN model of event knowledge,
trained on activity sequences that make up events. An activity
was defined as a collection of agents, patients, actions, instru-
ments, states, and contexts, each of which were supplied as
inputs to the network. The task of the network was to learn the
internal structure of an activity (i.e., which features correlate
with a particular activity) and also predict the next activity in
sequence. Elman and McRae showed that this network was
able to infer the co-occurrence dynamics of activities, and also
predict sequential activity sequences for new events. For ex-
ample, when presented with the activity sequence, “The
crowd looks around. The skater goes to the podium. The au-
dience applauds. The skater receives a ___”, the network ac-
tivated the words podium and medal after the fourth sentence
(“The skater receives a”) because both of these are contextu-
ally appropriate (receiving an award at the podium and receiv-
ing amedal), althoughmedalwas more activated than podium
as it was more appropriate within that context. This behavior
of the model was strikingly consistent with N400 amplitudes
observed for the same types of sentences in an ERP study
(Metusalem et al., 2012), indicating that the model was able
to make predictive inferences like human participants.

Franklin et al. (2019) recently proposed a probabilistic
model of event cognition. In their model, each visual scene
had a distributed vector representation, encoding the features
that are relevant to the scene, which were learned using an
unsupervised CNN. Additionally, scenes contained relational

information that linked specific roles to specific fillers via
circular convolution. A four-layer fully connected NN with
Gated Recurrent Units (GRUs; a type of recurrent NN) was
then trained to predict successive scenes in the model. Using
the Chinese Restaurant Process, at each timepoint, the model
evaluated its prediction error to decide if its current event
representation was still a good fit. If the prediction error was
high, the model chose whether it should switch to a different
previously-learned event representation or create an entirely
new event representation, by tuning parameters to evaluate
total number of events and event durations. Franklin et al.
showed that their model successfully learned complex event
dynamics and simulated a wide variety of empirical phenom-
ena. For example, the model’s ability to predict event bound-
aries from unannotated video data (Zacks, Kurby, Eisenberg,
& Haroutunian, 2011) of a person completing everyday tasks
like washing dishes, was highly correlated with grouped par-
ticipant data and also produced similar levels of prediction
error across event boundaries as human participants.

Summary

This section reviewed some early and recent work at modeling
compositionality, by building higher-level representations
such as sentences and events, through lower-level units such
as words or discrete time points in video data. One important
limitation of the event models described above is that they are
not models of semantic memory per se, in that they neither
contain rich semantic representations as input (Franklin et al.,
2019), nor do they explicitly model how linguistic or percep-
tual input might be integrated to learn concepts (Elman &
McRae, 2019). Therefore, while there have been advances in
modeling word and sentence-level semantic representations
(Sections I and II), and at the same time, there has been work
on modeling how individuals experience events (Section IV),
there appears to be a gap in the literature as far as integrating
word-level semantic structures with event-level representa-
tions is concerned. Given the advances in language modeling
discussed in this review, the integration of structured semantic
knowledge (e.g., recursive NNs), multimodal semantic
models, and models of event knowledge discussed in this
review represents a promising avenue for future research that
would enhance our understanding of how semantic memory is
organized to represent higher-level knowledge structures.
Another promising line of research in the direction of bridging
this gap comes from the artificial intelligence literature, where
neural network agents are being trained to learn language in a
simulated grid world full of perceptual and linguistic informa-
tion (Bahdanau et al., 2018; Hermann et al., 2017) using rein-
forcement learning principles. Indeed, McClelland, Hill,
Rudolph, Baldridge, and Schütze (2019) recently advocated
the need to situate language within a larger cognitive system.
Conceptualizing semantic memory as part of a broader
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integrated memory system consisting of objects, situations,
and the social world is certainly important for the success of
the semantic modeling enterprise.

V. Open Issues and Future Directions

The question of how concepts are represented, stored, and
retrieved is fundamental to the study of all cognition. Over
the past few decades, advances in the fields of psychology,
computational linguistics, and computer science have truly
transformed the study of semantic memory. This paper
reviewed classic and modern models of semantic memory that
have attempted to provide explicit accounts of how semantic
knowledge may be acquired, maintained, and used in cogni-
tive tasks to guide behavior. Table 1 presents a short summary
of the different types of models discussed in this review, along
with their basic underlying mechanisms. In this concluding
section, some open questions and potential avenues for future
research in the field of semantic modeling will be discussed.

Data availability and abundance

Within the context of semantic modeling, data is a double-
edged sword. On one hand, the availability of training data
in the form of large text corpora such as Wikipedia articles,
Google News corpora, etc. has led to an explosion of models
such as word2vec (Mikolov, Chen, et al., 2013), fastText
(Bojanowski et al., 2017), GLoVe (Pennington et al., 2014),
and ELMo (Peters et al., 2018), which have outperformed
several standard models of semantic memory traditionally
trained on lesser data. Additionally, with the advent of com-
putational resources to quickly process even larger volumes of
data using parallel computing, models such as BERT (Devlin
et al., 2019), GPT-2 (Radford et al., 2019), and GPT-3 (Brown
et al., 2020) are achieving unprecedented success in language
tasks like question answering, reading comprehension, and
language generation. At the same time, however, criticisms
of ungrounded distributional models have led to the emer-
gence of a new class of “grounded” distributional models.
These models automatically derive non-linguistic information
from other modalities like vision and speech using
convolutional neural networks (CNNs) to construct richer rep-
resentations of concepts. Even so, these grounded models are
limited by the availability of multimodal sources of data, and
consequently there have been recent efforts at advocating the
need for constructing larger databases of multimodal data
(Günther et al., 2019).

On the other hand, training models on more data is only
part of the solution. As discussed earlier, if models trained on
several gigabytes of data perform as well as young adults who
were exposed to far fewer training examples, it tells us little
about human language and cognition. The field currently

lacks systematic accounts for how humans can flexible use
language in different ways with the impoverished data they
are exposed to. For example, children can generalize their
knowledge of concepts fairly easily from relatively sparse data
when learning language, and only require a few examples of a
concept before they understand its meaning (Carey & Bartlett,
1978; Landau, Smith, & Jones, 1988; Xu & Tenenbaum,
2007). Furthermore, both children and young adults can rap-
idly learn new information from a single training example, a
phenomenon referred to as one-shot learning. To address this
particular challenge, several researchers are now building
models than can exhibit few-shot learning, i.e., learning con-
cepts from only a few examples, or zero-shot learning, i.e.,
generalizing already acquired information to never-seen be-
fore data. Some of these approaches utilize pretrained models
like GPT-2 and GPT-3 trained on very large datasets and
generalizing their architecture to new tasks (Brown et al.,
2020; Radford et al., 2019). While this approach is promising,
it appears to be circular because it still uses vast amounts of
data to build the initial pretrained representations. Other work
in this area has attempted to implement one-shot learning
using Bayesian generative principles (Lake, Salakhutdinov,
& Tenenbaum, 2015), and it remains to be seen how probabi-
listic semantic representations account for the generative and
creative nature of human language.

Errors and degradation in language processing

Another striking aspect of the human language system is its
tendency to break down and produce errors during cognitive
tasks. Analyzing errors in language tasks provides important
cues about the mechanics of the language system. Indeed,
there is considerable work on tip-of-the-tongue experiences
(James & Burke, 2000; Kumar, Balota, Habbert, Scaltritti, &
Maddox, 2019), speech errors (Dell, 1990), errors in reading
(Clay, 1968), language deficits (Hodges & Patterson, 2007;
Shallice, 1988), and age-related differences in language tasks
(Abrams & Farrell, 2011), to suggest that the cognitive system
is prone to interference, degradation, and variability.
However, computational accounts for how language may be
influenced by interference or degradation remain limited.
Early connectionist models did provide ways of lesioning
the network to account for neuropsychological deficits such
as dyslexia (Hinton & Shallice, 1991; Plaut & Shallice, 1993)
and category-specific semantic deficits (Farah & McClelland,
2013), and this general approach has recently been extended
to train a recurrent NN based on sensorimotor and co-
occurrence-based information and simulate behavioral pat-
terns observed in patients of semantic dementia and semantic
aphasia (Hoffman et al., 2018). However, current state-of-the-
art language models like word2vec, BERT, and GPT-2 or
GPT-3 do not provide explicit accounts for how neuropsycho-
logical deficits may arise, or how systematic speech and
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reading errors are produced. Furthermore, while there is con-
siderable empirical work investigating age-related differences
in language-processing tasks (e.g., speech errors, picture nam-
ing performance, lexical retrieval, etc.), it is unclear how cur-
rent semantic models would account for these age-related
changes, although some recent work has compared the seman-
tic network structure between older and younger adults
(Dubossarsky, De Deyne, & Hills, 2017; Wulff, Hills, &
Mata, 2018). Indeed, the deterministic nature of modern
machine-learning models is drastically different from the sto-
chastic nature of human language that is prone to errors and
variability (Kurach et al., 2019). Computational accounts of
how the language system produces and recovers from errors
will be an important part of building machine-learning models
that can mimic human language.

Communication, social collaboration, and evolution

Another important aspect of language learning is that humans
actively learn from each other and through interactions with
their social counterparts, whereas the majority of computa-
tional language models assume that learners are simply pro-
cessing incoming information in a passive manner (Günther
et al., 2019). Indeed, there is now ample evidence to suggest
that language evolved through natural selection for the pur-
poses of gathering and sharing information (Pinker, 2003, p.
27; DeVore & Tooby, 1987), thereby allowing for personal
experiences and episodic information to be shared among
humans (Corballis, 2017a, 2017b). Consequently, under-
standing how artificial and human learners may communicate
and collaborate in complex tasks is currently an active area of
research. For example, some recent work in natural language
processing has attempted to model interactions and search
processes in collaborative language games, such as
Codenames (Kumar, Steyvers, & Balota, under review;
Shen, Hofer, Felbo, & Levy, 2018, also see Kim,
Ruzmaykin, Truong, & Summerville, 2019), Password (Xu
& Kemp, 2010), and navigational games (Wang, Liang, &
Manning, 2016), and suggested that speakers and listeners
do indeed calibrate their responses based on feedback from
their conversational partner. Another body of work currently
being led by technology giants like Google and OpenAI is
focused on modeling interactions in multiplayer games like
football (Kurach et al., 2019) and Dota 2 (OpenAI, 2019).
This work is primarily based on reinforcement learning prin-
ciples, where the goal is to train neural network agents to
interact with their environment and perform complex tasks
(Sutton & Barto, 1998). Although these research efforts are
less language-focused, deep reinforcement learning models
have also been proposed to specifically investigate language
learning. For example, Li et al. (2016) trained a conversational
agent using reinforcement learning, and a reward metric based
on whether the dialogues generated by the model were easily

answerable, informative, and coherent. Other learning-based
models have used adversarial training, a method by which a
model is trained to produce responses that would be indistin-
guishable from human responses (Li et al., 2017), a modern
version of the Turing test (also see Spranger, Pauw, Loetzsch,
& Steels, 2012). However, these recent attempts are still fo-
cused on independent learning, whereas psychological and
linguistic research suggests that language evolved for pur-
poses of sharing information, which likely has implications
for how language is learned in the first place. Clearly, this line
of work is currently in its nascent stages and requires addi-
tional research to fully understand and model the role of com-
munication and collaboration in developing semantic
knowledge.

Multilingual semantic models

A computational model can only be considered a model of
semantic memory if it can be broadly applied to any semantic
memory system and does not depend on the specific language
of training. Therefore, an important challenge for computa-
tional semantic models is to be able to generalize the basic
mechanisms of building semantic representations from
English corpora to other languages. Some recent work has
applied character-level CNNs to learn the rich morphological
structure of languages like Arabic, French, and Russian (Kim,
Jernite, Sontag, & Rush, 2016; also see Botha & Blunsom,
2014; Luong, Socher, & Manning, 2013). These approaches
clearly suggest that pure word-level models that have occu-
pied centerstage in the English languagemodeling community
may not work as well in other languages, and subword infor-
mationmay in fact be critical in the language learning process.
More recent embeddings like fastText (Bojanowski et al.,
2017) that are trained on sub-lexical units are a promising step
in this direction. Furthermore, constructing multilingual word
embeddings that can represent words frommultiple languages
in a single distributional space is currently a thriving area of
research in the machine-learning community (e.g., Chen &
Cardie, 2018; Lample, Conneau, Ranzato, Denoyer, &
Jégou, 2018). Overall, evaluating modern machine-learning
models on other languages can provide important insights
about language learning and is therefore critical to the success
of the language modeling enterprise.

Revisiting benchmarks for semantic models

A critical issue that has not received adequate attention in the
semantic modeling field is the quality and nature of bench-
mark test datasets that are often considered the final word for
comparing state-of-the-art machine-learning-based language
models. The General Language Understanding Evaluation
(GLUE;Wang et al., 2018) benchmark was recently proposed
as a collection of language-based task datasets, including the
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Corpus of Linguistic Acceptability (CoLA; Warstadt et al.,
2018), the Stanford Sentiment Treebank (Socher et al.,
2013), and the Winograd Schema Challenge (Levesque,
Davis, & Morgenstern, 2012), among a total of 11 language
tasks. Other popular benchmarks in the field include decaNLP
(McCann, Keskar, Xiong, & Socher, 2018), the Stanford
Question Answering Dataset (SQuAD; Rajpurkar et al.,
2018), Word Similarity Test Collection (WordSim-33;
Finkelstein et al., 2002) among others. While these bench-
marks offer a standardized method of comparing performance
across models, several of the tasks included within these bench-
mark datasets either consist of crowdsourced information collect-
ed from an unknown number of participants (e.g., SQuAD),
scores or annotations based on very few human participants
(e.g., 16 participants assessed similarity for 200 word-pairs in
the WordSim-33 dataset), or sometimes datasets with no
established human benchmark (e.g., the GLUE Diagnostic
dataset, Wang et al., 2018). This is in contrast to more psycho-
logically motivated models (e.g., semantic network models,
BEAGLE, Temporal Context Model, etc.), where model perfor-
mance is often compared against human baselines, for example
in predicting accuracy or response latencies to perform a partic-
ular task, or through large-scale normed databases of human
performance in semantic tasks (e.g., English Lexicon Project;
Balota et al., 2007; Semantic Priming Project; Hutchison et al.,
2013). Therefore, to evaluate whether state-of-the-art machine
learning models like ELMo, BERT, and GPT-2 are indeed plau-
sible psychological models of semantic memory, it is important
to not only establish human baselines for benchmark tasks in the
machine-learning community, but also explicitly compare model
performance to human baselines in both accuracy and response
times.

There have been some recent efforts in this direction. For
example, Bender (2015) tested over 400 Amazon Mechanical
Turk users on the Winograd Schema Challenge (a task that
requires the use of world knowledge, commonsense reasoning
and anaphora resolution) and provided quantitative baselines
for accuracy and response times that should provide useful
benchmarks to compare machine-learning models in the ex-
tent to which they explain human behavior (also see
Morgenstern, Davis, & Ortiz, 2016). Further, Chen et al.
(2017) compared the performance of the word2vec model
against human baselines of solving analogies using relational
similarity judgments to show that word2vec successfully cap-
tures only a subset of analogy relations. Additionally,
Lazaridou, Marelli, and Baroni (2017) recently compared
the performance of their multimodal skip-gram model
(Lazaridou et al., 2015) against human relatedness judgments
to visual and word cues for newly learned concepts to show
that the model performed very similar to human participants.
Despite these promising studies, such efforts remain limited
due to the goals of machine learning often being application-
focused and the goals of psychology being explanation-

focused. Explicitly comparing model performance to behav-
ioral task performance represents an important next step to-
wards reconciling these two fields, and also combining repre-
sentational and process-based accounts of how semantic
memory guides cognitive behavior.

Prioritizing mechanistic accounts

Despite the lack of systematic comparisons to human base-
lines, an important takeaway that emerges from this review is
that several state-of-the-art language models such as
word2vec (Mikolov, Chen, et al., 2013, Mikolov, Sutskever,
et al., 2013), ELMo (Peters et al., 2018), BERT (Devlin et al.,
2019), GPT-2 (Radford et al., 2019), and GPT-3 (Brown et al.,
2020) do indeed show impressive performance across a wide
variety of semantic tasks such as summarization, question
answering, and sentiment analysis. However, despite their
success, relatively little is known about how these models
are able to produce this complex behavior, and exactly what
is being learned by them in their process of building semantic
representations. Indeed, there is some skepticism in the field
about whether these models are truly learning something
meaningful or simply exploiting spurious statistical cues in
language, which may or may not reflect human learning. For
example, Niven and Kao (2019) recently evaluated BERT’s
performance in a complex argument-reasoning comprehen-
sion task, where world knowledge was critical for evaluating
a particular claim. For example, to evaluate the strength of the
claim “Google is not a harmful monopoly,” an individual may
reason that “people can choose not to use Google,” and also
provide the additional warrant that “other search engines do
not redirect to Google” to argue in favor of the claim. On the
other hand, if the alternative, “all other search engines redirect
to Google” is true, then the claim would be false. Niven and
Kao found that BERT was able to achieve state-of-the-art
performance with 77% accuracy in this task, without any ex-
plicit world knowledge. For example, knowing what a mo-
nopoly might mean in this context (i.e., restricting consumer
choices) and that Google is a search engine are critical pieces
of knowledge required to evaluate the claim. Further analysis
showed that BERT was simply exploiting statistical cues in
the warrant (i.e., the word “not”) to evaluate the claim, and
once this cue was removed through an adversarial test dataset,
BERT’s performance dropped to chance levels (53%). The
authors concluded that BERT was not able to learn anything
meaningful about argument comprehension, even though the
model performed better than other LSTM and vector-based
models and was only a few points below the human baseline
on the original task (also see Zellers, Holtzman, Bisk, Farhadi,
& Choi, 2019, for a similar demonstration on a commonsense-
based inference task).

These results are especially important if state-of-the-art
models like word2vec, ELMo, BERT or GPT-2/3 are to be
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considered plausible models of semantic memory in any
manner and certainly underscore the need to focus on
mechanistic accounts of model behavior. Understanding
how machine-learning models arrive at answers to complex
semantic problems is as important as simply evaluating
how many questions the model was able to answer.
Humans not only extract complex statistical regularities
from natural language and the environment, but also form
semantic structures of world knowledge that influence their
behavior in tasks like complex inference and argument
reasoning. Therefore, explicitly testing machine-learning
models on the specific knowledge they have acquired will
become extremely important in ensuring that the models
are truly learning meaning and not simply exhibiting the
“Clever Hans” effect (Heinzerling, 2019). To that end, ex-
plicit process-based accounts that shed light on the cogni-
tive processes operating on underlying semantic represen-
tations across different semantic tasks may be useful in
evaluating the psychological plausibility of different
models. For instance, while distributional models perform
well on a broad range of semantic tasks on average
(Bullinaria & Levy, 2007; Mandera et al., 2017), it is un-
clear why their performance is better on tasks like syno-
nym detection (Bullinaria & Levy, 2007) and similarity
judgments (Bruni et al., 2014) and worse for semantic
priming effects (Hutchison, Balota, Cortese, & Watson,
2008; Mandera et al., 2017), free association (Griffiths
et al., 2007; Kenett et al., 2017), and complex inference
tasks (Niven & Kao, 2019). A promising step towards un-
derstanding how distributional models may dynamically
influence task performance was taken by Rotaru,
Vigliocco, and Frank (2018), who recently showed that
combining semantic network-based representations de-
rived from LSA, GloVe, and word2vec with a dynamic
spreading-activation framework significantly improved
the predictive power of the models on semantic tasks. In
light of this work, testing competing process-based models
(e.g., spreading activation, drift-diffusion, temporal con-
text, etc.) and structural or representational accounts of
semantic memory (e.g., prediction-based, topic models,
etc.) represents the next step in fully understanding how
structure and processes interact to produce complex
behavior.

Conclusion

The nature of knowledge representation and the processes
used to retrieve that knowledge in response to a given task
will continue to be the center of considerable theoretical and
empirical work across multiple fields including philosophy,
linguistics, psychology, computer science, and cognitive neu-
roscience. The ultimate goal of semantic modeling is to

propose one architecture that can simultaneously integrate
perceptual and linguistic input to form meaningful semantic
representations, which in turn naturally scales up to higher-
order semantic structures, and also performs well in a wide
range of cognitive tasks. Given the recent advances in devel-
oping multimodal DSMs, interpretable and generative topic
models, and attention-based semantic models, this goal at least
appears to be achievable. However, some important chal-
lenges still need to be addressed before the field will be able
to integrate these approaches and design a unified architecture.
For example, addressing challenges like one-shot learning,
language-related errors and deficits, the role of social interac-
tions, and the lack of process-based accounts will be important
in furthering research in the field. Although the current model-
ing enterprise has come very far in decoding the statistical
regularities humans use to learn meaning from the linguistic
and perceptual environment, no single model has been suc-
cessfully able to account for the flexible and innumerable
ways in which humans acquire and retrieve knowledge.
Ultimately, integrating lessons learned from behavioral stud-
ies showing the interaction of world knowledge, linguistic and
environmental context, and attention in complex cognitive
tasks with computational techniques that focus on quantifying
association, abstraction, and prediction will be critical in de-
veloping a complete theory of language.
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