
BRIEF REPORT

Perceived similarity ratings predict generalization success
after traditional category learning and a new paired-associate
learning task

Stefania R. Ashby1 & Caitlin R. Bowman1
& Dagmar Zeithamova1

# The Psychonomic Society, Inc. 2020

Abstract
The current study investigated category learning across two experiments using face-blend stimuli that formed face families
controlled for within- and between-category similarity. Experiment 1 was a traditional feedback-based category-learning task,
with three family names serving as category labels. In Experiment 2, the shared family name was encountered in the context of a
face-full name paired-associate learning task, with a unique first name for each face. A subsequent test that required participants
to categorize new faces from each family showed successful generalization in both experiments. Furthermore, perceived simi-
larity ratings for pairs of faces were collected before and after learning, prior to generalization test. In Experiment 1, similarity
ratings increased for faces within a family and decreased for faces that were physically similar but belonged to different families.
In Experiment 2, overall similarity ratings decreased after learning, driven primarily by decreases for physically similar faces
from different families. The post-learning category bias in similarity ratings was predictive of subsequent generalization success
in both experiments. The results indicate that individuals formed generalizable category knowledge prior to an explicit demand to
generalize and did so both when attention was directed towards category-relevant features (Experiment 1) and when attention was
directed towards individuating faces within a family (Experiment 2). The results tie together research on category learning and
categorical perception and extend them beyond a traditional category-learning task.
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Introduction

Categorization helps us organize information from the world
around us into meaningful clusters relevant to behavior. A
hallmark of category knowledge is the ability to categorize
new instances (memory generalization), allowing us to use
our prior experiences to guide decisions in novel situations
(Knowlton & Squire, 1993; R.M. Nosofsky & Zaki, 1998;
Poldrack et al., 2001; Reber, Stark, & Squire, 1998).
Category knowledge also results in biases in perception,
which can manifest as increased perceived similarity of items
within a category, decreased perceived similarity of items
from different categories, or a combination of both (Beale &

Keil, 1995; Goldstone, 1994a; Goldstone, Lippa, & Shiffrin,
2001; Kurtz, 1996; Livingston, Andrews, & Harnad, 1998).
These perceptual biases are often thought to reflect stretching
of the perceptual space along the category-relevant dimen-
sions and/or shrinking along the category-irrelevant dimen-
sion, resulting from shifts of attention to the relevant features
(Goldstone & Steyvers, 2001; Kruschke, 1996; Medin &
Schaffer, 1978; Nosofsky, 1991; Nosofsky, 1986). While a
category bias on peception can emerge relatively quickly fol-
lowing category learning, it remains unknown to what degree
it reflects the quality of category knowledge and relates to
subsequent categorization and generalization performance. If
category learning results in changes of perceptual space and
persistent attentional shifts to category-relevant features, the
degree of category bias on perception should be a good indi-
cator of the quality of category knowledge. On the other hand,
if good learners more accurately encode all information –
which may allow them to better determine which information
is category relevant and which irrelevant – then the degree of
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category bias may not be a good predictor of category knowl-
edge. Thus, one goal of the current study was to measure both
category bias in perception and generalization in a single
study to determine to what degree category bias in perception
following category learning can be used as a measure of gen-
eralizable category knowledge by predicting performance on
unstudied items.

Most categorization studies explicitly instruct participants
to learn categories. Several studies have also compared cate-
gorization tasks that focus on contrast across categories and
commonalities within categories to identification tasks that
focus on learning stimulus-specific information (Nosofsky,
1986; Shepard & Chang, 1963; Shepard, Hovland, &
Jenkins, 1961). However, in the real world, category informa-
tion can be available alongside information about specific
items or individuals, without an explicit goal to form category
knowledge. For example, when attending a wedding and
meeting many new individuals, one’s objective is to remem-
ber individual people and learn their unique names. Yet, some
guests may share last names, providing an opportunity to also
extract categorical structure across individuals. Past work has
shown that category knowledge can be extracted without ex-
plicit instruction (Aizenstein et al., 2000; Bozoki, Grossman,
& Smith, 2006; Gabay, Dick, Zevin, & Holt, 2015; Kéri,
Kálmán, Kelemen, Benedek, & Janka, 2001; Love, 2002;
Reber, Gitelman, Parrish, & Mesulam, 2003; Wattenmaker,
1993). However, how category learning proceeds when cate-
gory information is available but instructions emphasize learn-
ing of specific information is rarely addressed. While some
show that categorization performance can be predicted from
performance on identification tasks that emphasize discrimi-
nation of individual items (Nosofsky, 1986), others have
found that learning and generalizing concept information is
more challenging when learning is focused on discrimination
of individual stimuli (Soto & Wasserman, 2010). Thus, in
Experiment 2, our goal was to assess signatures of category
knowledge – generalization and category bias on perception –
in a task that emphasizes memory for stimulus-specific infor-
mation and more closely resembles an episodic paired-
associate learning task than a traditional category-learning
task.

In the current paper, we assessed (1) category bias on per-
ception, (2) category generalization success, and (3) their re-
lationship after traditional category learning (Experiment 1)
and after a novel task where category information was avail-
able but instructions emphasized stimulus-specific informa-
tion (Experiment 2). Participants were shown faces that
belonged to three categories (families), designated by a family
name. Face stimuli were created as blends of never-seen “par-
ent” faces, resulting in increased physical similarity between
faces that shared a parent. Some physically similar faces were
members of the same family while others were members of
different families, allowing us to dissociate the effect of

category membership from physical similarity. In
Experiment 1, faces were encountered in the context of a
traditional feedback-based category learning task, emphasiz-
ing similarities among faces belonging to the same family and
how they contrast with faces belonging to different families.
In Experiment 2, faces were encoded through observational,
face-full name paired-associate learning. While family names
were identical to Experiment 1, with each family name shared
across several faces, first names were unique for each face,
requiring participants to remember individual faces and dif-
ferentiate faces within each family. Perceived similarity rat-
ings were collected immediately before and after learning to
test for the emergence of category bias in perception. We also
tested participants’ ability to generalize family names to new
face-blend stimuli. The category bias in perceived similarity
ratings after learning was related to subsequent generalization
success in order to determine the extent to which category bias
in perception reflects the quality of category knowledge.

The current design allowed us to also address additional
questions regarding the nature of category bias in perception.
First, what drives category bias in perception has been vari-
able across studies. Some studies have shown between-cate-
gory expansion or acquired distinctinctiveness, where items
across a learned category boundary become more discrimina-
ble (Beale & Keil, 1995; Folstein, Palmeri, & Gauthier, 2013;
Goldstone, 1994a; Gureckis & Goldstone, 2008; Wallraven,
Bülthoff, Waterkamp, van Dam, & Gaißert, 2014), and are
perceived as more dissimilar after category learning
(Goldstone et al., 2001). Category bias can also manifest as
within-category compression or acquired equivalence, where
items within a learned category become less discriminable
(Gureckis & Goldstone, 2008; Soto, 2019) and are perceived
as more similar after category learning (Goldstone et al., 2001;
Kurtz, 1996; Livingston et al., 1998). As relatively few studies
show both compression and expansion effects following cat-
egory learning (but see Goldstone et al., 2001; Gureckis &
Goldstone, 2008), we were interested to what degree both
expansion and compression effects can be observed after cat-
egory learning of the face-blend stimuli with equated within-
category and between-category physical similarity.
Furthermore, the aforementioned studies on learning-related
category bias have focused on traditional category learning.
Thus, the degree to which within-category compression and
between-category expansion can be observed after learning
that emphasizes memory for stimulus-specific information re-
mains unknown.

Finally, using perceived similarity to probe category
knowledge in Experiment 2 can help us link research on the
emergence of conceptual knowledge to another area of gener-
alization research: episodic inference. Episodic inference re-
fers to the ability to integrate information across distinct ex-
periences that share content to infer new information (e.g.,
infering that two people are likely a couple after seeing each
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of them with the same child on different occasions). Whether
people spontaneously integrate memories of related events as
they are encoded (Cai et al., 2016; Gershman, Schapiro,
Hupbach, & Norman, 2013; Schlichting, Mumford, &
Preston, 2015; Shohamy & Wagner, 2008; Zeithamova,
Dominick, & Preston, 2012) or whether links between related
memories are formed in response to generalization demands
(Banino, Koster, Hassabis, & Kumaran, 2016; Carpenter &
Schacter, 2017, 2018) remains debated. Here, observing evi-
dence for the formation of a category representation under
conditions that minimize generalization demands – such as
observing category bias in perceived similarity ratings after
learning but before the explicit generalization test —would
suggest that participants may extract category information
and form category representations spontaneously.

Method

Participants

Healthy participants – N = 39 in Experiment 1 and N = 43 in
Experiment 2 – were recruited from the University of Oregon
community via the university SONA research system and re-
ceived course credit for their participation. Except for the
learning phase, all procedures were identical across experi-
ments and are presented together. All participants provided
written informed consent, and experimental procedures were
approved by Research Compliance Services at the University
of Oregon. From Experiment 1, four participants were exclud-
ed due to chance performance (accuracy ≤ .33) in categorizing
the training faces. From Experiment 2, participants were ex-
cluded for failing to make responses on more than 25% of
categorization trials (n = 3) and incomplete data (n = 1).
After exclusions, analyses were carried out with the remaining
35 participants for Experiment 1 (Mage = 20.43, SDage = 2.58,
18–32 years, 21 females) and 39 participants for Experiment 2
(Mage = 19.26, SDage = 1.13, 18–23 years, 21 females). These
sample sizes provide 80% power for detecting medium-size
effects (d ≥ 0.5) using planned one-sample and paired t-tests
and strong (r ≥ .5) correlations, as determined in G-Power
(Faul, Erdfelder, Buchner, & Lang, 2009; Faul, Erdfelder,
Lang, & Buchner, 2007).

Stimuli

Stimuli were grayscale images of blended faces constructed by
morphing two unaltered face images together using FantaMorph
Version 5 by Abrosoft. We used blended faces because it
allowed us to maintain realistic-looking stimuli while also con-
trolling for within- and across-category physical similarity. Faces
were also convenient for creating the face-name learning task in
Experiment 2 that was intuitive for the participants and yielded

the right level of difficulty as verified through a pilot study. Prior
work has shown that category effects differ based on whether
morphed faces are constructed from parents within one race ver-
sus across two races (Levin & Angelone, 2002). Thus, we re-
stricted all parent faces to be Caucasian to ensure that the
resulting face-blend stimuli were comparably similar to all other
faceswith a shared parent. Additionally, all parent faceswere of a
single gender (male) to ensure that face-blends maintained a
realistic appearance. Parent faces were compiled over several
years from multiple sources, including the Dallas Face
Database (O’Toole et al., 2005), CVL Face Database provided
by the Computer Vision Laboratory, University of Ljubljana,
Slovenia (Peer, 1999), and Google Image Search. Faces were
selected primarily based on whether they would blend well with
other faces (e.g., visibility of both ears, no facial hair, etc.) but
were not formally equated for features such as attractiveness or
memorability.

The stimulus structure is presented in Fig. 1. For each par-
ticipant, three category-relevant parent faces and three
category-irrelevant parent faces were randomly selected from
a total set of 20 faces. Each of the three category-relevant
parent faces were individually morphed with each of the three
category-irrelevant parent faces with equal weight given to
each parent face (50/50 blend). The resulting nine blended
faces were then used as training stimuli. Faces that shared a
category-relevant parent shared a family name (belonged to
the same category). Faces that shared a category-irrelevant
parent belonged to different families. As faces sharing any
parent (category-relevant or category-irrelevant) shared phys-
ical traits, physical similarity alone was not diagnostic of cat-
egory membership. Because of the blending procedure used,
an equal number of category-relevant and category-irrelevant
parent faces were selected to provide equal exposure to the
relevant and irrelevant category features. With an uneven
number of relevant versus irrelevant parent faces (e.g., two
relevant parent faces blended with multiple irrelevant parent
faces to create family members), unsupervised learning could
take place, making the features of the relevant parent faces
more prominent through increased exposure instead of being
category-learning driven. We chose a three-way category
structure, which provided nine blended faces to learn and
therefore 36 pairwise similarity rating comparisons. We deter-
mined that the three-way structure provided the best balance
of a reasonable number of training stimuli to learn but still
provided adequate pairwise comparisons for similarity ratings.
Generalization stimuli were new faces created by blending
category-relevant parent faces with 14 remaining parent faces
not used for creation of the training faces.

Procedure

Both experiments consisted of the following phases: passive
viewing, pre-learning similarity ratings, learning (different in
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each Experiment), passive viewing, post-learning similarity
ratings, and category generalization. Additionally,
Experiment 2 included cued-recall of face-name associations
before the category-generalization phase. Self-paced breaks
separated the phases.

Passive viewing To familiarize participants with the stimuli
and give them an idea of the degree of similarity between
all faces before collecting perceived similarity ratings,
participants first viewed each of the nine training stimuli
individually, once in a random order without any labels
and without making any responses. Face-blends were
shown for 3 s with a 1-s inter-stimulus-interval (ISI).
Passive viewing of the face-blends immediately before
the pre- and post-learning similarity rating phases was

also included as a pilot of a future neuroimaging experi-
ment. No responses were collected during viewing.

Pre-learning similarity ratings To validate that participants
were sensitive to the similarity structure among faces intro-
duced by the blending process and to obtain baseline similar-
ity ratings, participants rated the subjective similarity of pairs
of faces to be used during the learning phase. All possible 36
pairwise comparisons of the nine training faces were present-
ed and participants rated the similarity of the two faces on a
scale from one to six (1 = two faces appeared very dissimilar,
6 = two faces appeared very similar). Face pairs and the sim-
ilarity rating scale were displayed for 5 s with a 1-s ISI. Face
pairs were then binned into three conditions for analyses de-
pending on whether they (1) shared a parent and a family

Fig. 1 Example of face-blend stimuli. Parent faces on the leftmost side
are designated “category relevant parents” as these parents determined
family membership – Miller, Wilson, or Davis – during learning and
generalization. Parent faces across the top are designated “category-irrel-
evant parents” as these parents introduced physical similarity across fam-
ilies but did not determine categories. Three category-irrelevant parents
were used for learning. The rightmost three category-irrelevant parents
are a subset of new faces used for generalization. Parent faces were never

viewed by participants, only the resulting blended faces. The face-
blending procedure produced pairs of faces that shared a category-
relevant parent and belonged to the same family (shared parent – same
family name; example indicated with dark grey box), pairs of faces that
shared a category-irrelevant parent and belonged to different families
(shared parent – different family name; example indicated with medium
grey box). Non-adjacent pairs did not share a parent and were not related
(example indicated with light grey boxes)
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name, (2) shared a parent face but did not share a family name,
or (3) did not share a parent face (see example pairs in Fig. 1).

Learning phase Experiment 1: Feedback-based category
learning. On each trial, a training face was presented on
the screen along with family names (Miller, Wilson,
Davis) as response options. Participants were instructed
to indicate family membership via a button press and re-
ceived corrective feedback after each trial. Each face was
viewed simultaneously with the family name response op-
tions on the screen for 4 s, received corrective feedback for
1 s, and trials were separated by a 1-s ISI. Each face was
presented 16 times total, evenly split across two blocks.
Experiment 2: Observational learning of face – full name
associations. To test the robustness of category learning
outside of a traditional categorization task, Experiment 2
provided an opportunity to form associations between
faces from the same families in the context of a face-full
name associative learning task. On each trial, participants
studied a face-name pair that was presented on-screen for
2 s and then made a prospective memory judgement for
2 s on a scale from 1 to 4 (1 = definitely will not remem-
ber, 4 = definitely will remember). Trials were separated
by a 4-s ISI and participants viewed each face-name pair 12
times, evenly split across three blocks. Prospectivememory
judgments were included to facilitate participant engage-
ment with the observational learning task and were not
considered further. Family names were identical to
Experiment 1 and shared across faces whereas first names
were unique to each face. While the inclusion of face-
specific first names required participants to differentiate
individual faces, the inclusion of the shared family names
provided an opportunity to form links between related
faces. We designed the task to determine to what degree
experiences that overlap in content (here, last name) tend to
affect perception and be related in memory, bridging tradi-
tional category research with research on generalization
through episodic inference (Schlichting & Preston, 2015;
Zeithamova et al., 2012). However, we subsequently dis-
covered similarities between our task and a study by
Medin, Dewey, and Murphy, (1983). In Medin et al.
(1983), participants also learned first and shared last names
of faces but under a feedback-based categorization para-
digm rather than a paired-associate observational paradigm.
Because our task did not employ feedback-based learning,
participants were not provided with cues as to the number
of first names or surnames. The fact that family names were
repeated across faces or that there was a category structure
among faces was not explicitly emphasized to participants.
This allowed us to see if we could replicate results from
Experiment 1 under very different conditions, in a task that
does not resemble traditional category learning and where
category information is present but not emphasized.

Post-learning similarity ratings Perceived similarity ratings
were repeated after the learning phase with the same timing as
pre-learning ratings. Of main interest was a potential category
bias in perceived similarity, i.e., whether faces that shared a
parent would be rated as more similar when they had the same
family name than when they had different family names.

Cued recall of face-name associations Experiment 2 included
a self-paced cued-recall task of face-name associations.
Participants viewed each training face individually on a com-
puter screen and handwrote the full name of each face on a
sheet of paper. Participants advanced the trials at their own
pace but were not able to skip faces or go back and look at
faces already named. Participants were encouraged to make
their best guess as to the first and family names of each face
even if they were not confident in their memory.

Generalization phase As the last phase of both Experiments,
category knowledge was tested directly using categorization
of old and new faces. In addition to the nine training faces,
participants categorized 42 never-seen faces, consisting of 14
new blends of each of the three category-relevant parent faces.
Participants were asked to select via button press the family
name for each face, which were presented individually for 4 s,
from the three options (Miller, Wilson, Davis) presented on
the screen. Trials were separated by an 8-s ISI. No feedback
was provided, and participants were encouraged to make their
best guess when unsure of family membership.

Results

Learning phase

Experiment 1: Feedback-based category learningOverall per-
cent correct across training was 76% (SD = 14%), which
was well above chance (33% for three categories; one-
sample t(34) = 17.66, p < .001, d = 3.01). Categorization
accuracy improved across training, from 66% in the first half
to 85% in the second half (t(34) = 9.72, p < .001, d = 1.63),
demonstrating learning over time.

Experiment 2: Observational learning of full name – face as-
sociations Observational learning provided no measure of ac-
curacy from the learning phase. Therefore, in Experiment 2 a
cued-recall task was included to assess how well participants
learned the face-full name pairs. Participants recalled on aver-
age 52% of first names and 65% of family names.

Similarity ratings

We compared mean face similarity ratings in each pair-type
(shared parent-same family name, shared parent-different
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family name, not related) using repeated-measures ANOVA.
Analyses were performed separately in each phase (pre-learn-
ing, post-learning). We also assessed learning-related rating
changes by comparing ratings across phases. For all
ANOVAs, a Greenhouse-Geisser correction for degrees of
freedom (denoted as GG) was used wherever Mauchly’s test
indicated a violation of the assumption of sphericity.

Experiment 1 Pre-learning ratings (Fig. 2A) demonstrated that
participants were sensitive to the physical similarity structure
introduced with the face-blending procedure. A one-way,
repeated-measures ANOVA showed a significant effect of
pair type (F(2, 68) = 58.74, p < .001, η2p = .63), driven by

lower perceived similarity for faces that did not share a parent
compared to those that did share a parent (with or without
shared family name, both t > 9.17, p < .001, d > 1.50).
Faces that shared a parent were perceived as equally similar
to one another irrespective of whether they also shared the
same – not yet presented – family name (t(34) = -0.17, p =
.87, d = 0.03).

Post-learning ratings (Fig. 2B) revealed a category bias on
perceived similarity: pairs of faces sharing a parent and family
name were perceived as significantly more similar than faces
that shared a parent but not a family name (Mdiff = 0.72, SDdiff

= 1.41, t(34) = 3.02, p = .005, d = 0.51). Faces that shared a
parent remained rated as more similar than unrelated faces
(both t > 6.85, p < .001, d > 1.15).

To further test the effect of learning, we conducted a 2 × 3
(timepoint [pre-learning, post-learning] × pair-type [shared
parent-same family name, shared parent-different family
name, not related]) repeated-measures ANOVA. There was
no main effect of timepoint (F(1, 34) = 0.04, p = .85, η2p =

.001). There was a significant main effect of pair-type (F(1.63,
55.38) = 61.21, p < .001, η2p = .64, GG), and a significant

interaction between timepoint and pair-type (F(1.64, 55.88)
= 11.85, p < .001, η2p = .25,GG). Follow-up pre-post compar-

isons within each pair-type (Fig. 2C) revealed that this inter-
action was driven by both a significant increase in similarity
ratings for faces sharing a parent and a family name (t(34) =
3.02, p = .005, d = 0.51) and a significant decrease in

Fig. 2 Top panel shows results from the traditional category learning
experiment. Bottom panel shows results from the face-name paired
associate-learning experiment. A and E. Average similarity ratings for
faces that share a parent and family name, faces that only share a parent,
and faces that don’t share any parents before learning. B and F. Average
similarity ratings for the same pairwise comparisons after learning.
Asterisk represents a significant (p < .05) difference in post-learning

similarity ratings for faces that belong to the same family vs. faces that
share physical similarity but belong to different families (i.e., a category
bias in perception). C and G. Changes in similarity ratings from pre- to
post-learning. Asterisk denotes significant (p < .05) increases and de-
creases in perceived similarity for faces. D and H. Positive relationship
between indirect (category bias in perception) and direct (categorization
accuracy for new faces) measures of memory generalization
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similarity ratings for faces only sharing a parent but not a
family name (t(34) = -2.33, p = .026, d = -0.39). There was
no significant change in similarity ratings for faces that did not
share a parent (t(34) = -0.18, p = .86, d = -0.03).

Experiment 2 As in Experiment 1, participants were sensitive to
the face similarity structure. Pre-learning similarity ratings (Fig.
2E) differed significantly among pair types (F(1.46, 55.47) =
72.22, p < .001, η2p = .655, GG), driven by lower perceived

similarity of faces that did not share a parent compared to faces
that shared a parent (with and without shared family names, both
t > 10.65, p < .001, d > 1.70). For faces that shared a parent,
ratings did not significantly differ when face pairs had the same
or different – not yet presented – family names (t(38) = 1.82, p =
.077, d = 0.29). A category bias was found in post-learning
ratings (Fig. 2F) with pairs of faces sharing a parent and family
name perceived as significantly more similar than faces that
shared a parent but not a family name (Mdiff = 0.58, SDdiff =
1.52; t(38) = 2.39, p = .022, d = 0.38).

Testing the effect of learning, the 2 × 3 (timepoint × pair-
type) repeated-measures ANOVA revealed a significant main
effect of timepoint (F(1, 38) = 5.20, p = .028, η2p = .120), with

overall similarity ratings being lower post-learning than pre-
learning (Mpre = 3.49, SDpre = 0.51; Mpost = 3.33, SDpost =
0.59; t(38) = -2.28, p = .028, d = 0.37). There was also a
significant main effect of pair-type (F(1.28, 48.60) = 60.42,
p < .001, η2p = .614,GG), and a significant interaction between

timepoint and pair-type (F(1.67, 63.37) = 4.21, p = .03, η2p =

.10, GG). Follow-up pre-post comparisons within each pair-
type (Fig. 2G) revealed that the interaction was driven by a
significant decrease in similarity ratings for faces sharing a
parent but not a family name (t(38) = -3.71, p = .001, d = -
0.59), but there were no significant changes in similarity rat-
ings for other pair-types (both t < -1.04, p > .30, d < -0.18).
Thus, changes in perceived similarity were affected by cate-
gory membership in both experiments.

Although not significant (p = .077), we noted a numerical
tendency towards a category bias in pre-learning similarity
ratings. Parent faces were randomly selected for each partici-
pant to serve as category-relevant or category-irrelevant par-
ents, but some of the category-relevant parent faces may have
been more salient, leading to a numerically greater pre-
learning similarity rating. Thus, we tested whether the post-
learning category bias on perceived similarity was reliably
greater than pre-learning bias. A 2 × 2 (timepoint [pre-learn-
ing, post-learning] × pair-type [shared parent-same family
name, shared parent-different family name]) repeated-
measures ANOVA showed only a marginal interaction be-
tween timepoint and condition (F(1, 38) = 2.87, p = .098, η2p
= .07). We thus controlled for pre-learning similarity rating
differences in subsequent analyses that assessed the relation-
ship of post-learning ratings and generalization performance.

Category generalization

Experiment 1 Participants correctly categorized 85% of train-
ing faces (SD = 17%) and 74% of new faces (SD = 13%),
which was well above chance (33% for three categories; both
one-sample t(34) > 18.12, p < .001, d > 3.06). A paired-
samples t-test showed higher categorization accuracy for the
training faces than for the new faces (t(34) = 5.48, p < .001 , d
= 0.93). We next tested whether the category bias on per-
ceived similarity ratings (an indirect measure of category
knowledge) was related to subsequent generalization success.
A Pearson correlation showed a significant positive relation-
ship between the category bias on perceived similarity ratings
and generalization accuracy (r(33) = .64, p < .001; Fig. 2D).
The category bias on perceived similarity in the post-learning
phase was a significant predictor of subsequent generalization
performance even when pre-learning similarity ratings were
considered (multiple regression: pre-learning differences in
perceived similarity β = .30, t(34) = 1.80, p = .08; post-
learning category bias β = .46, t(34) = 2.75, p = .01).

Experiment 2 Participants correctly categorized 70% of training
faces (SD = 23%) and 64%of new faces (SD= 22%), whichwas
well above chance (33% for three categories; both one-sample
t(38) > 8.65, p < .001, d > 1.38). A paired-samples t-test showed
higher categorization accuracy for the training faces than for new
faces (t(38) = 2.12, p = .04, d = 0.34). The post-learning category
bias on perceived similarity ratings was significantly correlated
with generalization accuracy (Pearson’s r(37) = .48, p = .002;
Fig. 2H). Further, the category bias was a significant predictor of
subsequent generalization performance even when pre-learning
similarity ratings were controlled for (multiple regression: pre-
learning category bias β = -.22, t(38) = -0.86, p = .40; post-
learning category bias β = .66, t(38) = 2.57, p = .01).

Discussion

The current study investigated category learning using measures
of perceived similarity and category generalization across two
experiments. Face-blend stimuli were used to control physical
similarity within and across categories (families). Experiment 1
was a traditional feedback-based category-learning task, with
three family names serving as category labels. In Experiment 2,
the shared family name category label was encountered in the
context of a face-full name paired-associate learning task, where
first names were unique for each face. Participants were able to
successfully apply category labels to new faces in both experi-
ments, demonstrating that category information can be extracted
in support of generalization even when task goals do not empha-
size learning categories at encoding. Past work of incidental cat-
egory learning has shown that individuals can extract category
structures when not instructed using patterns of physical
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similarity as category cues (Aizenstein et al., 2000; Love, 2002;
Reber et al., 2003; Wattenmaker, 1993). We extend these prior
findings by showing that category structure can also be extracted
when category membership is dissociable from physical similar-
ity and further when individuals are actively learning information
that differentiates individual items within the same category.

Learning-related changes in perceived similarity ratings
were observed in both experiments. In both cases, following
learning, participants rated faces sharing a category label as
more similar than equally physically similar faces that did not
share a category label. These results extend prior studies find-
ing changes in perceived similarity as a result of explicit cat-
egory learning (Goldstone, 1994b, 1994a; Livingston et al.,
1998) to a novel task that exposes participants to a category
label but requires individuation of stimuli within a category.
Observing category bias after the face-name paired-associate
learning also indicates that the mere presence of a shared piece
of information can bias perception even outside the context of
a traditional category-learning task.

The current results also indicate that similarity ratings pro-
vide a useful tool to index category knowledge while mini-
mizing explicit generalization demands. In both experiments,
category bias in similarity ratings observed after learning pre-
dicted subsequent generalization of category information to
new examples. To our knowledge, this is the first study relat-
ing the strength of a perceptual category bias to the quality of
learned category information (as measured by generalization
success). The finding that good category generalizers were
those who showed the greatest distortion in perceptual repre-
sentations (rather than those with representations better
aligned with physical similarity) is consistent with the view
that category bias in perception results from learning-related
attentional shifts and differential weighting of perceptual fea-
tures based on their category relevance (Goldstone &
Steyvers, 2001; Kruschke, 1996; Medin & Schaffer, 1978;
Nosofsky, 1991; Nosofsky, 1986). Our findings tie together
research on categorical perception and concept generalization,
and newly indicate that perceived similarity ratings reflect the
quality of new category knowledge robustly across two dis-
tinct tasks involving category learning.

Interestingly, while perceptual biases occurred in both ex-
periments, they took different forms. In Experiment 1, simi-
larity ratings for faces within a family increased while simi-
larity ratings for faces that were physically similar but
belonged to different families decreased. These results provide
a new example of a category structure in which both within-
category compression and between-category expansion are
observed after traditional feedback-based category learning
(Gurekis & Goldstone, 2008; Goldstone, Lippa & Shiffrin,
2001), and aligns well with the task demands of treating some
stimuli as distinct and some as equivalent. Based on prior
work on attentional shifts after category learning (Goldstone
& Steyvers, 2001; Kruschke, 1996; Nosofsky, 1991), this

result indicates that participants both focused more strongly
on features that differentiate between categories (features of
the relevant parent faces) and decreased attention to features
that do not differentiate between categories (features of the
irrelevant parent faces that affected physical similarity of faces
but not family membership).

In contrast, the changes in perceived similarity after the face-
name paired-associate learning in Experiment 2 were primarily
driven by decreased similarity for faces that were physically
similar but belonged to different families. We did not observe
increases in perceived similarity ratings for faces belonging to the
same family.Whilemore difficult category structures are thought
to trigger within-category compression (Pothos & Reppa, 2014),
this does not explain differences observed here as category struc-
ture was the same across experiments and category learning was
easier rather thanmore difficult in Experiment 1, where compres-
sion was observed. Rather, we suspect that learning goals at
encoding drove the differences in the pattern of category bias
between experiments. Although it is not possible to rule out a
contribution from other factors, such as feedback-based versus
observational learning, the goal of learning a full name for each
face (including the unique first names) in the paired-associates
task was likely a key factor. It required participants to look for
differences between all faces, even faces within the same family,
in order to differentiate between categories as well as between
“brothers” within the same family. That meant that all features
remained relevant for task goals in Experiment 2, as the features
of category-irrelevant parent faces were important for discrimi-
nating two members of the same family, such as differentiating
Brad Miller from Ryan Miller. Thus, participants could not sim-
ply ignore the category-irrelevant features as they could in
Experiment 1.

Notably, the category bias was measured after learning but
before the explicit generalization test, meaning that the cate-
gory bias was present prior to explicit generalization demands.
Yet, the presence of a shared piece of information (same last
name) was sufficient to affect how faces became represented,
even in Experiment 2 where no features were irrelevant for the
task at hand. This finding is consistent with the notion that
people spontaneously link related episodes into an integrated
representation at encoding (Shohamy & Wagner, 2008;
Zeithamova, Dominick, & Preston, 2012) rather than in re-
sponse to explicit generalization demands (Banino et al.,
2016; Carpenter & Schacter, 2017, 2018). As a strategic de-
cision to rate faces with the same last name as more similar
can contribute to biases in similarity ratings (Goldstone,
1994b; Goldstone et al., 2001), we cannot definitively attri-
bute our findings to spontaneous integration during learning.
However, our results do indicate that evidence for the forma-
tion of category knowledge can be demonstrated even when
generalization task demands are greatly minimized, and out-
side of a traditional category learning task. The nature of the
resulting category representations – such as whether they are
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exemplar-based (Hintzman, 1986; Medin & Schaffer, 1978),
prototype-based (Homa, Cross, Cornell, Goldman, &
Shwartz, 1973; Posner & Keele, 1968), or cluster-based
(Love & Medin, 1998) – cannot be resolved in the current
study as any model of category learning that postulates
learning-related attentional shifts would predict the emergence
of perceptual biases.

In summary, we build on long lines of research on category
learning (for reviews, see Ashby &Maddox, 2011; Seger, 2008)
and categorical perception (for reviews, see Goldstone &
Hendrickson, 2010; Harnad, 2006) by demonstrating that cate-
gory bias in perception reflects the quality of learned category
knowledge. We further extend prior work beyond traditional
category learning, to demonstrate perceptual biases and success-
ful generalization even after learning that emphasizes individua-
tion of category members, with the specific pattern of learning-
related perceptual shifts reflecting goals during learning. Lastly,
relating our results to hypotheses generated from studies of epi-
sodic inference, our data align with the notion that individuals
may spontaneously link related information at encoding, prior to
explicit demands to generalize.
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