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Distraction biases working memory for faces
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Abstract
Working memory persists in the face of distraction, yet not without consequence. Previous research has shown that memory for
low-level visual features is systematically influenced by the maintenance or presentation of a similar distractor stimulus.
Responses are frequently biased in stimulus space towards a perceptual distractor, though this has yet to be determined for
high-level stimuli. We investigated whether these influences are shared for complex visual stimuli such as faces. To quantify
response accuracies for these stimuli, we used a delayed-estimation task with a computer-generated “face space” consisting of 80
faces that varied continuously as a function of age and sex. In a set of three experiments, we found that responses for a target face
held in working memory were biased towards a distractor face presented during the maintenance period. The amount of response
bias did not vary as a function of distance between target and distractor. Our data suggest that, similar to low-level visual features,
high-level face representations in working memory are biased by the processing of related but task-irrelevant information.
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Introduction

Visual working memory (VWM) comprises the brief mainte-
nance and manipulation of visual information. Visual percep-
tion and VWM work in tandem to construct a singular and
comprehensible visual experience (Fischer & Whitney, 2014;
Kiyonaga, Scimeca, Bliss, & Whitney, 2017). The reliance of
VWM and perception on similar and overlapping neural re-
sources (D’Esposito, 2007; D’Esposito & Postle, 2015;
Fuster, 1997; Pasternak & Greenlee, 2005; Postle, 2006;
Serences, 2016) highlights their interdependence (Awh &
Jonides, 2001; Kiyonaga & Egner, 2013). Accordingly, previ-
ous research has shown that information retained in VWM

biases perceptual attention towards similar features in the ex-
ternal environment (Olivers, Peters, Houtkamp, & Roelfsema,
2011; Soto, Hodsoll, Rotshtein, & Humphreys, 2008), and
conversely that perceptual information impacts VWM reten-
tion (Yoon, Curtis, & D’Esposito, 2006).

Perceptual interference can impact VWM by a general dis-
ruption of performance (Allen & Ueno, 2018; Bae & Luck,
2018; Clapp, Rubens, & Gazzaley, 2010; Magnussen &
Greenlee, 1992; Magnussen, Greenlee, Asplund, & Dyrnes,
1991; Marini, Scott, Aron, & Ester, 2017; Yoon et al., 2006).
A distractor presented during the maintenance period nega-
tively impacts performance when retaining low-level features
in VWM such as color (Nemes, Parry,Whitaker, &McKeefry,
2012; Nilsson & Nelson, 1981), spatial frequency (Bennett &
Cortese, 1996; Magnussen et al., 1991; Nemes, Whitaker,
Heron, & McKeefry, 2011), spatial location (Marini et al.,
2017), or motion (Magnussen & Greenlee, 1992; McKeefry,
Burton, & Vakrou, 2007; Pasternak & Zaksas, 2003). These
negative consequences are often restricted to situations where
the distractor and memoranda are from an overlapping
feature-space (Magnussen & Greenlee, 1992, 1999;
Magnussen et al., 1991). Effects of general working memory
disruption have been shown using complex stimuli such as
faces and scenes (Berry, Zanto, Rutman, Clapp, & Gazzaley,
2009; Bettencourt & Xu, 2016; Clapp & Gazzaley, 2012;
Clapp et al., 2010; Clapp, Rubens, Sabharwal, & Gazzaley,
2011; Feredoes, Heinen,Weiskopf, Ruff, & Driver, 2011), and
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in some cases such consequences were dependent on target-
distractor similarity (Jha, Fabian, & Aguirre, 2004; Jha &
Kiyonaga, 2010; Yoon et al., 2006).

When perceptual distractors and memoranda are from the
same low-level feature space, and within a certain range of
similarity, memory responses show an attractive bias towards
the distractor. This finding has been demonstrated with color
(Nemes et al., 2012), orientation (Rademaker, Bloem, De
Weerd, & Sack, 2015), spatial location (Van der Stigchel,
Merten, Meeter, & Theeuwes, 2007), and spatial frequency
(Dubé, Zhou, Kahana, & Sekuler, 2014; Huang & Sekuler,
2010b; Nemes et al., 2011). Recently, neuroimaging evidence
suggests that neural VWM representations indeed shift to-
wards the distractor in accordance with an attractive response
bias (Lorenc, Sreenivasan, Nee, Vandenbroucke, &
D’Esposito, 2018). To date, these perceptual biasing effects
have not been tested using complex stimuli, which can offer
insight into how these effects might apply to VWM in a more
naturalistic setting.

To address this gap in the literature, we had participants
remember faces under different conditions of distraction.
Target and distractor faces were drawn from a continuous face
space made of 80 computer-generated faces that varied con-
tinuously along the dimensions of age and sex (Lorenc, Pratte,
Angeloni, & Tong, 2014). A delayed-estimation task with a
method of adjustment response was used to quantify the ac-
curacy of memory judgments. In three experiments, partici-
pants retained a single memory item while a task-irrelevant
visual distractor was presented during maintenance. The three
experiments varied only in their distance between the memory
target and distractor in feature space (from 45° up to 135°).We
predicted that responses would be biased towards the
distractor, because this would be consistent with findings from
similar paradigms that use low-level visual features as mem-
oranda (e.g., Rademaker et al., 2015). The goals of this re-
search were to relate the consequences of distraction on com-
plex memoranda to findings for low-level stimuli, and to add
to the broader consensus on the bidirectional relationship be-
tween perception and working memory.

Materials and methods

Participants

Participants were recruited from the undergraduate student
body of the University of Texas at Austin through the
SONA system provided by the Department of Psychology.
Ninety adults participated in total (30 in each of three exper-
iments; age range 18–22 years, 60 females). All experiments
lasted approximately 60 min, and participants were compen-
sated with course credit for their participation. Written

informed consent was obtained in a manner approved by the
University of Texas Institutional Review Board.

Stimuli

Stimuli were identical for all experiments. Memory targets
were selected at random from a continuous face space
consisting of 80 computer-generated faces (Lorenc et al.,
2014; Fig. 1). As there were 80 unique faces in the continuous
space, all distances were converted to a 360° space for inter-
pretability (distance between two faces = 4.5°). The three-
dimensional rendered faces were gray-scaled and varied con-
tinuously along the dimensions of age and sex. Stimuli were
presented on a 21.5-in. iMac using PsychoPy (Peirce, 2007).
Stimuli were presented on a gray background, and all text and
fixation points were white.

Procedure

The procedure was identical for all experiments except for the
distance between the memory target and distractor (Fig. 2A).
Participants performed a delayed-estimation task with a meth-
od of adjustment response. Each trial began with a fixation
cross (500 ms, 0.5° radius) followed by a centrally presented
memory target (1,000 ms, 5° radius). Participants were
instructed to remember the memory target as precisely as pos-
sible over the remainder of the trial. Stimulus presentation was
followed by a delay period with a central fixation dot (3,000
ms, 0.05° radius). In the middle of the delay, a task-irrelevant
distractor face was presented (1,000 ms, 5° radius) in the same
spatial location as the memory target. The distractor face was
clockwise (50% of trials) or counterclockwise of the memory
target by approximately 45° (9–11 faces, uniformly random-
ized) in Experiment 1, 67.5° (14–16 faces) in Experiment 2,
and 135° (29–31 faces) in Experiment 3. During training,
participants were instructed to ignore the task-irrelevant
distractor face while maintaining fixation. They were not in-
formed of any relationship between the distractor and the
memory target. Following the delay, participants selected the
memory target from a continuous wheel using a computer
mouse (< 30 s). The probe stage began with the computer
cursor positioned centrally, and a dark gray wheel was pre-
sented (6.5° radius, 3° thickness) surrounding a face that
morphed continuously (across all 80 faces of the face space)
as the cursor moved around the wheel. The orientation of the
face space was rotated randomly along the wheel every trial,
and a face was not presented centrally until the cursor made
contact with the wheel. Following response via mouse click,
participants were provided feedback with a green indicator of
the correct location of the memory target on the probe wheel
(500 ms). Trials were separated with a 1,000-ms blank inter-
trial-interval (ITI). Each participant completed a single train-
ing run and then eight experimental runs of 24 trials each.
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Analysis

Each trial’s error was calculated as the difference in degrees in
the continuous face space between the response and the target.
To quantify bias for each trial, we extracted the absolute re-
sponse error in degrees, and assigned it a positive sign if the
error was in the same direction as the distractor, and a negative
sign otherwise. Therefore, a positive value indicates an

attractive bias (i.e., a response towards the distractor), and a
negative value represents a repulsive bias (i.e., a response
away from the distractor). In all experiments, this bias metric
inherently collapses across clockwise and counterclockwise
distractors. When evaluating whether a response bias was
present, we performed a one-sample t-test against zero, where
each participant contributed a single bias metric. To compare
absolute response errors and biases across experiments, we
performed between-subjects ANOVAs using the Pingouin
Python package (Vallat, 2018). All statistical tests were two-
tailed, and effect size dzwas calculated for all one-sample tests
(Cumming, 2013). For each experiment, we removed outliers
whose response biases across all trials were beyond 1.5 stan-
dard deviations from the mean (Exp. 1: N=2, Exp. 2: N=5,
Exp. 3: N=4) to account for “swapped’ responses where par-
ticipants might have responded to the probe by selecting the
distractor. Trials with no response in the time provided were
removed (Exp. 1: five trials, Exp. 2: two trials, Exp. 3: no
trials). All in-text descriptive statistics are reported as mean
and standard deviation.

Results

Mean absolute response error was similar across experiments
(F(2,76)=0.6, p=0.55) with 29.3 ± 9° in Experiment 1, 28.4 ± 8°
in Experiment 2, and 31.1 ± 11° in Experiment 3 (Fig. 2B). In
Experiment 1, average response bias was reliably positive
(M=1.34 ± 3.2°, t(27)=2.23, p=0.034, dz=0.42), reflecting a
tendency of memory responses to be attracted towards the
perceptual distractor (Fig. 3). This effect was replicated in

Fig. 1 Stimulus face space. Stimuli were 80 computer-generated faces
that varied along dimensions of age and sex. Eighty slices around the
wheel provide visualization of how much circular space each face occu-
pied, and were not present during the experiment

b

Response error (°)

Exp 1 Exp 2 Exp 3 1000

1000

1000

≤ 30 secs

1000

1000

500 ms

a Distractor
~45° away in Exp 1
~67.5° away in Exp 2
~135° away in Exp 3

Fig. 2 (A) Experiment 1 task design. Participants encoded a single
memory target and responded after a distractor-filled delay.
Experiments differed only in the distance between target and distractor.

(B) Response error distributions. Response errors were normally distrib-
uted around the target and absolute response error was similar across all
experiments
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Experiment 2 in which there was an increase from 45° to 67.5°
in the distance between memory target and distractor (M=1.62
± 2.5°; t(24)=3.31, p=0.003, dz=0.66). Similarly, the effect was
present when the target-distractor distance increased to 135°
(M=1.71 ± 2.1°; t(25)=4.12, p<0.001, dz=0.81). While effect
size increased with distractor distance, the magnitude of the
bias effect did not differ across experiments (F(2,76)=0.1,
p=0.87).

Discussion

In three experiments, we tested the hypothesis that perceptual
distraction presented during the delay of a visual working
memory (VWM) task biases memory for faces. We found this
to be the case across all experiments (total N=90). Our finding
that working memories of complex stimuli are biased towards
the perceptual distractor is consistent with previous results
with low-level features as memoranda (Dubé et al., 2014;
Huang & Sekuler, 2010a; Nemes et al., 2012, 2011;
Rademaker et al., 2015; Van der Stigchel et al., 2007).
Previous serial dependence research suggests that face percep-
tion is influenced by recently viewed faces (Liberman,
Fischer, & Whitney, 2014; Taubert, Alais, & Burr, 2016).
Here we show the reverse, that perceived faces impact recent-
ly encoded working memories of faces.

Our findings of VWM response bias towards a perceptual
distractor that is matched in feature space replicate previous
findings that used color (Nemes et al., 2012), orientation
(Rademaker et al., 2015), spatial location (Van der Stigchel
et al., 2007), or spatial frequency (Dubé et al., 2014; Huang &
Sekuler, 2010b; Nemes et al., 2011). Thus, our finding that
this effect generalizes to complex stimuli like faces suggests
that these stimuli share similar representational properties as
basic features in VWM. It is possible that our observed bias
resulted from low-level features that varied across the face
stimulus set. However, this is unlikely given that facial recog-
nition is frequently characterized as a holistic process, in that
there is a tendency to perceive faces as an integrated whole
rather than a composite of individual features (Farah, Wilson,
Drain, & Tanaka, 1998; Taubert, Apthorp, Aagten-Murphy, &
Alais, 2011). Regardless of whether the attractive bias we
found across all experiments resulted from basic features or
complex representations, the influence of perceived faces on
memorized faces is consistent with the sensory recruitment
account of VWM where perceptual resources are recruited
for VWM storage (D’Esposito, 2007; D’Esposito & Postle,
2015; Fuster, 1997; Pasternak & Greenlee, 2005; Postle,
2006; Serences, 2016).

We found no effect of target-distractor distance on the mag-
nitude or direction of working memory biases. Previous work
has shown that increasing target-distractor distance increased
memory bias (Rademaker et al., 2015); however, this was
tested within target-distractor distances all below 45°, which
was the lowest target-distractor distance in the current study.
In previous work investigating the biasing effects between
multiple VWM representations, the attractive/repulsive bias-
ing effects are largely dependent on target-distractor distance
(Bae & Luck, 2017; Myers, Chekroud, Stokes, & Nobre,
2018). Biasing complex stimuli such as faces might be weaker
than the biasing of low-level visual features. Furthermore, the
“distance” between targets and distractors might be more am-
biguous because these stimuli vary across more than one di-
mension, unlike the typical unidimensional and continuous
feature space of low-level stimuli. Additionally, some categor-
ical and/or verbal recoding (Lewis-Peacock, Drysdale, &
Postle, 2015) of the remembered faces might have occurred
(Smyth, Hay, Hitch, & Horton, 2005), possibly preventing the
subtle differences in bias as a function of distance. Notably,
the similarity in bias across target-distractor distances pro-
vides further support that our results are unlikely to have re-
sulted from “swapped” representations of target and distractor.

Our current design is unable to rule out the possibility of
categorical recoding along the dimensions of age and sex (e.g.,
“old-ness” or “male-ness”). Indeed, this is also the case for sim-
ilar experiments using low-level features. Even low-level features
are recoded into categorical representations during working
memory tasks (Bae, Olkkonen, Allred, & Flombaum, 2015;
Hardman, Vergauwe, & Ricker, 2017). Furthermore, in another
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Fig. 3 Bias results from each experiment. Responses were similarly
biased towards perceptual distractors across all experiments. The bias
metric represents combined bias across all trials within each
experiment. (error bars represent SEM; violin plots show density of
individual participant data points; *p<.05)

Psychon Bull Rev (2020) 27:350–356 353



situation where memory and perception interact, categorical ver-
bal information in working memory can bias visual attention
(Mannan, Kennard, Potter, Pan, & Soto, 2010; Soto &
Humphreys, 2007; Soto, Rotshtein, Hodsoll, Mevorach, &
Humphreys, 2012). Together, this suggests that if individual
faces were recoded into categorical and/or verbal representations,
we might still have detected these biasing effects. Note that par-
ticipants were never explicitly informed about the two dimen-
sions of age and sex that differed within the face space, which
makes categorical recoding less likely. Future work using either
neuroimaging or tasks that prevent verbal rehearsal (e.g., articu-
latory suppression) might help to determine how recoding influ-
ences biasing.

Face perception – like low-level features – is susceptible to
visual adaptation, or “after-effects” (Jeffery & Rhodes, 2011;
Strobach &Carbon, 2013;Webster &MacLeod, 2011). After-
effects alter perception of images based on recent encoding of
related material. As with low-level features, perception of
faces can influence processing such that perception is biased
away from the initially encoded face (e.g., adaptation to a
male face resulting in a female bias; Webster, Kaping,
Mizokami, & Duhamel, 2004). These effects have been found
in face perception for both age (Schweinberger et al., 2010)
and sex (Webster et al., 2004). After encoding the target face
in the current experiments, perception of the distractor face
might have been biased away from the target as a result of
face-adaptation effects. Such a perceptual effect (either attrac-
tion or repulsion) might have influenced our results, but be-
cause the attractive biases we found were markedly smaller
than the actual distance between target and distractor, we are
unable to determine exactly how the distractor face was
perceived.

Neuroimaging work has proposed a variety of neural mecha-
nisms supporting maintenance during distraction periods of a
VWM task. Proposals range across active maintenance in early
visual (Lorenc et al., 2018) or parietal (Bettencourt & Xu, 2016;
Lorenc et al., 2018) regions, activity-silent mechanisms (Lewis-
Peacock, Drysdale, Oberauer, & Postle, 2012), connectivity be-
tween frontal and occipital regions (Clapp et al., 2010), or sys-
tematically modulated activity patterns (Derrfuss, Ekman,
Hanke, Tittgemeyer, & Fiebach, 2017; van Loon, Olmos-Solis,
Fahrenfort, & Olivers, 2018). Recently, Lorenc et al. (2018)
showed that a perceptual distractor presented during a memory
delay exerted an attractive bias on both behavioral responses and
the neural representation in early visual areas. This suggests that
the attractive biasing effects that arise in behavior correspond
with active neural maintenance, yet the influence of neural over-
lap between target and distractor representations is still an open
question.

As a final note, our use of faces as memoranda aids in the
ecological validity of these results (Leopold & Rhodes, 2010).
The biases demonstrated here in VWM might be applicable to
important issues such as eyewitness testimony. Eyewitness

testimony – primarily studied in the context of episodic memory
(Chan, Thomas, & Bulevich, 2009; Thomas, Bulevich, & Chan,
2010) – is vulnerable to interference and misinformation (Butler
& Loftus, 2018; Echterhoff, Hirst, & Hussy, 2005), specifically
during suspect lineups. Suspect lineups require witnesses to
choose a target face from a series of simultaneously or sequen-
tially presented faces with similar critical features (Huff &
Umanath, 2018). Our findings of perceptual distraction suggest
that working memory may play a role in these decisions and
impact the reliability of eyewitness testimony.

In summary, the current study contributes to a growing
literature consensus that VWM representations are biased by
distractors that vary along a goal-relevant feature dimension,
and more generally that VWM and perception systematically
influence each other. Our findings using a stimulus set that
varies along complex feature dimensions suggests that the
biasing effects of distractors on memories is a general charac-
teristic of VWM that affects representations beyond those of
low-level features.
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