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Abstract
Working memory maintains information in a readily accessible state and has been shown to degrade as the length of the retention
interval increases. Previous research has suggested that this decline is attributable to changes in precision as well as sudden loss of
item representations. Here, by measuring trial-to-trial variations in performance, we examined an orthogonal distinction between
the maximum number of items that an individual can store, and the probability of achieving that maximum. Across two
experiments, we replicated the finding that performance declines after long (10 s) retention intervals, as well as past observations
that forgetting was due to probabilistic dropping of individual items rather than all-or-none losses of the stored memories.
Critically, longer retention intervals did not reduce the maximum amount of information that could be stored in workingmemory.
Instead, lower attentional control accounted for a decreased probability of maintaining the maximum number of items in working
memory. Thus, longer retention intervals impact working memory storage via fluctuations in attentional control that lower the
probability of achieving a stable maximum storage capacity.
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Visual workingmemory facilitates the temporarymaintenance of
information over time for use in ongoing cognitive processes.
The majority of working memory research has examined perfor-
mance over short (~1 second) retention intervals. However, there
is growing evidence that suggests that working memory perfor-
mance declines after longer (~10 seconds) retention intervals
(Donkin, Nosofsky, Gold, & Shiffrin, 2015; Rademaker, Park,
Sack, & Tong, 2018; Zhang& Luck, 2009).1 These studies have

mostly focused on whether this decline in performance is due to
changes in precision or due to the sudden loss of information
over time. In the present work, however, we will focus on an
orthogonal distinction that further characterizes how increasing
retention intervals affect performance. Specifically, we will dis-
sociate how attentional control and working memory capacity
contribute to working memory performance over long retention
intervals.

Previous work has investigated the intricate relationship
between attention and working memory performance
(Adam, Mance, Fukuda, & Vogel, 2015; Awh, Vogel, &
Oh, 2006; De Fockert, Rees, Frith, & Lavie1, 2001;
deBettencourt, Keene, Awh, & Vogel, 2019). This work has
provided evidence that trial-by-trial variability in attention
contributes to individual differences in working memory per-
formance. One such study deployed a whole report procedure,
in which participants reported the identity of each item from
the memory display on every trial (Adam et al., 2015). They
found that differences in visual working memory performance
both across and within individuals over short retention inter-
vals were well described by a combination of two separate
parameters: Kmax, maximum working memory capacity,
and a, a factor related to attentional control (Adam et al.,
2015). Given that these two parameters, Kmax and a, explain

1 Of note, there are also a handful of studies have found no effect of retention
interval length on working memory performance (Lewandowsky & Oberauer,
2009; Oberauer & Lewandowsky, 2008).
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performance variability at short retention intervals, in our
study, we are interested in whether the decline in performance
observed after long retention intervals is due to changes in
Kmax, a, or some combination of these two parameters.

Another unresolved concern is that we do not know how
long retention intervals act on multiple representations be-
cause previous research has utilized partial report tasks, in
which a single item from the display is randomly chosen to
be tested. In particular, there are two possible alternatives for
performance declines at long retention intervals: (1) partici-
pants could drop all information from working memory (com-
plete drop) or (2) participants could drop individual items
(partial drop). Longer retention intervals could increase the
probability that participants completely disengage from the
task, causing participants to lose all information on a subset
of trials. Previous research has found that information is lost
suddenly and completely when participants have to maintain
information for extended amounts of time (Zhang & Luck,
2009). This research investigated performance by probing
one item at a time, so they could not draw conclusions about
the maintenance of all items on a single trial. Nevertheless,
their findings suggest that participants could suddenly and
completely lose all information from working memory when
they have to maintain information over longer (10 s) amounts
of time. This hypothesis aligns with the complete drop model.
Alternately, the efficiency of attentional control could de-
crease over time. This could cause a partial loss of information
over long retention intervals. One task that is well suited to
examine representations of multiple items on a single trial is a
discrete whole report workingmemory task. This task requires
participants to click among discrete colors to report the iden-
tity of each item in the display (Adam et al., 2015).
Performance on discrete whole report tasks can range from
getting no items correct, to getting all items correct, or any-
thing in between. Across individuals, average discrete whole
report performance is highly correlated with performance on
traditional change detection tasks, where a single item is ran-
domly probed (Adam et al., 2015). However, the discrete
whole report task has substantial advantages because it mea-
sures memory for each item on a multi-item display. This
allows us to assess whether changes in performance after long
retention intervals are due to completely dropping all informa-
tion from working memory or due to an increased likelihood
of dropping individual items.

In the current study, we had participants perform a discrete
whole report taskwhile maintaining information over long (10
s) and short (1.5 s) retention intervals. To analyze the data, we
designed a computational model that simultaneously solved
for attentional control (a) and working memory capacity
(Kmax) using grid search. By simultaneously fitting both of
these parameters, we improved upon and extended previous
research (Adam et al., 2015). We were interested in (1) char-
acterizing how the distributions in the number of items

remembered varied across short vs. long retention intervals,
and (2) using these distributions to model how attention and
working memory capacity were impacted by the length of the
retention interval.

Experiment 1

In Experiment 1, we characterized trial-by-trial fluctuations in
the number of items maintained over time, while
distinguishing between effects on the maximum number of
items that could be stored, and an attention parameter that
quantifies the probability that participants would achieve that
maximum. Participants performed a discrete whole-report task
which probed memory for each item on every trial, following
either short (1.5 s) or long (10 s) retention intervals. We had
participants maintain information over short (1.5 s) and long
retention intervals (10 s) in order to determine whether longer
retention intervals lead to declines in maximum working
memory capacity (Kmax), or the probability of achieving
Kmax (a), which we will refer to as attentional control.
Previous research has numerically solved for Kmax and a by
running simulations (Adam et al., 2015). Here, we solved for
these two parameters using a grid search. In addition, we ex-
amined whether failures to achieve maximum capacity were
best characterized by a complete drop of all information from
working memory, or a partial drop of some items while main-
taining other items.

Methods

Participants Twenty adults participated in Experiment 1 (eight
male, 19–31 years, mean 23.25 years). Two additional partic-
ipants were excluded for failing to complete the experiment in
the allotted time (2 h), resulting in an insufficient number of
trials per condition (< 180). The final sample size for both
experiments was selected a priori based on previous discrete
whole-report sample sizes (Adam, Vogel, & Awh, 2017). All
participants in both experiments received payment (US $20,
$10/h) or course credit (two credits, one credit/h).
Additionally, all participants reported normal or corrected-
to-normal visual acuity and color vision and provided in-
formed consent to a protocol approved by the University of
Chicago Institutional Review Board.

Stimuli Participants encoded arrays of six differently colored
squares (subtending approximately 1°×1°) on a gray back-
ground. Each square was one of nine possible colors without
replacement (red, green, blue, yellow, magenta, cyan, white,
black, orange). Therefore, each memory array consisted of six
squares of six different colors. For the response screen, mul-
ticolored squares appeared that were a 3×3 grid of all nine
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colors. Participants were instructed to fixate on a black central
dot (0.43°).

Apparatus Stimuli were generated in MATLAB (The
MathWorks, Natick, MA, USA) using the Psychophysics
toolbox (Brainard, 1997). Participants were seated approxi-
mately 67 cm from a 24-inch LCD BenQ monitor. Squares
could appear within approximately a 20°×20° area on the
screen. To monitor compliance with the articulatory suppres-
sion instructions, audio was recorded through MATLAB with
an Eberry microphone.

Procedure Participants completed a discrete whole-report vi-
sual working memory task with articulatory suppression (Fig.
1a). Prior to the onset of the memory array, five randomly
generated digits appeared above the fixation dot. Participants
said the numbers out loud at least once before pressing
spacebar to begin the trial and continued to repeat the numbers
until the response screen appeared. Participants encoded
memory arrays of six colored squares that appeared briefly
(150 ms), and then maintained these squares over a blank
retention interval. Critically, the retention interval was either
short (1.5 s, 50% of trials) or long (10 s, 50% of trials). After
the retention interval, a response screen appeared with multi-
colored squares at the location of each original square. To
respond, participants selected the color of the original square
at each location using the mouse. Participants were required to
respond to all six items before the trial would proceed, and all
squares remained on the screen until the participant finished
responding. Participants completed a block of 60 trials and
then took a 30-s break. Within each block, the retention inter-
val length was held constant (short or long). In total, partici-
pants completed 360 trials.

Analysis Working memory performance was quantified per
trial as the number of items for which the correct color was
selected, ranging from 0 (no items correct) to 6 (all items
correct). Across trials, we calculated the mean number of cor-
rect responses.

Computational models In order to describe performance, we
applied a family of computational models that have two pa-
rameters, one for attentional control (a) and one for maximum
working memory capacity (Kmax) (Fig. 1b–f). These models
assume that performance can be described using (1) a stable
maximal capacity (2) attentional control and (3) strategic
guessing.

In these models, each participant has a stable maximal ca-
pacity. In line with work that suggests that participants re-
member entire objects (L), capacity is an integer value that
can vary from one item to the maximum number of items in
the display, with a step size of one (Kmax∈[1,2,3,4,5,6]). On
any given trial (i), participants maintained some integer

number of items (Ni) in memory, ranging from 0 to their
maximal capacity (Ni∈[0,1, 2, … , Kmax]). To investigate
whether an integer value was critical for these results, we re-
ran the model using a smaller step size of (ΔKmax = 0.5) and
found the same pattern of results.

We further assumed participants would strategically guess
for the remaining items not maintained inmemory. That is, for
a given trial (i), participants maintained an integer number of
items with the correct color in mind (Ni). For the remaining
items (6−Ni), we used a binomial distribution to model strate-
gic guessing from among the remaining colors (9−Ni).

These models also include a term for attentional control
throughout the delay. Attentional control was operationalized
as the probability of maintaining the maximum number of
items (Kmax) for each trial.

In particular, this model distinguishes between working
memory performance and working memory capacity.
Maximal working memory capacity (Kmax) is the maxi-
mum amount of information that an individual can main-
tain in working memory at any one moment. Note that
this operationalization of maximal working memory ca-
pacity is related to, but distinct from, traditional measures
of average performance, i.e., K (Luck & Vogel, 2013;
Cowan, 2010). On each trial, the number of correctly re-
ported items can range from 0 to 6 items. Participants
could correctly report more items than Kmax items if they
correctly guess the color of any of the items that they did
not maintain in working memory. They can report fewer
items than their Kmax if they have low attention control
(a) on that trial. We examined two conceptualizations of
attentional control in the different models:

In the complete drop model, attentional control was effec-
tively binary: participants either maintained their maximum
number of items (Ni=Kmax), or they had no information at
all (Ni=0). This model effectively reduces to a Bernoulli dis-
tribution over values zero and Kmax with the probability of
Kmax being one minus the probability of potential failure.

In the partial drop model, the number of maintained
items ranges over the integer numbers from 0 to Kmax. In
this situation in statistics, we would typically apply the
binomial distribution, which gives the probability distri-
bution of zero to Kmax successes given a constant prob-
ability of success on each trial. However, we believe that
the probability of success throughout an experiment is not
constant. Prior evidence has shown that attentional control
fluctuates over the course of an experiment and these at-
tention fluctuations lead to fluctuations in working mem-
ory performance (deBettencourt et al., 2019). Therefore,
we chose to use the beta-binomial distribution because
this allowed the probability of success to also follow a
probability distribution, rather than remain constant on
each trial. For n trials, this beta-binomial distribution is
characterized by a beta function, B(α, β), and a binomial
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coefficient n
Kmax

� �
, with the following probability density

function:

P Kmaxjn;α;βð Þ ¼
B Kmaxþ α; n−Kmaxþ βð Þ n

Kmax

� �

B α;βð Þ

Model fitting We computed the probability distributions for
the complete and partial drop models over the 2D grid space

of the free parameters for eachmodel:Kmax∈[1,6] (with a step
size of 1) and a∈[0,10] (with a step size of 0.01). The complete
drop model had one free parameter, p, which represented the
probability of disengagement. The partial drop model also had
one free parameter, α, which represents the robustness of at-
tentional control. Alpha determines the mean of the beta dis-
tribution for p by ean ¼ α

αþβ . For this model, we kept the β

parameter equal to 1, so that the beta distributionwas [α, 1] for
each trial. We were interested in the mean of the distribution,

Fig. 1 Task design and computational model. a Discrete whole-report
working memory task for Experiment 1. At the start of each trial, five
digits appeared on the screen. Participants said these numbers at least
once before trial initiation and repeated them continuously until the
response screen appeared. Participants initiated each trial by pressing
spacebar, and then a memory array of six colored squares appeared
briefly (150 ms). The critical manipulation was the length of the
retention interval, either short (1.5 s) or long (10 s). At the end of the
retention interval, a response screen appeared with multicolored squares
at the location of each original square. Participants selected the color of
each square using the mouse. Participants were required to respond to all
six items before the trial would proceed, and the multicolored squares
remained on the screen until the participant finished responding. b Both
models assume that participants have a stable maximal capacity, plus
guessing. These models assume that participants strategically guessed
the colors of the items that they did not maintain in memory. If a

participant remembers three items, for example, then they are able to
narrow the possible colors of the remaining three items from 1/9 to 1/6
possible colors. If participants correctly guessed the colors of the items
that they did not maintain inmemory, then working memory performance
on that trial could exceed working memory capacity (Kmax). c In the
partial drop model, attentional control is distributed according to a beta-
binomial function. d The partial drop model is unimodal. It reflects a
partial loss of information, as participants can drop individual items, as
opposed to the whole array. e In the complete drop model, attentional
control is distributed according to a Bernoulli function. Attention to the
array is therefore essentially all-or-none, as participants are either fully
engaged and remember Kmax items, or they are fully disengaged and do
not remember any of the items. f In the complete drop model,
performance typically reflects a bimodal distribution. The distribution
becomes unimodal if participants have extremely low working memory
capacities
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so we fixed β equal to 1 and kept α free. By fixing β to 1, we
assume that attentional control fluctuates quite a bit, especially
when the success probability is intermediate. We then deter-
mined the best-fitting model to each individual participant’s
performance distributions by calculating which combination
of parameters produced the largest log likelihood (LL). We
calculated LL separately for each participant and model. We
then sum the LL for all participants for a given model (e.g.,
LLcomplete). To compare the complete and partial drop models,
we used the Bayesian Information Criterion (BIC). We calcu-
lated the difference in BIC (ΔBIC) values between the two
models. In this calculation, the penalty term of the BIC drops
out because both models have the same number of free pa-
rameters (i.e., 1). We used the following formula to calculate
the difference in BIC values between the two models:

ΔBIC ¼ −2� LLcomplete−LLpartial
� �

LLcomplete is the log-likelihood of the complete drop model,
and LLpartial is the log-likelihood of the partial drop model.
Positive values of ΔBIC indicate a better fit for the partial than
the complete drop model.

To further investigate performance, we fit two combined
partial drop models that aggregated across data from short and
long retention intervals with three total parameters. Here, we
manipulated which parameter (a orKmax) was fixed or free to
vary across long and short retention intervals. In the first mod-
el (“a-free model”), attentional control (a) was free to vary
across retention intervals, while maximum working memory
capacity (Kmax) was fixed. In the second model (“Kmax-free
model”), maximum working memory capacity (Kmax) was
free to vary across retention intervals, while attentional control
(a) was fixed. We used the following formula to calculate the
difference in BIC values between these two models:

ΔBIC ¼ −2� LLKmax−free−LLa−free
� �

LLKmax − free is the log-likelihood of the Kmax-free model,
and LLa − free is the log-likelihood of the a-free model. Positive
values of ΔBIC indicate a better fit for the a-free than the
Kmax-free model.

Statistics Results are reported as the mean plus or minus the
standard deviation, unless noted otherwise. Statistics in all
experiments were computed using Student’s two-tailed paired
t tests. Effect sizes are reported as Cohen’s d.

Results

Behavioral performanceWorking memory performance (Fig.
2) was operationalized as the number of items correct per trial.
Average working memory performance (n) was calculated for
each individual across all trials. If participants had been ran-
domly guessing, chance performance would equal the

probability of getting any item correct (1 of 9) multiplied by
the number of items (6, chance = 0.67). Working memory
performance across both conditions was well above chance
(n = 2.40 ± 0.85; t(19) = 10.00, p < 0.001).

The critical question was how performance differed over
time (long vs. short retention intervals; Fig. 2a). In line with
prior work, we hypothesized that performance would decline
following long retention intervals (Zhang & Luck, 2009). We
calculated the average number of correctly remembered items
separately for trials with long and short retention intervals (n-
long = 2.15 ± 1.00, nshort = 2.66 ± 0.59). Indeed, participants
remembered significantly fewer items after long vs. short re-
tention intervals (t(19) = 4.35, p < 0.001, Cohen’s d = 0.62).

Computational modelingWe developed an analytical solution
to two computational models that could describe performance
distributions: complete and partial drop models. These
models make distinct predictions about the distribution of
the number of correct responses across trials. The complete
drop model was “all-or-none,” such that participants either
performed at their maximum capacity and remembered
Kmax items, or they had no information about any of the items
in the array, and, thus, maintained zero items. The partial drop
model, on the other hand, assumed graded performance, such
that participants could maintain anywhere from zero to Kmax
items in working memory on any given trial. When Kmax is
equal to 0 or 1, these models make similar predictions.

First, we determined whether the complete or partial drop
model better explained our data. To do this, we compared the
fits between the models using a goodness-of-fit measure, BIC.
We took the difference between BIC values for the partial
drop and the complete drop models, so positive ΔBIC values
indicate that the data are better fit by the partial drop model,
whereas negative ΔBIC values indicate better fit by the com-
plete drop model. In this experiment, both models made rea-
sonable fits to data (Fig. 2b, c). However, data from both short
and long retention intervals (Fig. 2b, c) were better fit by the
partial drop model (ΔBIClong = 1042.86, ΔBICshort = 1298.73)
than the complete drop model. For the short retention inter-
vals, 19 out of 20 participants were better fit by the partial drop
model and 1 out of 20 participants was better fit by the com-
plete drop model. For long retention intervals, 15 out of 20
participants were better fit by the partial drop model, 3 out of
20 participants were better fit by the complete dropmodel, and
2 out of 20 participants were equally well fit by both models.
This suggests that performance fluctuates along a continuum
and these fluctuations affect the maintenance of individual
items in an array.

Finally, the central question of interest was whether poorer
performance following long retention intervals was best ex-
plained by a reduction in maximumworkingmemory capacity
or a reduction in the probability of achieving that maximum.
The partial drop model showed that attentional control was
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reliably lower for long relative to short retention intervals (a-
long = 1.28 ± 2.20, ashort = 2.44 ± 2.84; t(19) = 3.30, p = 0.004;
Cohen’s d = 0.74). However, there was not a reliable differ-
ence inmaximum capacity (Kmaxlong = 3.55 ± 0.55,Kmaxshort
= 3.20 ± 0.36; t(19) = − 1.92, p = 0.07; Cohen’s d = − 0.43).
These results suggest that the performance decrements after
long retention intervals reflect an inability to maintain atten-
tional control throughout the longer retention intervals, not a
reduction in the maximum number of items that could be
stored in working memory.

To more formally investigate how performance varied
across long and short retention intervals, we fit two combined
models. We alternated which parameter (a or Kmax) was free
to vary across retention interval length. In the first model (a-
free model), we allowed attentional control to vary across
retention intervals while maximum working memory capacity
was a fixed value for each individual (a-free, Kmax-fixed). In

the second model (Kmax-free model), we allowed maximum
working memory capacity to vary across retention intervals
while attentional control was a fixed value for each individual
(a-fixed,Kmax-free). We observed that the a-free model better
fit the data (ΔBIC = 17.15). This provides further evidence for
the finding that attentional control (a) varied across short and
long retention intervals, whereas maximum working memory
capacity (Kmax) was stable.

Discussion

We developed a task that manipulated the length of the reten-
tion interval in a discrete whole-report working memory par-
adigm. Average performance declined after long vs. short re-
tention intervals.We developed twomodels: the complete and
the partial dropmodels, that both describe the number of items
remembered as a result of some combination of attentional

Fig. 2 Behavioral results and computational modeling fits for
Experiment 1. a Working memory performance for short (green) vs.
long (blue) retention intervals. Each dot represents the mean number
correct in one condition for one participant. A line connects data from
the same participant. The horizontal black line depicts the mean across
participants. The black error bars reflect the standard error of the mean.
The shaded area reflects the density across participants. b Histogram of
the difference between the BIC values (ΔBIC) in the complete and partial
drop models for each participant. Positive values indicate a better fit for
the partial drop model. The bars are centered within each bin (bin size =

10) for the short (green) and long (blue) retention intervals. c The green
bars of the histogram depict the data from short retention interval trials.
The height of each bar is the proportion of trials for each number of
correct responses. Black error bars are the standard error of the mean
across participants. The lines reflect the model fits using the best fitting
parameters: complete drop model (purple) and partial drop model (red).
Each model was fit independently for each participant, and error bars
reflect the standard error of the mean of the best-fitting parameters
across participants. d The data (blue bars) and best fitting models
(purple and red lines) from long retention interval trials
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control and maximum working memory capacity. We found
that the partial drop model better accounted for performance,
which suggests that the amount of information in working
memory across trials varied continuously. Additionally, the
attentional control parameter reliably differed across retention
intervals, such that it was lower after long retention intervals.
However, the maximum working memory capacity parameter
was equivalent for long and short retention intervals. Thus,
decrements in performance after long retention intervals are
due to a graded decline in sustaining attentional control, which
leads to loss of individual items from working memory.

Experiment 2

In Experiment 2, we sought to replicate Experiment 1 and
extend our understanding of the role of attentional control
during working memory maintenance. We interpreted the
findings from Experiment 1 as reflecting variations in sustained
attentional control during retention of information in working
memory. In Experiment 1, however, we manipulated retention
interval length across blocks, so, the differences that we found
in Experiment 1 could be due to differences in preparation. For
example, if participants know that they are going to have to
retain information over a very long retention interval, they
could better prepare than if they did not know the duration
of the upcoming retention interval. To further eliminate po-
tential differences in preparation across blocks, we intermixed
trials of short and long retention intervals within blocks.

Methods

Participants Twenty adults participated in Experiment 2 (ten
male, 18–33 years, mean 24.05 years). Four additional partic-
ipants were eliminated for technical issues with the experi-
mental display code and four additional participants were ex-
cluded from analyses for leaving the experiment early.

Stimuli and apparatus Same as Experiment 1.

Procedure Same as Experiment 1, except short and long re-
tention intervals were randomly inter-mixed across trials with-
in each block. Participants completed a block of 48 trials and
then took a 30-s break. In total, participants completed 288
trials.

Analysis, computational modeling, and statistics Same as
Experiment 1.

Results

Behavioral performance Just as in Experiment 1, working
memory performance (Fig. 3) was operationalized as the

number of items correct per trial, and average performance
(n) was calculated for each individual across all trials.
Working memory performance on the discrete whole-report
task was significantly above chance (n = 1.88 ± 0.83; t(19) =
6.61, p < 0.001) suggesting that participants were not random-
ly guessing.

The critical question was whether working memory perfor-
mance would again decline when the retention intervals were
longer and whether this decline was due to changes in the
attentional control parameter or due to changes in maximum
capacity (Fig. 3a). We again observed worse performance
after long retention intervals (nlong = 1.74 ± 0.91, nshort =
2.02 ± 0.75; t(19) = 3.73, p < 0.001, Cohen’s d = 0.34).

Computational modeling We first compared our two com-
putational models to determine whether the complete or
partial drop model better explained our data. Once again,
we found that both models made reasonable fits to the
data (Fig. 2b, c). However, just as in Experiment 1, we
found that data from both the short and long retention
intervals were better fit by the partial drop model
(ΔBIClong = 590.38, ΔBICshort = 542.92) than the com-
plete drop model. This finding reaffirms that performance
across trials varies along a continuum and participants
drop certain items from working memory while maintain-
ing others over time. In fact, for the short retention inter-
val trials, all participants were better fit by the partial drop
model than the complete drop model. For the long reten-
tion interval trials, 17 out of 20 participants were better fit
by the partial drop model, 2 out of 20 were better fit by
the complete drop model, and 1 out of 20 participants
were equally well fit by both models.

Next, we investigated the parameter fits for attentional
control and maximum working memory capacity for the
partial drop model. We again found that attentional con-
trol was reliably lower during long than short retention
intervals (along = 0.73 ± 0.56, ashort = 1.15 ± 0.47; t(19)
= 4.59, p < 0.001, Cohen’s d = 1.03). Additionally, there
was not a reliable difference across retention intervals
between maximum capacity (Kmaxlong = 3.00 ± 1.30,
Kmaxshort = 2.95 ± 0.65; t(19) = − 0.24, p = 0.82;
Cohen’s d = − 0.05).

Just as we did in Experiment 1, we additionally fit two
combined models. One of these models (Kmax-free model)
varied Kmax and kept a constant, while the other model (a-
free model) varied a and kept Kmax constant. These models
allowed us to account for behavior across short and long re-
tention intervals at the same time. We found that the a-free
model fit the data better than the Kmax-free model (ΔBIC =
4.31). The comparison of these two models, once again, con-
firmed that maximum working memory capacity is stable
across short and long retention intervals, whereas attentional
control varies.
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Discussion

In Experiment 2, we eliminated potential differences in
preparation by randomly intermixing trials and, therefore,
preventing participants from preparing for a certain
length retention interval ahead of time. We replicated
all of our findings from Experiment 1. Performance de-
clined after long (vs. short) retention intervals. This de-
cline in performance was graded, such that the amount of
information in working memory across trials varied con-
tinuously. The maximum amount of information that
could be maintained in working memory remained the
same over both long and short retention intervals.
However, the probability of maintaining this maximum
amount of information in working memory declined for
long compared to short retention intervals.

General discussion

Past work has shown that variability in attention and filtering
at encoding is an important limiting factor for working mem-
ory performance (Adam et al., 2015; Fukuda & Vogel, 2011;
Vogel, McCollough, & Machizawa, 2005). That said, the de-
cline in working memory performance with longer retention
intervals – for which encoding demands are perfectly matched
– demonstrates that information is also lost even after success-
ful encoding intoworkingmemory. Here, our main goals were
to (1) characterize how the distributions of the number of
items remembered varied across long and short retention in-
tervals, and (2) use these distributions to characterize how the
length of the retention interval impacts forgetting over time.
Firstly, over two experiments, we observed that performance
on a discrete whole-report task declined as retention interval

Fig. 3 Behavioral results and computational modeling fits for
Experiment 2. a Working memory performance for short (green) vs.
long (blue) retention intervals. Each dot represents the mean number
correct in one condition for one participant. A line connects data from
the same participant. The horizontal black line depicts the mean across
participants. The black error bars reflect the standard error of the mean.
The shaded area reflects the density across participants. b Histogram of
the difference between the BIC values (ΔBIC) in the complete and partial
drop models for each participant. Positive values indicate a better fit for
the partial drop model. The bars are centered within each bin (bin size =

10) for the short (green) and long (blue) retention intervals. c The green
bars of the histogram depict the data from short retention interval trials.
The height of each bar is the proportion of trials for each number of
correct responses. Black error bars are the standard error of the mean
across participants. The lines reflect the model fits using the best fitting
parameters: complete drop model (purple) and partial drop model (red).
Each model was fit independently for each participant, and error bars
reflect the standard error of the mean of the best-fitting parameters
across participants. d Data (blue bars) and best-fitting models (purple
and red lines) from long retention interval trials
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increased (1.5 vs. 10 s). Secondly, we found evidence in favor
of the partial drop model, in which information loss over time
is best described as a probabilistic loss of individual items
rather than a complete failure of storage during specific trials.
We developed a refined computational model of working
memory performance that simultaneously solves for attention-
al control (a) and a maximum capacity (Kmax) by using grid
search. We observed that when participants had to maintain
information for a longer amount of time, the maximum
amount of information (Kmax) that they could store in work-
ing memory remained the same. However, the probability of
sustaining attentional control (a) was lower after long com-
pared to short retention intervals.

In both Experiments 1 and 2, an individual’s maximum
working memory capacity (Kmax) was stable across short
and long retention intervals. These results advocate for a per-
spective where maximal working memory capacity is relative-
ly invariant across the population. Furthermore, there was rel-
atively little range in maximal working memory capacity, sug-
gesting that individuals differed not in the total maximum
amount of information that they stored, but in the frequency
with which they stored that information. An extension from
these findings is that maximum working memory capacity
might be an immutable variable, with little range across the
population. However, one caveat to this interpretation is that
we observed numerically lower values of maximal working
memory capacity in Experiment 2, when retention interval
length was inter-mixed. Therefore, there might be other fac-
tors, such as experimental design, which influence attentional
control and/or maximum working memory capacity. Future
work could address when and how maximum working mem-
ory capacity (Kmax) changes.

We found that performance decrements after long retention
intervals were not driven by reductions in maximum capacity.
However, precision of representations in working memory
could still change over time, as has been previously suggested
(Fougnie, 2008; Rademaker et al., 2018; Schneegans & Bays,
2018). Our task provides a coarse measure of individual work-
ing memory representations and, thus, we cannot draw strong
conclusions about changes in precision. However, even if pre-
cision does change over time, it may not lead to an aggregate
increase in forgetting rates at the level of individual items.
Future work could investigate how working memory preci-
sion changes over time by using a whole report task where
participants report the precise color of every representation on
every trial (e.g., Adam et al., 2017).

In sum, with this series of experiments, we extend our
understanding of the impact of retention interval length on
working memory performance. Past work has tended to por-
tray capacity limits in working memory as reflecting a “ceil-
ing” on storage capacity, similar to the limited space inside a
container. From that perspective, it is plausible that factors that
impair working memory performance yield a reduction in the

available space in working memory. By contrast, we highlight
recent work that suggests that variations in working memory
performance across individuals may be better understood in
terms of the probability of achieving one’s maximum storage
potential rather than in terms of differences in that potential
(Adam et al., 2015). Likewise, we find that longer retention
intervals reduce the probability of achieving one’s maximum
storage capacity, instead of reducing that storage capacity.
Thus, longer retention intervals do not reduce the maximum
amount of information that can be stored in working memory,
but they provide more opportunity to forget individual items
through lapses of attentional control.
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