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Abstract

One of the most fundamental questions that can be asked about any process concerns the underlying units over which it operates.
And this is true not just for artificial processes (such as functions in a computer program that only take specific kinds of
arguments) but for mental processes. Over what units does the process of enumeration operate? Recent work has demonstrated
that in visuospatial arrays, these units are often irresistibly discrete objects. When enumerating the number of discs in a display,
for example, observers underestimate to a greater degree when the discs are spatially segmented (e.g., by connecting pairs of discs
with lines): you try to enumerate discs, but your mind can’t help enumerating dumbbells. This phenomenon has previously been
limited to static displays, but of course our experience of the world is inherently dynamic. Is enumeration in time similarly based
on discrete events? To find out, we had observers enumerate the number of notes in quick musical sequences. Observers
underestimated to a greater degree when the notes were temporally segmented (into discrete musical phrases, based on pitch-
range shifts), even while carefully controlling for both duration and the overall range and heterogeneity of pitches. Observers
tried to enumerate notes, but their minds couldn’t help enumerating musical phrases — since those are the events they experienced.
These results thus demonstrate how discrete events are prominent in our mental lives, and how the units that constitute discrete
events are not entirely under our conscious, intentional control.
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Introduction object versus two distinct objects, even while controlling for
spatial distance (for a review, see Scholl, 2001). And critically,

If you want to understand how a function in a computer pro- ~ we don’t have full control over what counts as an object;

gram works, one of the first and most important things you’ll
need to know is just what kinds of arguments or messages that
function takes as input. (Images? Text strings? Floating-point
numbers? Etc.) So too for mental processes — and accordingly
a great deal of work (and controversy) has involved specifying
the underlying units of various aspects of cognition.

In research on visual attention, for example, we must ask:
To what can we attend in the first place? Features? Spatial
regions? In fact, previous work has demonstrated that we of-
ten attend irresistibly to discrete objects — such that we can
better discriminate two features when they lie on the same
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rather, we must attend to what our visual system automatically
treats as objects (so that, for example, if we are asked to
attentionally track particular ends of dumbbells, we often fail
as attention automatically selects the entire dumbbells; Scholl
etal., 2001).

What counts (in space)?

In the present study, we asked about the underlying units of
mental enumeration. Our “number sense,” of course, is a key
part of our “core knowledge” about the world (e.g., Spelke &
Kinzler, 2007), and numerical representations interact in rich
ways with many other aspects of our minds, from language to
spatial representation (for a review, see Dehaene, 1997). In
addition, the ability to extract numerosity from perceptual in-
put occurs both across the animal kingdom (for a review, see
Brannon, 2005) and early in development (even in newborns;
e.g., Izard et al., 2009).
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Fig. 2 Sample stimuli from the current experiments expressed in musical
notation. (a) Random sequences, with notes drawn randomly from either
a High or Low pitch-range. (b) Segmented sequences, with notes
segmented into discrete musical phrases by sudden shifts in the

The current project has a special focus on the units of enu-
meration in time, but it was directly inspired by previous work
on the units of enumeration in space. Consider, for example, a
seemingly simple task such as enumerating the number of
discs in a display. If the display only contains discs, as in
Fig. la, this task seems maximally natural. But how well can

(a) Unconnected Display (b) Connected Display
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Fig. 1 Caricatures of displays from He et al. (2009). (a) A display with
discs. (b) A display with the same number of discs, but with some pairs
connected into dumbbells. When asked to enumerate the discs in such
displays, observers underestimate to a greater degree with dumbbells (see
also Franconeri et al., 2009)
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underlying range of the randomly selected pitches. (¢) Gradual
sequences, with gradually ascending and descending pitches, and with
the highest and lowest notes within each measure matched to those from
the Segmented sequences

you enumerate the number of discs in Fig. 1b—when some are
connected into “dumbbells”? Here, a vast tradition of research
in perceptual grouping entails that this “connectedness” cue is
especially powerful at grouping the relevant pairs of discs into
single (multi-disc) objects (e.g., Palmer & Rock, 1994; for a
review, see Wagemans et al., 2012) — and this subsequent
treatment of such dumbbells as single objects occurs to some
degree irresistibly (Howe et al., 2012; Scholl et al., 2001). And
indeed, if observers are asked to enumerate discs, they under-
estimate to a greater degree in displays such as Fig. 1b
(Franconeri et al., 2009; He et al., 2009): they try to enumerate
discs, but their minds can’t help enumerating dumbbells.

Event segmentation

Previous work on the underlying units of mental enumeration
(Franconeri et al., 2009; He et al., 2009; see also Yu et al.,
2019; Zhao & Yu, 2016) has, to our knowledge, always in-
volved static spatial displays. (Perhaps the only exception is
work on “object persistence”; for a review, see Scholl, 2007.
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But this work rarely stresses enumeration, and it involves set
sizes of 1 or 2, rather than 2040 as in the present work.)

But of course, our experience of the world is inherently
dynamic — and just as spatial arrays are often represented in
object-based terms, so too are temporal sequences often rep-
resented in terms of discrete (and temporally extended) events.
In particular, we don’t experience sequences in terms of an
unstructured continuous flow of time, but as one (discrete)
thing happening after another. And far from being arbitrary
or idiosyncratic, people tend to agree on when discrete events
start and end, even in naturalistic stimuli (e.g., Zacks et al.,
2009). Moreover, event boundaries loom large for other men-
tal processes such as attention and memory (e.g., Dubrow &
Davachi, 2016; Hard et al., 2019; Heusser et al., 2018; Huff
et al., 2012; Radvansky, 2012; Swallow et al., 2009).

The current study: What counts (in time)?

Enumeration must operate over discrete elements of some sort
(by definition), but do we have full conscious, intentional
control over what those units are? Can we enumerate whatever
an experimenter asks us to enumerate, or must we in part
enumerate what our visual system automatically treats as dis-
crete events? Both possibilities seem plausible in different
ways. On one hand, it seems natural to think that we can count
whatever we choose to count — as in the infamous suggestion
that if you want to know how many cows are in a field, just
count the legs and divide by four. And this intuitive sense is
also consistent with the empirical observation from the event-
segmentation literature that observers can generally segment
at whatever temporal scale they choose — varying their re-
sponses depending on whether they are asked to report the
smallest or largest units of time (e.g., Newtson, 1973; Zacks
etal., 2001). On the other hand, it seems equally intuitive that
you should be able to enumerate whatever elements in spatial
arrays you choose (be they discs or dumbbells), but the em-
pirical results reviewed above suggest that this is not so: even
when you try to enumerate discs, your mind automatically
seeks to enumerate dumbbells (Franconeri et al., 2009; He
et al., 2009).

In the present study, we thus put this question to the
empirical test, in a kind of “audio-temporal” analogue
of the visuospatial “dumbbell” manipulation. Observers
listened to sequences of musical notes, and simply had
to report the number of individual notes that played on
each trial. These notes were too numerous and were
played too quickly and irregularly to support overt
counting, so observers had to rely on an intuitive num-
ber sense. In some conditions, these notes were played
in a single unstructured stream (as in Fig. 2a). But in
other conditions, the notes were segmented into a few
discrete musical phrases, by having their pitches
grouped over time into different octaves (as in Fig.

2b). Critically, these musical phrases (like their dumb-
bell ancestors) were entirely task-irrelevant, and ob-
servers had no trouble whatsoever hearing the discrete
notes. Could they choose to ignore the event segmenta-
tion cues, and simply focus on the notes? Or might they
underestimate to a greater degree when the notes are
segmented into discrete musical phrases?

Experiment 1: “How many notes played?”

In an initial experiment, observers estimated the number of
notes that played in quick and irregular musical sequences,
where the notes either were or were not segmented into a
smaller number of musical phrases via shifts in the octaves
of the tones (as in Fig. 2b).

Method

Participants Fifteen observers from the Yale and New Haven
communities participated for credit or monetary payment.
This preregistered sample size was determined via pilot ex-
periments (exploring the same key contrast described below)
before data collection began, and was fixed to be identical in
each of the four experiments reported here.

Apparatus Stimuli were presented using custom software writ-
ten in Python with the PsychoPy libraries (Peirce et al., 2019)
and displayed on a monitor with a 60-Hz refresh rate.
Observers sat in a dimly lit room without restraint approxi-
mately 60 cm from the display (with all visual extents reported
below based on this approximate viewing distance). The func-
tional part of the display subtended 34.87 x 28.21°. Observers
listened to the musical sequences at a fixed volume (50% of
the maximum possible volume) through headphones. Musical
sequences were rendered using MuseScore software (exported
to .ogg files that were then imported into PsychoPy).

Stimuli and conditions The speed with which notes were
played was determined for each sequence by the number of
“beats per minute” (BPM), which was randomly selected (sep-
arately for each sequence and each observer) to be between
108 and 156. Each sequence lasted for either 720/BPM, 960/
BPM, 1,200/BPM, or 1,440/BPM s (such that a 720/BPM
sequence with 120 BPM effectively lasted for 6 s), and each
individual note in a given sequence had a randomly chosen
duration of either 60/BPM, 30/BPM, or 15/BPM s. These
three note durations were randomly intermixed (with no inter-
vening silences) with the constraint that a new note had to play
(regardless of the intervening notes) at exact intervals of 240/
BPM s. (In musical terms, these same parameters can be sum-
marized by noting that each sequence had between three and
six 4/4-time-signature measures, with a random distribution of
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“How many notes played?”
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Fig. 3 Reported numerical estimates from (a) Experiment 1 (contrasting
Random vs. Segmented sequences) and (b) Experiment 2 (contrasting
Random vs. Gradual sequences). The vertical axis represents the mean
errors (the actual numerosity subtracted from the reported estimate, such
that positive numbers indicate overestimation, and negative numbers

quarter notes, eighth notes, and 16th notes — but with no rests —
and with the constraint that a new note had to play on the
downbeat of each measure.) A different set of four randomly
generated sequences was pre-computed for each observer, for
each of 14 numerosities — from 23 to 36 notes.

Each note was rendered via the “Piano” instrument setting
in MuseScore, with the individual pitches depending on the
condition. In Random sequences, each pitch was sampled ran-
domly (differently for each sequence and each observer) from
within either a High range (523-1,976 Hz) or a Low range
(33—123 Hz), with an equal number of High- and Low-range
sequences, and with the constraint that no two consecutive
pitches could be identical." In Segmented sequences, each
pitch was sampled randomly (again differently for each se-
quence and each observer) from within a given pitch range,
but that range alternated between the High and Low ranges
every 240/BPM s. (In musical terms, these same parameters
can be summarized by noting that Random pitches were ran-
domly drawn from the notes of a C-major scale (i.c., from the
white keys on a piano keyboard) within a two-octave range
(High = from C5 to B6; Low = from C1 to B2), and that
Segmented pitches were randomly drawn from two-octave
ranges that alternated between High and Low every other
measure. These conditions are depicted in musical notation
in Fig. 2).

! The 14 possible High-range pitches were 523, 587, 659, 698, 784, 880, 988,
1,047, 1,175, 1,319, 1,397, 1,568, 1,760, and 1,976 Hz. And the 14 possible
Low range pitches were 33, 37, 41, 44, 49, 55, 62, 65, 73, 82, 87, 98, 110, and
123 Hz.
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(b) Expt. 2: Random vs. Gradual
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indicate underestimation). The horizontal axis represents the actual
number of notes that played on a given trial. The shaded regions
represent event-driven underestimation (in Experiment 1) or
heterogeneity-driven underestimation (or the lack thereof, in
Experiment 2)

Procedure and design Each trial consisted of a single se-
quence of notes, with a visual display that was empty except
for a centered black 3° x 3° sound icon on a white background.
After the last note finished playing, this icon was replaced by
the (centered, black, 0.5° height, Monaco font) response
prompt “How many musical notes played in total?”, and ob-
servers typed in their response (between 1 and 99, with these
digits appearing as they typed 2° below the response prompt).
Observers then pressed a key to submit their response, after
which their response turned purple for 500 ms, followed by a
blank 500-ms interval before the next trial began.

Observers completed a single 30-note Random-sequence
practice trial (the results from which were not recorded),
followed by 56 experimental trials (14 numerosities (23—36)
x 2 conditions (Random, Segmented) x 2 repetitions), present-
ed in a different random order for each observer, with a short
self-timed break after 28 trials.

Results

The error on each trial was computed by subtracting the actual
number of notes in the musical sequence from the observer’s
estimate of this value. (As such, negative errors indicate un-
derestimation, and positive errors indicate overestimation —
though as usual in such tasks with similar numerosities, ob-
servers always underestimated.) The resulting mean error rates
for each of the conditions are depicted in Fig. 3a, broken down
by each individual numerosity. Inspection of this figure re-
veals that observers underestimated more in Segmented se-
quences than in Random sequences — with the gray shading
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between the two lines in Fig. 3a representing the magnitude of
this event-driven underestimation. This difference was reliable
both when comparing the average estimates (#(14)=3.24,
p=-006, d=0.84) and when comparing the direction of this
difference across the different numerosities (14/14; two-
tailed binomial test, p<.001).

Discussion

These initial results are consistent with the possibility that
observers experience the notes as segmented into a smaller
number of discrete musical phrases, and that these phrases
then serve as natural underlying units of enumeration, such
that observers underestimate to a greater degree when such
phrases exist compared to when a sequence is simply experi-
enced as a single undifferentiated series of notes. (Of course,
just as with the “dumbbells” in the spatial phenomena that
inspired this project, we are not claiming that observers enu-
merate only the number of phrases — in which case they would
produce much more radical underestimates. Instead, this effect
seems to be probabilistic to some degree, with the central
result being that segmentation into discrete multi-note events
yields underestimation to some degree — and despite the ob-
servers’ explicit attempts to enumerate only the notes
themselves.)

Experiment 2: Controlling for pitch
heterogeneity

The central result of Experiment 1 was that observers
underestimated to a greater degree in Segmented sequences,
perhaps because (a) there were fewer musical phrases than
individual notes in those sequences, (b) observers experienced
the stimuli in terms of those musical phrases, and so (¢) enu-
meration processes operated naturally over those experienced
“units” of perception to some degree, yielding more underes-
timation relative to Random sequences. But another possibil-
ity is more mundane: perhaps this difference simply reflected
the fact that the pitches in Segmented sequences were drawn
from a wider range (spanning four octaves) than were the
pitches in Random sequences (spanning two octaves) — con-
sistent with the observation that heterogeneity influences enu-
meration (e.g., Marchant et al., 2013). To rule out this con-
found in the present experiment, we contrasted Random se-
quences with new Gradual control sequences, in which these
pitch ranges were equated (to those in Segmented sequences)
without introducing any segmentation into discrete musical
phrases.

Method

This experiment was identical to Experiment 1, except as not-
ed. Fifteen new observers participated, with this sample size
chosen to match that of Experiment 1. Each individual
Segmented sequence from Experiment 1 was transformed into
a new Gradual sequence — with each note matched for dura-
tion (such that the underlying “rhythms” of these two se-
quences were identical), but with new pitches. In particular,
the pitches of the notes at the middle of each 240/BPM s
interval were set to either the highest pitch from that
Segmented interval (if sampling from the High range) or the
lowest pitch from that Segmented interval (if sampling from
the Low range) — with the intervening pitches then ascending
or descending in order, as depicted in Fig. 2c. (The intervening
pitches were first evenly distributed between the highest and
lowest pitches — to the nearest of the choices listed in Footnote
1 — and these values were then each randomly jittered by up to
three steps, with the constraint that the sequence as a whole
still had to gradually ascend or descend.)

Results and discussion

The mean error rates for each of the conditions are depicted in
Fig. 3b, broken down by each individual numerosity. Inspection
of this figure reveals very little selective underestimation driven
by the Gradual condition over and above the Random condition
(as depicted by the gray shading), in stark contrast to Experiment
1 and Fig. 3a. There was no reliable difference between Random
and Gradual estimates (#14)=0.93, p=.366, d=0.24) — and this
null effect was reliably different from the significant degree of
event-driven underestimation (i.e., from the Random/Segmented
difference) in Experiment 1 (#(28)=2.65, p=.013, d=0.97). This
confirms that the results from Experiment 1 did not merely reflect
some new effect of pitch heterogeneity on underestimation.

Experiment 3: Controlling for duration
(random versus segmented)

The task in Experiments 1 and 2 was to estimate the number of
notes that played, but sequences with more notes naturally
lasted longer on average — and so it is possible that observers
could strategically base their responses not on enumeration
but rather on a sense of each sequence’s duration. Although
this wouldn’t predict the specific pattern of underestimation
that we observed, we nevertheless wanted to ensure that the
results reflected enumeration per se. Thus, this experiment
replicated Experiment 1, but now with the underlying tempos
manipulated such that all sequences (regardless of the number
of notes) were well matched for duration.
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Method

This experiment was identical to Experiment 1, except that
Random and Segmented sequences were equated for duration
by varying their tempos (between 80 and 168 BPM) such that
each sequence’s duration was between 9 and 10 s. Fifteen new
observers participated, with this sample size chosen to match
that of Experiments 1 and 2.

Results and discussion

The mean error rates for each of the conditions are depicted in
Fig. 4a, broken down by each individual numerosity. Inspection
of this figure reveals the same pattern that was observed in
Experiment 1 and Fig. 3a (with the gray shading again
representing the magnitude of this event-driven underestimation).
The Random/Segmented difference was again reliable both
when comparing the average estimates (¢(14)=2.73, p=.016,
d=0.71) and when comparing the direction of this difference
across the different numerosities (12/14; two-tailed binomial test,
p=.013). These results confirm that the event-driven underesti-
mation cannot be due to some function of perceived duration.

Experiment 4: Controlling for duration
(random versus gradual)

This experiment replicated the Random/Gradual contrast from
Experiment 2, while controlling for duration in the same man-
ner as in Experiment 3.

Method

This experiment was identical to Experiment 2, except that the
sequence durations were determined as in Experiment 3.
Fifteen new observers participated, with this sample size cho-
sen to match that of Experiments 1, 2, and 3.

Results

The mean error rates for each of the conditions are depicted in
Fig. 4b, broken down by each individual numerosity.
Inspection of this figure reveals the same pattern that was
observed in Experiment 2 and Fig. 3b, with no systematic
difference in underestimation between the Random and
Gradual sequences (#(14)=0.60, p=.558, d=0.16). Again (just
as was true for the contrast between Experiments 1 and 2), this
null effect was reliably different from the significant degree of
event-driven underestimation (i.e., from the Random/
Segmented difference) in Experiment 3 (#28)=2.43, p=.022,
d=0.89). This confirms that the results from Experiment 3 did
not merely reflect some new effect of pitch heterogeneity on
underestimation (while controlling for duration).

General discussion

A melody, practically by definition, is a series of individual
notes. But we don’t experience music as merely an unstruc-
tured series of notes. (If we did, that wouldn’t be such an
enjoyable and engaging experience!) Instead, the notes are

Controlling for Duration

(a) Expt. 3: Random vs. Segmented
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underestimation
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Fig. 4 Reported numerical estimates from (a) Experiment 3 (contrasting
Random vs. Segmented sequences) and (b) Experiment 4 (contrasting
Random vs. Gradual sequences). The vertical axis represents the mean
errors (the actual numerosity subtracted from the reported estimate, such
that positive numbers indicate overestimation, and negative numbers
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(b) Expt. 4: Random vs. Gradual
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indicate underestimation). The horizontal axis represents the actual
number of notes that played on a given trial. The shaded regions
represent event-driven underestimation (in Experiment 3) or
heterogeneity-driven underestimation (or the lack thereof, in
Experiment 4)
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just lower-level building blocks of what we do experience,
which are musical phrases (and motifs, and movements, etc.;
for a review, see Bregman, 1990). Here, we asked how these
experiences might irresistibly influence “what counts” when
you’re trying to enumerate in time. In particular, observers
were asked to enumerate the individual notes played in audi-
tory sequences, but the higher-level events that they experi-
enced (i.e., the musical phrases, as defined by sudden pitch-
range changes) nevertheless influenced their performance —
with greater underestimation in sequences that were segment-
ed into a smaller number of phrases compared to sequences
that had no such structure (even when matched for pitch range,
pitch heterogeneity, and sequence duration). A natural inter-
pretation of this result is that while observers attempted to
dutifully enumerate notes, their minds were (at least to some
modest degree, or with some probability) enumerating
pseudo-musical phrases — i.e., those events that they actually
experienced.

All of this is exactly analogous to previously observed
results in the spatial domain. An object, practically by
definition, is a collection of individual contours and
edges. But we don’t experience visual scenes as merely
an unstructured pattern of individual edges. Instead, the
contours are just lower-level building blocks of what we
do experience, which are objects (and parts, and groups,
etc.; for a review, see Wagemans et al., 2012). And so
when observers are asked to enumerate the individual
shapes in a display with more complex objects (e.g., enu-
merating the discs in a display where many are connected
into dumbbells) they underestimate to a greater degree —
as if they attempted to dutifully enumerate discs, but their
minds were (at least partly) enumerating dumbbells — i.e.,
those objects that they actually saw (Franconeri et al.,
2009; He et al., 2009).

(Of course, connectedness is not the only grouping cue
that contributes to objecthood, and so we might imagine
also obtaining this “object-driven underestimation” with
other cues such as continuity or closure; Feldman, 2007,
Marino & Scholl, 2005. Similarly here, pitch-range shifts
are presumably not the only cue that contributes to event
segementation, and so we predict that “event-driven under-
estimation” could also be driven by sudden changes in
other factors such as timbre — such that the sudden (vs.
gradual) shift from a trumpet to a xylophone might also
lead to robust event segmentation and the experience of a
new musical phrase.)

The present results are thus an exact “audio-temporal” an-
alogue of the previously observed visuospatial phenomenon
of underestimation with “dumbbells.” In both cases, what
these results show is that we don’t have full conscious, inten-
tional control over “what counts”; we can’t simply enumerate
whatever clearly discernable elements an experimenter asks us
to enumerate. Instead, what is enumerated in the first place is

to some degree determined by how scenes (be they visual or
auditory, spatial or temporal) are automatically segmented into
the particular discrete individual objects or events that we
naturally experience.
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