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Abstract
The generalization of learned behavior has been extensively investigated, but accounting for variance in generalized responding
remains a challenge. Based on recent advances, we demonstrate that the inclusion of perceptual measures in generalization
research may lead to a better understanding of both intra- and interindividual differences in generalization. We explore various
ways through which perceptual variability can influence generalized responding. We investigate its impact on the ability to
discriminate between stimuli and how similarity between stimuli may be variable, rather than fixed, because of it. Subsequently,
we argue that perceptual variations can yield different learning experiences and that interindividual differences in generalized
responding may be understood from this perspective. Finally, we point to the role of memory and decision-making within this
context. Throughout this paper, we argue that accounting for perception in current generalization protocols will improve the
precision of obtained generalization gradients and the ability to infer latent mechanisms. This can inspire future attempts to use
generalization gradients as a (clinical) predictor or to relate them to individual traits and neural correlates and, ultimately, may
lead to new theoretical and clinical insights.
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Introduction

Our environment constantly changes, both externally and in-
ternally, such that a (learning) situation is never replicated in
its exact form. Hence, the capacity to generalize from previous

experiences is one of the most fundamental abilities of human
and non-human animals, and the understanding of learning
will never be complete without an understanding of generali-
zation. Accordingly, attempts to characterize generalization
have been performed across a wide range of species and be-
haviors (e.g., Ames & Yarczower, 1965; Armony, Servan-
Schreiber, Romanski, Cohen, & LeDoux, 1997; Cohen,
LeDoux, Armony, & Servan-Schreiber, 1997; De Hoz &
Nelken, 2014; Ganz & Riesen, 1962; Solomon & Moore,
1975).

Associative learning paradigms have been the gold stan-
dard for the controlled investigation of generalization in a
variety of situations. In classical conditioning, pairings of a
cue (conditional stimulus, CS; e.g., a tone) with an outcome
(unconditional stimulus, US; e.g., a shock) change responding
to the former (e.g., it comes to elicit fear). In operant condi-
tioning, the occurrence of a response (e.g., lever pressing) with
an outcome (e.g., a food pellet) also results in a change in the
former (e.g., an increase in lever pressing; De Houwer et al.,
2013). Often, a stimulus is added that signals when the rela-
tion between the response and the outcome is present (e.g., a
colored light). During a subsequent test phase (referred to as
the generalization phase), multiple test stimuli (also called
generalization stimuli; GSs) that differ from the initial
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stimulus, are presented. Most often, the test stimuli are created
by changing stimulus features within a specific physical di-
mension, such as size, frequency, or hue. However, variations
across other dimensions, like category membership, have also
been used successfully (Dunsmoor, White, & LaBar, 2011).
The outcome of interest is the conditioned response (CR) elic-
ited by the range of test stimuli, and assessed by a variety of
measures (e.g., lever presses, US expectancy ratings, freezing,
skin conductance responses, startle eyeblink potentiation, pu-
pil dilation).

Thus, during a typical generalization phase, responses to
the repeated presentation of a set of stimuli are recorded, with
the stimulus set most often comprising minor differences of a
specific stimulus feature. Responses are averaged per stimulus
and plotted along the physical dimension on which the stimuli
differ, creating a gradient for each subject (Fig. 1). These
individual gradients are then averaged into a group gradient
yielding the well-established bell-shaped gradient. Its frequent
observation in the laboratory has fostered the idea that this
pattern is universal among individuals (Shepard, 1987).
Although on a group level striking similarities are found
across a wide range of experiments (Ghirlanda & Enquist,
2003; Mednick & Freedman, 1960), this is hardly the case
for individual gradients (Fig. 1). The extent of response vari-
ance underlying average group gradients is often
underestimated, as the majority of generalization studies only
focus on the latter. In addition, the theoretical assumption
underlying the expression of behavior in relation to physical
stimulus features is one of perception as a static representation
of the physical properties of the world (Struyf, Zaman,
Vervliet, & Van Diest, 2015). At best, perceptual variability
is considered a mere source of noise (Atkinson & Estes, 1963;
McLaren & Mackintosh, 2002) that will be canceled out via
averaging across trials and subjects. It has been demonstrated
that cognitive models strongly differ in their ability to account
for group-averaged data compared to individual data. The
model that best accounts for group-averaged data is not nec-
essarily the model that can best explain data on an individual

level (Maddox, 1999). Via averaging, patterns that do not
exist on an individual level may appear (Estes, 1956; Hayes,
1953; Merrell, 1931; Sidman, 1952; Struyf et al., 2015). Thus,
we maintain that, as a consequence of this practice, mecha-
nisms underlying generalized responding remain poorly un-
derstood (see Box 1). Given that the concept of generalization
has been implicated in many forms of psychopathology, the
further refinement of existing experimental protocols is not
only of theoretical but also of great clinical importance.
Such improvements may enable researchers and clinicians to
scrutinize and identify the various mechanisms that may con-
tribute to generalized responding, as we will demonstrate in
the remainder of the paper.

Similarity

Originating in the early 1900s, the procedures to study gener-
alized responses led to the discovery of the by now well-
established generalization gradient, where response strength
(or response probability) typically varies as a function of phys-
ical difference (Spence, 1937). The larger the physical differ-
ence between a test stimulus and the initial stimulus, the less
likely the former is to elicit a CR (or the less intense the CR is)
(Fig. 1). This observed inverse relationship has inspired the
notion that generalized responding is a function of the simi-
larity between the initial learning situation and the novel situ-
ation (Ghirlanda, 2015). Given that the brain cannot directly
access the physical properties of a stimulus, it must rely on
input from the senses. Consequently, all cognitive generaliza-
tion theories include mental representations of the stimuli
from our environment.

Depending on how they represent stimuli, the quanti-
tative modeling of similarity will be different, but its as-
sumed role in generalization is similar across theories
(Ghirlanda, 2002, 2015). For instance, stimulus sampling
(Atkinson & Estes, 1963) and elemental models (Blough,
1975; McLaren & Mackintosh, 2000, 2002) postulate that

Fig. 1 Illustration of the variation in conditioned responses underlying
individual gradients and the average group gradient.Left:The raw data of
a subject from a generalization phase. Middle: The individual gradient
through averaging responses per stimulus. Right: The group gradient

(red) by averaging individual gradients across the stimulus dimension.
Data reused with permission from Zaman, Struyf, Ceulemans, Beckers, &
Vervliet, 2019b. CS conditioned stimulus, S test stimulus, US uncondi-
tioned stimulus
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the mental representation of a stimulus consists of a set of
activated units that correspond to a sample of all the phys-
ical elements of that stimulus. Therefore, a physically
similar stimulus will be represented by a partially over-
lapping set of elements. Likewise, neural models use ac-
tivation patterns of sensory neurons to represent stimuli as
distributions across these neural units (Enquist &
Ghirlanda, 2005; Ghirlanda & Enquist, 2007). If there is
more overlap between two stimulus distributions, their
similarity will be higher, and the trained response will
generalize more from one to the other. All of these models
use a Gaussian distribution across units to represent a
stimulus (or its activation pattern). However, few are cur-
rently able to provide a theoretical rationale for what de-
termines the location of the peak, the width of these dis-
tributions, or how they may change due to previous expe-
rience. Rather, these are unknown parameters inferred
post hoc from behavioral data (Ghirlanda, 2002).
Another custom way of representing stimuli, especially
in the context of categorization models, is to think of
them as points in a multidimensional psychological space,
with each dimension representing a physical feature (e.g.,
color, size) (Jäkel, Schölkopf, & Wichmann, 2008;
Kruschke, 1992; Nosofsky, 1986). Here, the similarity
between two stimuli is determined by their distance in
psychological space (Shepard, 1987; Shepard, 1958),
which, again, is assumed to be held constant.

Although the notion of perceptual variability has been
(explicitly or implicitly) acknowledged by some authors,
only few have considered in depth the implications of
perceptual variability on stimulus representations, and
subsequently, on learning or generalization (Ashby &
Maddox, 1993; Ashby & Townsend, 1986; Atkinson &
Estes, 1963; Enquist & Ghirlanda, 2005; Estes & Burke,
1953; McLaren & Mackintosh, 2002). Most generalization
theories assume that the representation of a stimulus is
veridical (i.e., accurately corresponding to the physical
reality). As such, they reduce similarity to a physical di-
mension and, in essence, model behavior solely in relation
to the physical features of the stimuli as presented during
testing. Thus, they assume perception as a static process
unaffected by previous experience, despite research dem-
onstrating the plasticity of the perceptual system (Gibson,
1969; Gilbert, Sigman, & Crist, 2001; Sagi, 2011).
However, false assumptions about stimulus representa-
tions may lead to incorrect inferences regarding underly-
ing cognitive processes (Maddox, 1999).

When we inspect the amount of variation in responses
underlying both an individual gradient and a group gradi-
ent (Fig. 1), i t becomes apparent that modeling
responding solely based on the physical features of the
presented stimuli fails to account for a large amount of
response variance. However, as most studies only report

average group gradients, the extent of trial-by-trial
(intraindividual) and interindividual variability in
responding to the same physical stimulus remains under-
stated. As such, it may seem that there is little necessity to
extend or revise contemporary generalization protocols
and models. However, in the remainder of the paper, we
demonstrate how inclusion of perceptual measures in gen-
eralization research may lead to a better understanding of
both types of response variance and, ultimately, to new
theoretical and clinical insights. A more explicit focus on
perception could be of both heuristic and predictive value
to researchers as: (1) response noise due to perceptual
variability would be accounted for; (2) model parameters
that are currently inferred post hoc from gradients in gen-
eralized responding could be estimated based on percep-
tual data; and (3) the incorporation of perceptual models
into generalization research would allow predictions of
why, when, and how perception varies, thereby affecting
generalization. Furthermore, even if researchers are not
interested in perception and consider it a purely confound-
ing factor that they aim to average out, we argue that
accounting for it in current generalization protocols will
improve the precision of obtained generalization gradi-
ents. This can inspire future attempts to use generalization
gradients as a (clinical) predictor or to relate them to in-
dividual traits and neural correlates.

Box 1
The term generalization is used in many different disciplines and has been

used both as an explanandum (i.e., that which needs to be explained)
and the explanans (i.e., that which is used to explain). As an
explanandum, the term generalization is used to refer to how various
situations can elicit similar behavior without making any assumptions
regarding what drives the behavior. Thus, whether a rat freezes to a test
tone simply because it cannot perceptually discriminate the test tone
from the trained tone is an open questionwhen generalization is used as
an explanandum. However, as the explanans, it is used to explain why
behavior is similar across situations. For example, Jäkel et al. (2008)
wrote the following: “As a theoretical construct, generalization refers
to a covert process that leads a subject to respond to a new stimulus in
the same way as to a previously learned stimulus, despite the ability of
the subject to tell the stimuli apart” (Jäkel et al., 2008, p. 258). In our
rat example, it then becomes imperative to ensure that the rat is able to
perceptually discriminate between the tones, before inferring that
generalization drove its behavior. Unfortunately, in current experimental
protocols, it remains difficult to assess whether response gradients
reflect a generalization process, some degree of confusion in a
memory process, or perceptual indiscriminability (Jäkel et al., 2008;
Struyf et al., 2015). Furthermore, generalization has been used
interchangeably as an explanandum and the explanans, thereby fostering
theoretical ambiguity. The interchangeable use of a concept is not
without danger. It has the potential to result in a tautology: generalization
was observed because of generalization. As many clinical applications
are motivated by empirical generalization findings, it is important
to be aware of the existing limitations of current experimental
protocols. Differences in response gradients do not necessarily reflect
differences in generalization as a process, as we will demonstrate below.
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Perceptual variability

An abundance of research has demonstrated that percep-
tion of the same stimulus is not static. In almost all re-
search that investigates how humans perceive stimuli,
using categorizations, identifications, judgments, or ad-
justment tasks, responses vary within and between indi-
viduals (e.g., Hoskin et al., 2019; Huang & Sekuler, 2010;
Jones, Love, & Maddox, 2006; Li, Howard, Parrish, &
Gottfried, 2008; Ons, De Baene, & Wagemans, 2011;
Petzschner & Glasauer, 2011; Samaey, Wagemans, &
Moors, 2020; Schechtman, Laufer, & Paz, 2010;
Tenenbaum & Griffiths, 2001; Zaman, Wiech, &
Vlaeyen, 2019c). Ashby and Lee (1993) even suggested
that the success of perceptual theories depends on their
ability to account for what they called “the axiom of per-
ceptual variability,” stating that variations in perceptual
representations are fundamental to perception research.
Furthermore, this perceptual variability is not mere noise
originating from our senses, as assumed by most theories
concerning generalization, but can also be explained by
various perceptual models (e.g., Davis & Love, 2010;
Feldman, Griffiths, & Morgan, 2009; Friston & Kiebel,
2009; Hoskin et al., 2019; Petzschner, Glasauer, &
Stephan, 2015; Press, Kok, & Yon, 2020; Tenenbaum &
Griffiths, 2001). Many different effects on perception
have been observed in the laboratory, but those most rel-
evant to generalization research are, among others, effects
of preceding stimuli (e.g., Chambers & Pressnitzer, 2014;
Jones et al., 2006; Petzschner & Glasauer, 2011), expec-
tations (e.g., Wiech et al., 2014; Zaman et al., 2019c),
stimulus repetition (e.g., Dong, Gao, Lv, & Bao, 2016;
Muenssinger et al., 2013; Pérez-González & Malmierca,
2014), the range of presented stimuli (e.g., Kowal, 1993;
Petzschner & Glasauer, 2011), and associative learning at
large (e.g., Asutay & Västfjäll, 2012; Resnik, Sobel, &
Paz, 2011; Zaman et al., 2018). For instance, Petzschner
et al. (2015) demonstrated that size estimates were over-
or underestimated depending on the range of presented
stimuli and were able to model such effects using a
Bayesian perception model (see below). In addition, the
authors were able to account for effects of presentation
order via the incorporation of preceding stimulus presen-
tations in their model. Similarly, others have demonstrat-
ed serial dependency in perception, in that stimuli present-
ed during previous trials affected the perception of the
current stimulus (e.g., Cicchini, Mikellidou, & Burr,
2017; Jones et al., 2006; Jones & Sieck, 2003).

Nonetheless, perception and generalization research have
remained relatively separate fields. Generalization researchers
often make use of custom-made stimulus sets for which no
database with similarity ratings exists. Furthermore, the ma-
jority of studies onlymeasure conditioned responses without a

measure of the trial-by-trial stimulus perception making it dif-
ficult to assess the extent of perceptual variability. Only a
handful of studies report perceptual data for stimulus sets used
to study generalization (Holt et al., 2014; Lovibond, Lee, &
Hayes, 2019; Onat & Büchel, 2015; Struyf, Zaman, Hermans,
& Vervliet, 2017; Zaman, Ceulemans, Hermans, & Beckers,
2019a; Zaman, Struyf, et al., 2019b). A stimulus set that has
been frequently used to study the generalization of a trained
fear response, both in healthy volunteers and clinical popula-
tions, consists of ten circles, ranging from 5.08 cm to 11.49
cm, with steps of 0.72 cm in between (e.g., Lange et al., 2017;
Lissek et al., 2008, 2014, 2010; Tinoco-González et al., 2015;
Vervliet, Iberico, Vervoort, & Baeyens, 2011).

In a recent series of studies, we investigated the extent of
perceptual variability in this stimulus set (Struyf et al., 2017;
Zaman, Ceulemans, et al., 2019a; Zaman, Struyf, et al.,
2019b; Zaman, Struyf, Ceulemans, Vervliet, & Beckers,
2020). Perception was assessed using a categorization task.
Following a fear-conditioning phase in which one circle was
paired with an aversive outcome, subjects were instructed to
categorize each newly presented circle as either the same stim-
ulus that was presented during the previous (conditioning)
phase or as a different stimulus. We found not only numerous
perceptual errors for the test stimuli (mean error = 41.35%, SD
= 17% – Zaman, Struyf, et al., 2019b; mean error = 32%, SD =
32.7% – Zaman, Ceulemans, et al., 2019a) but also multiple
errors on trials on which the training circle (CS) was presented
(mean error = 34.52%, SD = 29% – Zaman, Struyf, et al.,
2019b; mean error = 44%, SD 35.2% – Zaman, Ceulemans,
et al., 2019a). These findings suggest a great extent of percep-
tual variability both between and within individuals for this
stimulus set (Fig. 2). The repeated presentation of the same
stimulus seemed to have led to different percepts within a
subject (intraindividual variability). In addition, large interin-
dividual differences were observed in the overall extent of
committed errors, as well as in the distribution of errors across
the stimulus spectrum. In Fig. 2, for almost half of the sub-
jects, test stimuli at one end of the test dimension (either the
smallest or largest circles) had higher probabilities of being
(mis)perceived as the trained stimulus compared to the actual
stimulus used during training. The other half was relatively
accurate. They most often correctly categorized the training
stimulus. Committed perceptual errors were more likely for
test stimuli near the training stimulus than for test stimuli that
were more different, thus yielding a perceptual gradient com-
parable to the bell-shaped generalization gradient (Fig. 2).
This strong similarity suggests that perceptual errors may in-
deed shape a generalization gradient to a large extent, or al-
ternatively, that both are driven by the same latent process
(although we believe the latter is less likely for reasons
outlined below, see Box 2).

In another study, perception was measured using an esti-
mation taskwith the same stimulus set. On every trial, subjects
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were prompted to estimate the size of the presented circle
using a visual analog scale (Zenses, Lee, & Zaman, 2020
preprint). We found large trial-by-trial variability in size esti-
mates for each stimulus within subjects (average subject SD =
6.33 cm), with the average subject SD being almost tenfold of
the actual physical difference between stimuli (which was
0.72 cm). Clearly, the impact of such perceptual variability
on generalization depends on the physical differences between
the presented stimuli. However, as already mentioned, most
generalization research uses stimuli sets with small physical
differences. The ratio between the extent of perceptual vari-
ability and the size of the manipulated physical differences
determines the impact of the former. If the physical difference
between stimuli is large, perceptual variability is unlikely to
affect perceptual discrimination. On the other hand, if physical
differences are small, perceptual variability may lead to
indiscriminability, resulting in many perceptual mistakes.
Alternatively, as we discuss later, it could affect similarity
more gradually.

Perceptual discrimination and generalization

Although the issue of perceptual discrimination has
been intensely debated since the early days of general-
ization research, it remains unresolved. Lashley and
Wade (1946) proposed the inverse hypothesis stating
that generalization occurs merely due to a failure in
perceptual discrimination, where the inability to detect
that a test stimulus is distinct from the CS drives a
generalization gradient. According to these authors, the
phenomenon of generalization would then be a mere
result of (inaccurate) perception. Despite the wide-
ranging clinical and theoretical implications of this al-
ternative account, relatively few studies have attempted
to investigate the relationship between perceptual dis-
crimination and generalized responding (De Hoz &
Nelken, 2014; Guttman & Kalish, 1956; Holt et al.,
2014; Honig & Urcuiol i , 1981; Kal ish, 1958;
Lovibond et al., 2019). For example, Guttman and
Kalish (1956) obtained gradients in conditioned
responding across a light wave spectrum where identical
physical changes in hue were assumed to result in dif-
ferent levels of perceived change in color. Despite ex-
pected differences in perceptual sensitivity [based on the
work of Hamilton and Coleman (1933)], depending on
the location of the CS across the spectrum, similar gra-
dients were obtained. Follow-up work, however, demon-
strated that Guttman and Kalish (1956) selected stimuli
based on incorrect psychometric functions and that the
obtained gradients did relate to variations in perceptual
sensitivity (Blough, 1972; Honig & Urcuioli, 1981). In
another study, Holt et al. (2014) created GSs based on
their subject’s psychometric functions, obtained before
the experiment using a two-forced choice task (same
vs. different). They found no evidence of generalization
for stimuli located above the just-noticeable difference
(JND) threshold. In contrast, Onat and Buchel (2015)
found fear-generalization gradients across a range of
discriminable faces. The stimuli’s perceptual organiza-
tion was inferred from a two-alternative forced-choice
(2-AFC) similarity judgment between two face pairs.
Importantly, however, performance during a 2-AFC
task, where stimuli are presented simultaneously or sep-
arated by a short interval, might substantially differ
from the ability to differentiate a separately presented
test stimulus from a CS retrieved from memory (Struyf
et al., 2015). Furthermore, selecting stimuli based on
prior discrimination thresholds and responses per stimu-
lus is still an approach that regards perception as a
static process unaffected by previous experience. Yet,
in the next section we demonstrate that perception is
malleable by learning, with established effects of condi-
tioning on discrimination acuity, among others.

Fig. 2 Data on perceptual accuracy during generalization testing after a
simple conditioning procedure (top: Zaman, Struyf, et al., 2019b;
bottom: Zaman, Ceulemans, et al., 2019a). The black line is the
averaged probability gradient that stimuli are (mis)perceived as the stim-
ulus from the training phase. The red circles indicate perceptual errors, the
dotted line indicates chance performance. The gray lines represent iden-
tified subgroups of inter-individual differences in perceptual accuracy
using cluster analyses, and their corresponding percentages show the
number of subjects within each subgroup. CS+ conditioned stimulus, S
test stimulus
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Conditioning effects on perception

Of particular interest is that the same conditioning protocols
used to study generalization also affect perception (Asutay &
Västfjäll, 2012; Stolarova, Keil, & Moratti, 2006), and more
precisely, the ability to discriminate a test stimulus from the
CS (Aizenberg & Geffen, 2013; Laufer & Paz, 2012; Resnik
et al., 2011; Schechtman et al., 2010). For example, in a study
by Schechtman et al. (2010), three tones were associated with
either monetary gain, monetary loss, or no outcome during a
training phase. In a subsequent test phase, similar but not
identical tones to the previously used tones were also present-
ed. Subjects had to indicate whether the tone was novel or was
one of the three tones presented during training. Importantly,
during this phase, reinforcement (monetary gain) was depen-
dent on the correctness of the perceptual classification and no
longer on the presented stimulus, although no feedback was
provided upon responding. More perceptual errors were made
for tones surrounding the CS tones (previously associated
with monetary gain or loss) compared to the control tone
(paired to no outcome), suggesting that learning modulated
subjects’ ability to perceive differences. For instance, test
tones that differed 60 and 100 Hz from the initially control
tone had a probability of being mistaken for that tone that was
close to zero. For equidistant test stimuli to the CS tone paired
with monetary loss, the probability of being mistaken for the
CS increased approximately to 70% and 55%. Resnik et al.
(2011) extended those findings by showing that discrimina-
tion thresholds increased by 20% after an aversive condition-
ing procedure, indicative of a deteriorated performance in
discriminability.

Others have demonstrated improvements in perceptual dis-
criminability after an atypical differential aversive condition-
ing protocol where initially indiscriminable odor enantiomers
(mirror image molecules) were used as CSs (Åhs, Miller,
Gordon, & Lundström, 2013; Li et al., 2008). In a series of
experiments, Aizenberg and Geffen (2013) demonstrated that
effects of fear conditioning on tone discrimination can occur
in either direction and that this depends on the presence of
another cue during learning (i.e., differential learning) and
the physical distance between both cues. Differential condi-
tioning improved perceptual discrimination only with physi-
cally proximal cues, while physically distant cues decreased
discrimination acuity of tones around the reinforced tone.
Simple conditioning yielded the worst perceptual discrimina-
tion (Aizenberg & Geffen, 2013).

Importantly, these effects were not limited to changes in
performance on perceptual tasks, but also involved neural al-
terations at the level of the primary sensory cortices. These
included tuning profiles of single neurons and activation pat-
terns, indicative of alterations in the processing of sensory
input (Aizenberg & Geffen, 2013; Chen, Barnes, & Wilson,
2011; Diesch & Flor, 2007; Kass, Rosenthal, Pottackal, &

McGann, 2013; Li et al., 2008). For instance, the perceptual
improvements in the Li et al. (2008) study were paralleled by
differential activation patterns in the primary olfactory cortex.
Compared to before conditioning, spatial activity patterns di-
verged for the enantiomer pair that was differentially paired to
the aversive outcome, whereas patterns for the control enan-
tiomer pair remained stable and highly correlated. Aizenberg
and Geffen (2013) demonstrated, using reversible pharmaco-
logical inactivation, that these perceptual changes occurred at
the level of the auditory cortex. Finally, conditioning-induced
changes in discrimination acuity and sensory processing dem-
onstrate that discrimination performance assessed prior to
conditioning differs from discrimination performance during
generalization testing.

All of the abovementioned studies show that the learning
procedures used to study generalization also affect perception.
Accordingly, this should be taken into account when
interpreting the results of generalization experiments. For ex-
ample, patients with generalized anxiety disorder (GAD) ex-
hibited a reduced ability to perceive test stimuli as different
from the trained stimulus only after conditioning (using both
positive and aversive USs) compared to controls (Laufer,
Israeli, & Paz, 2016). This finding allows for an alternative
explanation of reported differences in generalization gradients
between anxiety patients and controls (Lissek & Grillon,
2010; but see Tinoco-González et al., 2015). Instead of attrib-
uting them to a risk aversion bias (Dymond, Dunsmoor,
Vervliet, Roche, & Hermans, 2015), elevated generalization
gradients could be explained by more perceptual errors (the
perception of a test stimulus as a CS) in patients compared to
controls. Wider generalization gradients in patients could thus
merely reflect larger proportions of perceptual errors on test
trials, with test stimuli perceived as the initially trained stim-
ulus eliciting stronger conditioned responses compared to
when the same stimulus is correctly perceived.

Perceptual variability and generalized
responding

Perception can be measured using different types of tasks, and
its theorized impact on generalized responding will depend on
it. We will start with research that approaches perception from
a categorical perspective. In the context of generalization, in
its simplest form, the perceptual task subjects face is to decide
whether the presented stimulus is the initially trained stimulus
or a different one. In other words, one is either able to discrim-
inate the test stimulus on a given trial accurately or not.

In a series of studies, we recently demonstrated that
during a generalization protocol, stimuli are far from being
consistently or accurately discriminated (Struyf et al.,
2017; Zaman, Ceulemans, et al., 2019a; Zaman, Struyf,
et al., 2019b; Zaman et al., 2020). Findings of these studies
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indicated that the incorrect perception of a test stimulus
(i.e., subjects mistakenly perceived it as the trained stimu-
lus on that trial) was associated with stronger self-reported
and psychophysiological conditioned responses, while the
correct identification of the same stimulus elicited a much
lower CR (Fig. 3). Many mistakes were also made regard-
ing the trained stimulus (Struyf et al., 2017; Zaman,
Ceulemans, et al., 2019a; Zaman, Struyf, et al., 2019b;
Zaman et al., 2020). When subjects incorrectly perceived
this stimulus as a GS, conditioned responding was attenu-
ated compared to when their perception of the stimulus was
correct. Apart from this intraindividual variability, we also
found large inter-individual differences in perception that
affected the shape of the response gradient in different
manners (Zaman, Ceulemans, et al., 2019a; Zaman,
Struyf, et al., 2019b; Zaman et al., 2020). More precisely,
the distribution of perceptual errors differed greatly be-
tween individuals. These differences in perceptual accura-
cy predicted differences in the shape of the generalization
gradient between individuals. Apart from this direct effect,
perceptual errors on CS trials (which were reinforced by
the US) led to different experienced stimulus-outcome
probabilities that affected the gradient. The more a subject
experienced, due to committed perceptual errors, that both
the trained and test stimuli had similar reinforcement prob-
abilities, the further the differential effect of perception
dissolved and the flatter the gradient became (Fig. 3).

In a recent follow-up study (Zaman et al., 2020), a differ-
ential instead of a simple conditioning protocol was used.
During the learning phase, another different-sized circle (i.e.,
a CS-), predictive of the absence of the aversive outcome, was
also included. Its inclusion during training yielded two inter-
esting, and previously documented, phenomena, called the
area and peak shift, which have played a central role in the
development of generalization theories. The peak shift relates
to the observation that after differential learning, the peak in
the response gradient shifts away from the reinforced stimulus
(CS+) in the direction opposite to the location of the non-
reinforced stimulus (CS-) (Hanson, 1957; Hanson, 1959;
Purtle, 1973). The area shift refers to the finding that the sym-
metrical gradient typically found after simple conditioning
(Honig & Urcuioli, 1981) changes into a skewed gradient in
the direction away from the CS-, with differential condition-
ing. Interestingly, we also observed an area and peak shift for
the perceptual gradient based on the categorization task (Fig.
4). That is, not the actual CS+ but an adjacent test stimulus had
the highest probability of being perceived as the CS+
(80.64%, SE = 2.02%).

A shift in perception has been found previously in percep-
tual categorization research (Davis & Love, 2010). These au-
thors proposed that category averages (i.e., prototypes) are not
determined solely by the statistical properties of the perceived
stimuli but can shift depending on situational demands in the
direction opposite to the contrasted category (Davis & Love,

Fig. 3 Data on self-reported US expectancy during generalization (left:
Zaman, Struyf, et al., 2019b, right: Zaman, Ceulemans, et al., 2019a).
Top: Average US expectancy for when a stimulus was perceived as the
same stimulus of the previous (training) phase (i.e., the CS) or as different
one (i.e., GS). Depending on the patterns of perceptual errors, experi-
enced CS-US and GS-US contingencies could differ between subjects.
Subjects either experienced contingencies that corresponded to the

objective contingencies (CS–US > GS–US) or experienced divergent
contingencies in that both the trained and test stimuli had similar rein-
forcement probabilities (CS–US = GS–US). Bottom: Averaged US ex-
pectancy gradients for both groups. corr. cont. corresponding contingen-
cy, div. cont. divergent contingency, CS+ conditioned stimulus, S test
stimulus, US unconditioned stimulus
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2010). It remains to be determined if and to which extent a
perceptual peak shift is driven by similar mechanisms.
Furthermore, we found that correcting for such perceptual
errors resulted in the disappearance of the peak shift and a
strong reduction of the area shift in the US expectancy gradi-
ent (Fig. 4). In a series of experiments, Lovibond and col-
leagues (Lovibond et al., 2019) only found a peak shift in their
generalization gradient after the inclusion of additional test
stimuli that had high probabilities of being mistaken for the
CS+, due to their close resemblance to it. These findings sug-
gest that stimulus indiscriminability may play a key role in
such specific generalization phenomena. Furthermore, a com-
parison of the perceptual accuracies between this and our pre-
vious studies revealed that fewer perceptual errors were made
during testing on CS+ trials after differential compared to
simple conditioning [accuracy CS+ differential: 74.14% (SE
= 2.02%) vs. simple: 65.48% (SE = 2.5%)] (Zaman,
Ceulemans, et al., 2019a; Zaman et al., 2020). This is in line
with previously reported effects of learning on perception
(Aizenberg & Geffen, 2013).

This research demonstrated that perception strongly affects
the degree of conditioned responding in certain experimental
procedures used to investigate generalization. Thus, a gener-
alization gradient in experiments that rely on the use of test
stimuli that differ on a physical continuum (e.g., size), might
in part emerge due to an underlying probability gradient of
perceptual errors (Struyf et al., 2015), with perceptual errors
altering the shape of the obtained gradient (see Fig. 4 and 5).
In this section, we only explored and demonstrated the impact
of stimulus indiscriminability. Next, we illustrate how percep-
tual variability may influence similarity.

Depending on how generalization models formalize stim-
ulus representations, perceptual variability could be imple-
mented in different manners. If perception rather than physical
features determines the coordinates of the stimulus represen-
tations in a multidimensional psychological space, perceptual
variation will impact distance-based similarity estimates
(Shepard, 1987; Shepard, 1958; Shepard & Chang, 1963).
Rather than similarity being fixed between two stimulus rep-
resentations, it would become variable as a function of per-
ception. Depending on the direction of the perceptual change,
the similarity between the same stimulus pair will decrease or
increase with analog effects on the extent of generalized

Fig. 4 Data on perceptual accuracy and self-reported US expectancy
during generalization after differential conditioning (Zaman et al.,
2020). Top: Average probabilities across the stimulus spectrum for the
different perceptual response categories. The red circles indicate percep-
tual errors and the black line indicates chance performance. Bottom:
Average US expectancy ratings based on all trials (averaged gradient)
and on trials with accurate categorization performance only (corrected
gradient). CS+ reinforced conditioned stimulus, CS- unreinforced condi-
tioned stimulus, S generalization stimulus, US unconditioned stimulus

Fig. 5 Data on self-reported US expectancy and startle eye blink poten-
tiation during generalization (Zaman, Struyf, et al., 2019b). Average US
expectancy ratings (top) and startle data (bottom) based on all trials (gray
line, averaged gradient) and on trials with accurate categorization perfor-
mance only (black line, corrected gradient). CS+ reinforced conditioned
stimulus, S generalization stimulus, US unconditioned stimulus
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responding. In generalization models that consider stimuli as
probability distributions of activated neural (or elemental)
units, perceptual variability would translate to shifts of the
peak, or it may affect the width of the distribution of activated
units. Again, depending on the shift, the overlap between the
distributions would affect similarity between the same stimu-
lus pair allowing for variation in generalized responding to the
same test stimulus (currently ignoring other effects like con-
tinuous learning, e.g., extinction).

The concept of probability distributions is also central to
current notions of perception as Bayesian inference (e.g.,
Clark, 2013; Hoskin et al., 2019; Petzschner et al., 2015;
Press et al., 2020). According to this view, perception is the
computation of the most likely physical source given certain
sensory input and a priori beliefs. It assumes that a physical
source (i.e., a stimulus) transforms into a distribution of
(potential) sensory input. Certain sensory inputs will be more
likely than others for a given physical source. This distribution
(called the likelihood) expresses the probability of sensory
input given a physical cause (Fig. 6). At this point, the idea
is very similar to many generalization theories. However, this
sensory input is not interpreted in isolation. Observers often
have expectations about which sensations are more likely.
Prior information based on regularities in the environment
results in a distribution of expected sensations called the prior.
It is the combination of sensory input (likelihood) with prior
information (prior) that results in a posterior distribution of
potential sensations. The impact of the likelihood and the prior

on the posterior depends on the width of their distribution
(precision). A posterior will be more driven by sensory input
characterized by high compared to low precision. As the pos-
terior on a given trial will act as a prior on the subsequent trial,
the brain actively constructs and continuously updates a gen-
erative model based on sensory input (see Fig. 6).

The main difference compared to generalization research is
that these theories allow for the updating of the representation-
al stimulus distributions based on previous experience. The
extension, for instance, of generalization theories with the
notion of perception as Bayesian inference could not only
enable generalization theories to incorporate perceptual vari-
ability but also model effects of previous experience, learning,
and expectations on perception. This would allow researchers
to model regularities in how the repeated presentation of the
same stimulus affects representational distributions, and, con-
sequently, how the similarity between the same pair of stimuli
would differ across trials. For example, in the beginning of a
generalization test, the prior is expected to be centered around
the CS location, because, based on the subject’s experience,
this stimulus is most likely (as it was the only presented stim-
ulus during learning). Across generalization testing, different
stimuli are presented. Hence, the prior should widen,
reflecting the subject’s experience that many different stimuli
now can be expected. As a consequence, stimuli should be
more likely to be perceived as the CS during initial test trials
compared to later trials as the biasing effect of the prior dis-
appears due to its widening, which we indeed found in our

Fig. 6 Schematic representation of stimulus representation and similarity.
Left: Veridical stimulus representation (implicit in generalization
analyses). A stimulus is represented by an invariant distribution. It
follows that similarity defined by the overlap in distribution between a
given stimulus pair is fixed. Right: Bayesian perception model.
Perception is an inferential process whereby the brain makes inferences

about the physical world (S) based on current sensory input (likelihood)
and a priori beliefs (based on past expectations, previous trials, etc.). The
same stimulus presented repeatedly will not necessarily result in the pos-
terior distribution. Hence, the similarity between a stimulus pair can vary
depending on the shape and location of the posterior. CS conditioned
stimulus, S test stimulus
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studies (unpublished analyses, data available at https://osf.io/
t8u92/).

In Fig. 7, we simulated perceptual variability for two ficti-
tious subjects by drawing their stimulus perception from normal
distributions with means either equal to the actual stimulus size
or closer to each other, reflecting difficulties to differentiate be-
tween stimuli. The standard deviation did not differ across

stimulus distributions nor between subjects (and was set to the
previously found SD of 6.33 cm). We used a Gaussian kernel
function based on stimulus perception plus some random noise
to generate generalized responses. The graphs (Fig. 7) are based
on ten trials per stimulus per subject. The top graph is the aver-
aged group gradient as typically done, plotting average re-
sponses per stimulus. A comparison between the averaged

Fig. 7 Simulated data set. (A) The averaged group gradient and
underlying responses (dots) across a physical dimension. (B, C)
Individual response gradients. (D, E) Scatterplot between stimulus size

and perceived size. (F) The averaged group gradient across a perceptual
dimension (dot color denotes the different stimuli). (G, H) Individual
response gradients across a perceptual dimension
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individual gradients (Fig. 7 B and C), would suggest
overgeneralization in the second subject as the gradient is much
flatter. However, perceptual estimates for the different stimuli
were much closer to each other for this subject compared to the
other (Fig. 7 D and E). Finally, we plotted responses along the
perceptual dimension (where color denotes the physical stimu-
lus). Now generalization gradients are alike between individuals,
suggestive of similar generalization tendencies (Fig. 7 G, H). As
such, gradients of conditioned responding across a range of
similar physical stimuli, without insight into the perception of
the stimulus eliciting the behavior, will provide a limited under-
standing of the underlying mechanism and remain at best purely
descriptive. Note that apart from causing interindividual vari-
ability, intraindividual response variability is also reduced when
perceptual variations are incorporated into generalization
gradients.

Perceptual variability during learning

Until now, we have solely focused on perceptual variability
during the assessment of generalized responding. However, a
crucial premise to observe generalization of a learned re-
sponse is that some sort of learning precedes it. Typically,
subjects learn about co-occurrences between stimuli or behav-
iors and outcomes. A bulk of research has demonstrated that
manipulating various aspects of the learning experience af-
fects the extent of generalization, including the number of
learning trials (Hearst, 1968; Hovland, 1937), reinforcement
rate (Eliot Hearst, Koresko, & Poppen, 1964; Hull, 1947;
Thomas & Switalski, 1966), or simple versus differential
learning procedures (Baron, 1973; Chen, Barnes, & Wilson,
2011; Hanson, 1959; Jenkins &Harrison, 1962). For example,
Hanson (1959) conducted one of the first controlled experi-
ments of (intradimensional) differential learning. Pigeons
were trained to peck for food during the presentation of a
CS+ (reinforced conditioned stimulus), which was a hue with
a wavelength of 550 nm. They were also presented with a CS-
that was not paired with food (a hue with a different wave-
length). The physical distance between the CS- and CS+ dif-
fered between groups. A control group was trained with the
CS+ alone. When presented with a range of test stimuli (dif-
ferent hues), Hanson found marked differences between the
groups in the shape of the obtained generalization gradient.
Differential compared to simple learning (control group) led
to steeper generalization gradients (i.e., stronger decrements in
conditioned responding for stimuli that were more distinct
from the CS+), with the steepness of the gradient increasing
as the distance between the CS+ and CS- decreased.

Although the impact of those experimental variables has
been well studied, it is far less understood (and acknowl-
edged) how perceptual variability may influence learning
and subsequently, generalization (but see Atkinson & Estes,

1963; Enquist & Ghirlanda, 2005). Despite being subjected to
the same objective experimental procedure, not everyone will
experience it in the same way for a variety of reasons, includ-
ing subjects’ past experiences, cognitive ability, attention, and
perceptual accuracy. Imagine, as an example in extremis, a
differential fear conditioning protocol with differently colored
cues (green vs. red). The experience for a person with deuter-
anopia (i.e., a form of color blindness) will significantly di-
verge from that of a person with normal vision. The inability
to discriminate colors will lead to the experience that a gray
cue is followed 50% of the time by a shock, as opposed to an
experience in which only the green cue was paired with a
shock. With distinct cues (e.g., different geometrical forms)
this issue is most likely not relevant. However, many studies
use stimuli with small physical differences or bodily sensa-
tions as cues during learning, where perceptual mistakes may
be frequent. A recent study demonstrated the implications of
misperceptions on learning experiences (Zaman et al., 2017).
In a differential fear conditioning paradigm, esophageal bal-
loon distensions of different physical intensities (high and
low) were used as CS+ and CS- (counterbalanced). Subjects
had to categorize them upon stimulus presentation as either
high or low based on perceived intensity. Unexpectedly, it
was found that the high-intensity stimulus was misidentified
as the low-intensity stimulus in approximately 50% of the
trials. Yet, US reinforcement was administered irrespective
of perception. In the group where the high-intensity stimulus
served as the CS+, such misperception led to increased fear
responding to both stimuli, perhaps because from the subjects’
perspective, both stimuli were followed by the US. In the
other group, where the high-intensity stimulus was used as
the CS-, similar misidentifications were never followed by
the US, and differential learning was observed, presumably
because from the experience of the subject, only the low- but
never the high-intensity stimulus was followed by the US.
Analogously, Schroijen et al. (2015) used CSs that varied in
intensity (i.e., resistive breathing loads) and found a non-
differential increase in US expectancy in the group with the
high-intensity stimulus as CS+. In this group, a flat generali-
zation gradient was obtained located at the same height as the
peak of the gradient of a successful differential fear learning
group. Although no perceptual categorizations were recorded,
their findings could be explained by potentially similar per-
ceptual errors and their impact on the subjects’ experience.
These findings demonstrate that the congruent assessment of
perception and behavior could enable a better understanding
of the latter.

Individual variability among subjects in learning poses a
challenge for generalization researchers because it impacts the
shape of the generalization gradients. Mednick and Freedman
(1960) wrote the following on this matter: “It is important that
all studies attempting to demonstrate group differences in
stimulus generalization responsiveness either equate their
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groups for conditioning level or use a measure of relative
generalization (ratio of generalization response to conditioned
response)” (p. 185). To illustrate this, imagine two subjects (A
and B) at the end of a differential fear learning phase: subject
A had no problem to discriminate between stimuli perceptu-
ally, and learned that the CS+ was predictive of threat and the
CS- predictive of its absence. Subject B, on the other hand,
found it much more difficult to discriminate between the two
stimuli and consequently, failed to pick up on these contin-
gencies. Next, their responses to a range of stimuli located
along the CS+/CS- continuum were recorded (Fig. 8). As
per usual practice, response gradients were compared, without
taking differences in learning into account, leading to the con-
clusion that subject B overgeneralizes compared to subject A.
However, as both generalized from a different learning expe-
rience, inferring differences in generalization tendencies based
on their absolute generalization gradient would be precarious.
In Fig. 8, similar slopes between both are obtained when we
express their responses in relation to the subject’s experience.
A better interpretation of the data then would be that a failure
to learn in subject B led to a (relatively) flat gradient (for an
alternative interpretation, see Haddad, Pritchett, Lissek, &
Lau, 2012). Subsequently, comparisons between subjects A
and B’s absolute response gradients are not informative about
interindividual differences regarding generalization
tendencies.

This idea is not novel. It has been alluded to before
(Mednick , 1957; Mednick & Freedman, 1960) .
Nevertheless, most contemporary generalization research
compares, for instance, differences between patients and con-
trols (Ahrens et al., 2016; Holt et al., 2014; Jensen et al., 2008;

Lissek et al., 2014; Morey et al., 2015; Reinecke, Becker,
Hoyer, & Rinck, 2010; Tinoco-Gonzalez et al., 2015) or in-
terindividual differences, regardless of possible differences in
initial learning (Arnaudova, Krypotos, Effting, Kindt, &
Beckers, 2017; Torrents-Rodas et al., 2013; Wills et al.,
2011). Hence, reported differences in generalization should
be interpreted cautiously, especially given, for example, re-
ports of insufficient safety learning or differences in perceptu-
al discrimination acuity in anxiety patients (Duits et al., 2015;
Laufer et al., 2016). One approach to partly circumvent this
issue is to make use of learning criteria (a response threshold
that needs to be reached at the end of the training phase; Ginat-
Frolich, Klein, Katz, & Shechner, 2017; Lommen, Engelhard,
Sijbrandij, van den Hout, & Hermans, 2012). However, the
use of such criteria can lead to the exclusion of (many) sub-
jects (Lonsdorf et al., 2019), does not assure the absence of
interindividual variation in learning, and can result in differ-
ential exclusion in, for example, patient groups versus control
groups. Alternatively, a performance criterion could be com-
bined with an adaptive learning phase, where the number of
trials is dependent upon meeting certain criteria (Thomas,
Mood, Morrison, & Wiertelak, 1991).

Box 2
As the perception of a stimulus is also a (mental) response, the question

arises as to how these responses are related to conditioned responses. It
may be that perceptual responses vary in the same way as a conditioned
response, because they are both under control of the same third variable
(e.g., training history). As an alternative, we propose a causal rela-
tionship between these two responses (i.e., a causal network of
responses), in that perceptual responses are a determinant of condi-
tioned responses. The findings that changes in perceptual discrimina-
tion were paralleled by neural alterations at primary sensory cortices

Fig. 8 Comparison of generalization gradients using absolute or relative conditioned responses (i.e., expressed in relation to the difference in response
strength between the CS+ and CS-). CS conditioned stimulus, CS+ reinforced CS, CS- unreinforced CS, S test stimulus
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(Li et al., 2008), or that pharmacological inactivation of sensory cor-
tices blocked conditioning-induced changes in discrimination acuity
(Aizenberg & Geffen, 2013), suggest that changes in conditioning
effects emerge due to altered sensory processing. However, the exact
relation remains hypothetical as only a handful of studies measure both
responses congruently.

It is our aim to inspire future research on this matter. As perception and
generalization research have remained relatively separate fields, it
remains unclear to which extent experimental manipulations known to
affect generalization also influence perception and vice versa. To this
end, the assessment of both perceptual and conditioned responses is
crucial as inferences regarding either of them based on only one
measure can be problematic. The systematic measurement of
perceptual and conditioned responses would reveal the degree of
covariance between these two responses, whether they are affected in
the same manner by various experimental variables, and would enable
researchers to identify the mechanisms via which experimental
manipulations affect generalized responses. For instance, differences in
generalization gradients due to differential rather than simple
conditioning might actually be driven by changes in perception.
However, without systematic research on this matter, it will remain
unclear to what extent perceptual gradients and gradients in
conditioned responding are driven by identical/different mechanisms,
or which behavioral phenomena are actually observed because of
perceptual variability.

Perceptual variability and memory

In the previous section, we discussed how perceptual variabil-
ity could affect the learning experience. However, in order to
affect future behavior, these experiences must be stored and
retrieved from memory. In the following section, we briefly
elaborate on how perceptual variability could affect memory
and, in turn, how this could influence patterns of generalized
responding.

A commonly held assumption is that poor memory results
in broader generalization gradients (Jasnow, Cullen, & Riccio,
2012; Riccio, Ackil, & Burch-Vernon, 1992; Riccio,
Richardson, & Ebner, 1984). This idea builds on the finding
that longer delays between learning and testing flatten gener-
alization gradients while preserving overall response strength
(Desiderato, Butler, &Meyer, 1966; Perkins &Weyant, 1958;
Riccio et al., 1984; Thomas & Burr, 1969). The forgetting of
stimulus features due to the passage of time may increase the
variability of a memory representation (Huang & Sekuler,
2010). Apart from forgetting, perceptual variability during
learning may be another source that affects the width of the
memory distribution. If the repeated presentation of a rein-
forced stimulus results in a wide range of percepts (or repre-
sentations) on every trial, the result would be a broader distri-
bution of units (or range of points in psychological space) that
acquired a response potential (or associative strength). With
similarity determined by the overlap in probability distribu-
tions (or point distances), a wide distribution will lead to more
generalization compared to a narrow distribution (for an
illustration, see Fig. 9) (Jasnow et al., 2012; Riccio et al.,

1992, 1984). In a recent study, we assessed perceptual mem-
ory of the CS using a recall task, before the assessment of
generalization. We found that higher uncertainty ratings dur-
ing memory recall led to broader US expectancy generaliza-
tion gradients (Zenses et al., 2020 preprint).

As already mentioned, a common assumption in generali-
zation research is that the representation of the trained stimu-
lus is veridical. However, systematic perceptual variability
may result in a shift of the distribution’s mean from the actual
stimulus, reflecting a memory bias, as the peak of the stimulus
representation no longer corresponds to the actual stimulus.
For example, biased memory could lead to a shift in response
peak along the stimulus spectrum or asymmetries in the re-
sponse gradient. Due to the shifted distribution of recalled CS
features, other stimulus distributions share more overlap com-
pared to the actual CS, which would result in increased
responding (see Fig. 9). Indirect support for this comes from
a study by Dunsmoor et al. (2009), where the test stimulus that
elicited the strongest fear response was also most often iden-
tified as the trained stimulus during a recognition task
(Dunsmoor, Mitroff, & LaBar, 2009). Furthermore, the per-
ceptual categorization tasks in our studies also involve a mem-
ory component. As already mentioned, we found that for al-
most half of the subjects (58.6% of the sample in Zaman,
Ceulemans, et al., 2019a and 47.5% of the sample in Zaman,
Struyf, et al., 2019b) the peak of their perceptual gradients
shifted away from the CS. In those studies, asymmetries in
the gradient of conditioned responding were observed due to
stronger conditioned responses in the direction of the potential
memory bias (Struyf, Zaman, et al. 2017; in Supplementary
Information of Zaman, Struyf, et al. 2019b). It remains to be
determined whether these shifts are actually due to a memory
bias. In the study discussed above where memory recall was
assessed prior to generalization, we also found an effect of
memory bias on the shape of the generalization gradient
(Zenses et al., 2020 preprint).

Decision-making

Another determinant that has often been implicated – either
explicitly or implicitly – in current generalization research
relates to the notion that generalization comprises a decision-
making process (Dunsmoor & Murphy, 2015; Dymond et al.,
2015). Some associative theories indeed invoke separate per-
formance mechanisms that only play a role at the time of
testing (Boddez, Moors, Mertens, & De Houwer, 2020;
Miller & Schachtman, 1988; Ralph R. Miller & Matzel,
1988). For example, it has been argued that conditioned
responding is determined by a decision process that selects
action tendencies that serve the goals of the organism (e.g.,
safety; for an elaborate discussion, see Boddez et al., 2020).
To the extent that these goals are considered more important
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(e.g., safety has a higher value) relative to other goals (e.g.,
saving energy), these action tendencies – and with them con-
ditioned responding – will be set off more easily (e.g., in
response to a GS). In addition, inferences concerning the sit-
uations in which these goals are either at stake or not will also
affect responding. Differences in generalization gradients be-
tween specific patient populations and controls, for instance,
have been attributed to a risk detection bias in the former
(Dymond et al., 2015). Dymond et al. wrote the following
on this matter: “This pattern of responding, referred to as
overgeneralization, is defined by less steep decreases in fear
responses as stimuli differentiate from CS+, indicating stron-
ger generalization and the tendency to infer threat-potential to
physically similar stimuli” (p. 563).

Furthermore, studies have demonstrated that different pat-
terns of generalization are observed depending on instructions
that may affect decision making (Ahmed & Lovibond, 2015;
Vervliet, Kindt, Vansteenwegen, & Hermans, 2010). In the
study of Vervliet et al. (2010), for example, two groups of
subjects learned that a yellow triangle (CS+) was followed
by shock (US). Crucially, instructions given prior to condi-
tioning differed; in the Shape group (SG), the importance of
shape in the occurrence of the US was emphasized, while in
the Color group (CG), instructions suggested that color was
essential for predicting the US. In a subsequent generalization
test, a yellow square and a blue triangle were presented, while
SCR and shock expectancies were measured. Findings re-
vealed the vital significance of instructions, as those in the

Fig. 9 Schematic example of the effects of precision and bias of the CS
memory. Left: A biased CS memory results in more overlap between it
and the representational distribution of a test stimulus (orange), yielding a
higher level of similarity. The more similarity between the CS and a GS

the larger the elicited response. Right: A broad probability distributions
of recalled CS features reflects a reduced memory precision. Thereby
increasing its’ overlap with the distribution of a test stimulus and,
consequently, their similarity. CS conditioned stimulus, S test stimulus
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SG showed more generalization to the blue triangle, while
those in the CG generalized more to the yellow square.
While both groups were exposed to the same stimulus
pairings, verbal instructions influenced their generalized
responding. In a follow-up study, Ahmed and Lovibond
(2015) utilized the same paradigm, but this time, instructions
were given after the conditioning phase to control for any
possible effects on learning. Once again, similar results were
obtained, confirming the impact of verbal instructions on gen-
eralization patterns.

Recent work found considerable heterogeneity among
humans regarding adopted (and the ability to verbalize) rules.
Different decision-rules were associated with distinct gradients
in conditioned responding (Boddez, Bennett, van Esch, &
Beckers, 2016; Lee, Lovibond, Hayes, & Navarro, 2018b;
Lovibond et al., 2019). For instance, Lee et al. (2018a, b) found
that subjects generalized using different decision strategies;
they adopted either a similarity-based rule (i.e., “the more a
stimulus resembles the CS+, the more dangerous it is”), a linear
(or categorical) rule (i.e., “the bluer the stimulus is, the more
dangerous it is”), or could not report any rule. The former
decision strategy led to a gradient that peaked around the CS+
, while the latter resulted in a linear gradient that peaked a bit
further from the CS+, in the direction opposite from the CS-.
Only through averaging of the gradients of these subgroups a
peak shift in the overall gradient was found. Furthermore, ex-
planations of the different response rules remain speculative,
but we suggest that differences in perceptual accuracy may be
one reason. For instance, when able to perceive the subtle dif-
ferences between stimuli, the similarity-based rule matches the
person’s experience. On the other hand, when only able to
differentiate between the extreme stimuli, one may be more
likely to develop a linear or categorical rule. After all, it only
seems logical that the cognitive rules that we develop arise from
our experiences when interacting with our environment rather
than objective environmental settings.

Conclusion

The aim of this paper is to inspire new research by illustrating the
various ways through which (non-static) perceptual processes can
affect learning and generalization. In the literature, multiple as-
pects of generalization are studied but usually in isolation. More
often than not, individual differences, among other things, are not
taken into account, rendering the findings difficult to interpret.
Future research should strive to attend to the sources of these
individual differences, as well as to implement advances from
other fields and novel analytical approaches, to help us improve
the way we study generalization. More precisely, advances made
in other fields (e.g., perception research) should not only be ac-
knowledged but also implemented in current generalization
models as they will benefit our understanding of underlying

processes involved in generalized responding. Taking perception
and prior expectations into account in associative learning has
already led to fruitful research in psychopathology. For instance,
associative models of psychosis have argued that positive symp-
toms (e.g., delusions) might be due to perceptual disturbances
caused by aberrant prediction error (Corlett et al., 2019; Powers,
Mathys, & Corlett, 2017). In addition, we demonstrated that in-
ferences regarding distinct gradients should bemade cautiously as
they could emerge via various ways. Finally, we advocated that
future research should move away from population-based gradi-
ents and attempt to model and understand interindividual differ-
ences in gradients (Lee, Hayes, & Lovibond, 2018a; Struyf et al.,
2015), as well as variations in responding to repeated stimulus
presentations within the same subject. As such, analytical ap-
proaches other than just the analyses of averaged responses (per
stimulus) might be better suited for generalization research
(Vanbrabant, Raes, Hermans, & Vanpaemel, 2016), including
the implementation of computational models that parametrize la-
tent processes. This would aid researchers and clinicians to differ-
entiate between various distinct processes underlying similar be-
havioral phenotypes, and as such, to further guide the develop-
ment of individually tailored treatments.
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