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Scene semantics involuntarily guide attention during visual search
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Abstract
During scene viewing, is attention primarily guided by low-level image salience or by high-level semantics? Recent evidence
suggests that overt attention in scenes is primarily guided by semantic features. Here we examined whether the attentional
priority given to meaningful scene regions is involuntary. Participants completed a scene-independent visual search task
in which they searched for superimposed letter targets whose locations were orthogonal to both the underlying scene
semantics and image salience. Critically, the analyzed scenes contained no targets, and participants were unaware of this
manipulation. We then directly compared how well the distribution of semantic features and image salience accounted for
the overall distribution of overt attention. The results showed that even when the task was completely independent from the
scene semantics and image salience, semantics explained significantly more variance in attention than image salience and
more than expected by chance. This suggests that salient image features were effectively suppressed in favor of task goals,
but semantic features were not suppressed. The semantic bias was present from the very first fixation and increased non-
monotonically over the course of viewing. These findings suggest that overt attention in scenes is involuntarily guided by
scene semantics.
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Eye movements are the primary way we select and
extract information from the world around us (Findlay &
Gilchrist, 2003). How do we determine where to look in
complex, real-world scenes? This foundational question
has generated two distinct theoretical frameworks: image
guidance theory and cognitive guidance theory (Itti & Koch,
2001; Henderson, 2007). Under image guidance theory, our
attention is primarily guided by spatial discontinuities in
low-level, semantically uninterpreted image features such
as color, orientation, and/or luminance (Itti & Koch, 2001;
Harel, Koch, & Perona, 2006). In comparison, cognitive
guidance theory posits that our attention is primarily
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guided by the distribution of semantic information in a
scene, informed by stored scene knowledge that guides
our attention to where semantic content is likely to occur
(Henderson, 2003, 2017; Hayhoe & Ballard, 2005). These
two theories have had a broad impact across psychology
(Henderson, 2017; Wolfe & Horowitz, 2017; Itti & Borji,
2014).

Image guidance theory has recently been the dominant
theoretical approach because it is easy to generate a saliency
map from image features (Henderson, 2017; Itti & Borji,
2014; Itti, Koch, & Niebur, 1998). This has led to a
number of different bottom-up image salience models and
a vast amount of research on the role of image salience
during scene viewing (see Itti & Borji, 2014, for review).
Unfortunately, generating a map of the distribution of
semantic features in a scene is not as straightforward.
However, without a semantic analog of a saliency map,
it is difficult to quantify the relative merits of image
guidance and cognitive guidance theories during scene
viewing (Henderson & Hayes, 2017).

To evaluate these competing theories, we recently
introduced a new method for estimating the distribution of
semantic features within a scene (meaning maps, Henderson
& Hayes, 2017). Meaning maps draw inspiration from two
classic scene-viewing studies (Antes, 1974; Mackworth &
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Morandi, 1967). In these studies, images were divided into
several regions and subjects were asked to rate each region
based on how easy it would be to recognize (Antes, 1974)
or how informative it was (Mackworth & Morandi, 1967).
Critically, when a separate group of subjects freely viewed
the same images, they mostly looked at the regions that
were rated as highly recognizable or informative. Meaning
maps scale up this general rating procedure using crowd-
sourced ratings of thousands of isolated scene patches
densely sampled at multiple spatial scales (Henderson &
Hayes, 2017). The resulting scene meaning maps capture
the spatial distribution of semantic features, just as saliency
maps capture the spatial distribution of image features.
While we are still a long way from having a computational
model of scene semantics, meaning maps provide a foothold
for studying the role of semantic features within complex,
real-world scenes.

Using meaning and saliency maps, we have previously
compared how well scene semantics and image salience
predicted overt attention during scene memorization,
aesthetic judgment, scene description, brightness search,
and brightness rating tasks (Henderson & Hayes, 2017,
2018; Henderson, Hayes, Rehrig, & Ferreira, 2018;
Peacock, Hayes, & Henderson, 2019). In every task,
meaning explained overt attention better than image
salience. Importantly, the attentional advantage for meaning
was present from the very first fixation, suggesting that
scene gist (see Oliva & Torralba, 2006, for review) rapidly
biases participants toward more semantically rich scene
regions (Henderson & Hayes, 2017, 2018). This raises
the question whether the attentional bias toward scene
semantics is involuntary. By involuntary we simply mean
that overt attention is allocated toward scene semantics even
when performing a task that is independent of semantics.
We are not making any claims about the role of attention in
activating scene semantics.

A few previous studies have indicated that semantic
features may bias attention in object arrays (Malcolm,
Rattinger, & Shomstein, 2016) and real-world scenes
(Cornelissen & Võ, 2017; Peacock et al., 2019) even
when the semantics are not task relevant. Malcolm et al.
(2016) found that in object triplet arrays, task-irrelevant
semantic relationships between two objects biased attention
as measured by faster reaction times in an independent
target detection task. Cornelissen and Võ (2017) found
increased dwell time on a semantically incongruent object
in scenes while performing an unrelated letter search
task. Finally, Peacock et al. (2019) found that when
participants performed a task that evaluated a scene-
dependent image feature (i.e., overall brightness of the scene
or counting the bright regions in the scene), semantics still
accounted for more variance in fixation density than image
salience.

In the present study, we examined whether the bias
toward meaningful scene regions is involuntary by exam-
ining how well image salience and meaning can each be
suppressed in favor of a scene-independent task goal. Par-
ticipants were asked to search for hard to find superimposed
letter targets that were randomly placed in each scene.
Importantly, in the 40 critical scenes used for analysis,
there were no targets. The lack of targets kept participants
searching these scenes throughout the trial while avoiding
potential contaminants associated with target fixations.

Our study addressed a variety of gaps left by previous
work. First, our study directly compared the influences of
image salience and semantics in real-world scenes rather
than object triplet arrays (Malcolm et al., 2016). This is
an important difference because full scenes allow us to
directly evaluate the role of scene gist in early semantic
guidance. Second, our study evaluated how image salience
and meaning are related to overt attention across the
entire scene, rather than on a single object in each scene
(Cornelissen & Võ, 2017). This allows for a continuous
measure of semantics and more statistical power for
detecting any meaning effects. Finally, it could be that
any scene task that requires evaluating a scene-dependent
feature (i.e., a property of the scene itself), even an image
property like brightness such as Peacock et al. (2019), also
activates scene semantics. Therefore, our study used a task
that is scene-independent (i.e., the visual search task can
be performed without the scene). Another key difference
between the current study and Peacock et al. (2019) is in
the mechanism being targeted by the experimental task. The
current study is a pure test of how well image salience
and semantics can each be suppressed to pursue a scene-
independent task goal, rather than if image salience can be
enhanced by making a salient scene-dependent feature (i.e.,
brightness) task relevant (Peacock et al., 2019).

To summarize, we used a scene-independent visual
search paradigm in which scene semantics and image
salience are both unrelated to the search to investigate
whether scene semantics involuntarily guide attention.

Method

Participants

Forty University of California, Davis undergraduate stu-
dents with normal or corrected-to-normal vision partici-
pated in the visual search study and 165 Amazon Mechan-
ical Turk workers participated in the meaning map study.
Each study was approved by the institutional review board
at the University of California, Davis. All participants were
naı̈ve concerning the purposes of each experiment and
provided verbal or written consent.
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Stimuli

The visual search stimuli contained 80 digitized pho-
tographs (1024 × 768) of indoor and outdoor scenes
(Fig. 1a). Forty of these scenes were the meaning mapped
scenes from Henderson and Hayes (2017) and the other 40
scenes were new. The 40 new scenes contained either 1 or
2 superimposed letter L targets. The letter L targets were
small (9 × 11 pixels) and were matched to the global scene
luminance value to make them difficult to find and avoid
‘popout’ effects. The letter targets were randomly placed in
each scene excluding the area within 2◦ of the pre-trial fixa-
tion cross. The 40 meaning mapped scenes were all assigned
to the target absent condition to avoid any contamination
due to target fixations during these critical trials.

Apparatus and procedure

Eye movements were recorded with an EyeLink 1000+
tower-mount eye tracker (spatial resolution 0.01◦) sampling
at 1000 Hz (SR Research, 2010). Participants sat 85 cm
away from a 21′′ monitor, so that scenes subtended 27◦ ×
20.4◦ of visual angle at a resolution of 1024 × 768 pixels.
Head movements were minimized using a chin and forehead
rest.

Subjects were instructed to search each scene for small
embedded letter L targets. Each trial began with a pretrial

fixation for 300 ms on a central fixation cross. Then each
scene was presented for 12 s while subjects searched for the
targets. At the end of each trial, subjects indicated how many
targets they located via button press.

Fixation density maps

A fixation density map (Fig. 1c) based on the x and y
coordinates of all fixations (Fig. 1b) was generated across
participants for each scene. Following our previous work
(Henderson & Hayes, 2017, 2018), a Gaussian low-pass
filter with a circular boundary and a cutoff frequency of
−6dB was applied to account for foveal acuity and eye-
tracker error.

Saliencymaps

A saliency map was generated for each target absent scene
(Fig. 1f) using the Graph-based Visual Saliency (GBVS)
toolbox with default settings and no center bias (Harel et al.,
2006). We chose to compare meaning to the GBVS model
because it is based on known low-level mechanisms of the
human visual system (Harel et al., 2006; Itti et al., 1998; Itti
& Koch, 2001) and is one of the best performers (Walther
& Koch, 2006). In comparison, it is less clear whether state-
of-the-art deep neural network models (e.g., Deep Gaze II;
Kümmerer, Wallis, Gatys, & Bethge, 2017) that learn where

Fig. 1 Scene and corresponding fixation density, meaning, and
saliency maps. The top row shows a typical scene (a), the individ-
ual fixations produced by all participants during the visual search task
(b), and the resulting fixation density map (c) for the scene. The fix-
ation density map was compared to the meaning map (e) and the
saliency map (f). The meaning rating map (d) shows the raw rating data

across both spatial scales. The meaning maps (e) and saliency maps
(f) were each normalized using image histogram matching using the
fixation density map (c) as the reference image. Note that grid lines
are included here for easy of comparison and were not included in the
experiment
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people attend in scenes from training on sets of fixations
over object features share this same biological plausibility.
More importantly, deep learning models are a poor fit for
the current work because we want to cleanly dissociate low-
level image features associated with image guidance theory
from high-level semantic features associated with cognitive
guidance theory.

Meaningmaps

Meaning maps were generated as an estimate of the
spatial distribution of semantic information in each scene
(Henderson & Hayes, 2017). Meaning maps were created
for each target-absent scene by decomposing the scene into
a dense array of overlapping circular patches at a fine
spatial scale (300 patches with a diameter of 87 pixels) and
coarse spatial scale (108 patches with a diameter of 207
pixels). Participants (N = 165) on Amazon Mechanical
Turk then provided ratings of thousands (16320) of scene
patches based on how informative or recognizable they
thought they were on a six-point Likert scale. Patches were
presented in random order and without scene context, so
ratings were based on context-independent judgments. Each
unique patch was rated by three unique raters.

A meaning map (Fig. 1e) was generated for each target
absent scene by averaging the rating data at each spatial
scale separately, then averaging the spatial scale maps
together, and finally smoothing the average rating map
(Fig. 1d) with a Gaussian filter (i.e., Matlab ‘imgaussfilt’
with sigma = 10).

Map-level correlationmetric

We used map-level correlation to quantify the strength of
the relationship between the saliency maps, meaning maps,
and fixation density maps. Linear correlation is one of
the most widely used and best overall metrics due to its
minimal assumptions and sensitivity (Bylinskii, Judd, Oliva,
Torralba, & Durand, 2016). We present the correlation data

as squared correlation because R2 is broadly understood in
psychology as the proportion of variance explained, which
is helpful when comparing the shared, overall, and unique
variance explained. Finally, using R2 allows for a direct
comparison between the current scene-independent task and
all our previous work using scene-dependent viewing tasks.

Results

We first quantified the relationship between the saliency and
meaning maps themselves. The left plot in Fig. 2a shows the
squared correlation (R2) between the saliency and meaning
maps for all 40 scenes. The squared correlation between
the saliency and meaning maps was 0.15 (SD = 0.12). A
one-sample t test confirmed that the squared correlation was
significantly greater than zero, t (39) = 7.75, p < 0.001,

95% CI [0.11, 0.19]. These results indicate that meaning
and saliency maps share a significant amount of overlap, but
are more different than they are similar in the absence of the
shared GBVS center bias (Henderson & Hayes, 2017).

Next, we tested how well the saliency and meaning maps
accounted for fixation density during our scene-independent
visual search task. Figure 2a shows the overall and unique
variance explained by the meaning and saliency maps in
the fixation density maps. Each data point shows the R2

value for the observed fixation density maps for image
salience (blue) and meaning (red). On average across the
40 scenes, meaning accounted for 30% of the variance
(SD = 0.15) and image salience accounted for 8% of the
variance in the fixation density maps (SD = 0.08). A two-
tailed t test revealed that this difference was statistically
significant, t (78) = 8.42, p < 0.001, 95% CI [0.17, 0.28].
In addition, meaning maps captured twelve times as much
unique variance (M = 0.24, SD = 0.13) as image
salience (M = 0.02, SD = 0.02). A two-tailed t test
confirmed that this difference was statistically significant,
t (78) = 11.13, p < 0.001, 95% CI [0.19, 0.27]. These
results suggest that while performing a scene-independent
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Fig. 2 Squared correlation between fixation density maps and mean-
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orthogonal task, image salience is effectively suppressed,
but meaning is not.

There has been some evidence suggesting that early
attentional guidance may be more strongly driven by image
salience (O’Connel & Walther, 2015; Anderson, Donk, &
Meeter, 2016) and also disagreement on the time course
of semantic feature bias (de Groot, Huettig, & Olivers,
2016; Malcolm et al., 2016). To examine early attention
for image salience and meaning effects, we repeated the
same analysis for just the first three fixations. The squared
correlation was computed as described above, but was based
on fixation density maps that aggregated across the eye
movement data as a function of the fixations up to that
point. That is, for each scene, we computed the fixation
density map that contained only the first fixation for each
subject, then the first and second fixation for each subject,
and so on to form the fixation density map at each time
point.

The first three fixations from the accumulating fixation
analysis are shown in Fig. 2b. The squared correlation was
stronger between the meaning and fixation density maps for
all time steps. Meaning accounted for 11.9, 12.4, and 10.8%
of the variance in the first three fixations, whereas image
salience accounted for 2.1, 2.8, and 3.2%, respectively. Two-
sample, two-tailed t tests were performed for each time
point (fixation 1, t (78) = 4.93, p < 0.001, 95% CI
[0.06, 0.14]; fixation 2, t (78) = 4.99, p < 0.001, 95%
CI [0.06, 0.13]; fixation 3, t (78) = 4.33, p < 0.001,

95% CI [0.04, 0.11]) with p values corrected for multiple
comparisons using the false discovery rate (FDR) correction
(Benjamini & Hochberg, 1995). Additionally, we confirmed
that the amount of variance in fixation density explained
by meaning was greater than 0, establishing a significant
semantic bias for these critical early fixations (fixation 1,
t (39) = 5.95, p < 0.001, 95% CI [0.08, 0.16]; fixation
2, t (39) = 6.42, p < 0.001, 95% CI [0.09, 0.16]; fixation
3, t (39) = 6.22, p < 0.001, 95% CI [0.07, 0.14]). These
findings indicate that scene semantics bias even the earliest
scene fixations.

We also performed two post hoc analyses. The first
analysis examined whether the increase in the squared
correlation between fixation density and meaning over time
(Fig. 3a, red circles) was best explained by a linear or
polynomial curve. We used the Akaike information criterion
(AIC) to determine the best fitting model (Akaike, 1974).
The maximum AIC was achieved by a 4th-order polynomial
model (AIC = −460.36, R2 = 0.999). An F-test comparing
the linear and 4th-order polynomial models was significant,
F(3, 50) = 1126.2, p < 0.001. These findings suggest
the strength of the relationship between scene semantics
and attention changed non-monotonically over the course of
scene viewing.

The second post hoc analysis quantified the spatial
distribution and relative strength of the semantic bias for
the first scene fixation. Each scene meaning map was
normalized to have a mean of 0 and standard deviation of
1, and then each fixation location and meaning value for
that location were aggregated across subjects and scenes
to produce Fig. 3b. Each dot represents a first fixation
where red indicates fixations on higher meaning map
regions and blue indicates fixations on lower meaning map
regions compared to the mean meaning value for that scene.
The results confirmed there was a significant bias toward
more semantically meaningful regions across all fixations,
t (1519) = 34.47, p < 0.001, 95% CI [0.76, 0.85].
In addition, we measured the percentage of foveal (<=
3◦, indicated by dotted black line) and extrafoveal (>3◦)
semantically biased fixations (meaning values > 0). We
found that 38.6% (474/1229) were foveal and 61.4% were
extrafoveal (755/1229). This suggests that scene gist can
bias overt attention toward informative scene regions within
and outside of foveal attention.

Discussion

We have previously shown that scene semantics are much
better predictors of where people look in scenes than
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image salience during a variety of scene-dependent viewing
tasks (Henderson & Hayes, 2017, 2018; Henderson et al.,
2018; Peacock et al., 2019). Here we tested whether scene
semantics involuntarily guide overt attention using a scene-
independent, orthogonal visual search task. We found that
fixation density was still more strongly correlated with
meaning maps than image saliency maps. Critically, the bias
toward scene semantics was observed across all fixations,
including the first fixation, indicating a faster semantic
bias in scenes than in object arrays (Malcolm et al.,
2016). These findings support cognitive guidance theories
of attention and provide new evidence that semantic features
involuntarily guide overt attention in real-world scenes.

The present results raise two interesting questions:
How is overt attention biased toward scene semantics so
quickly in scenes, and why would viewers be biased by
scene semantics while performing an orthogonal, scene-
independent visual search task? We believe the most
plausible answer to both of these questions is scene gist.

Scene gist is generated rapidly (<100 ms) and provides
the observer with information about the likely scene
category, coarse spatial layout, broad actions in the scene,
and sometimes specific objects within the scene (see
Oliva & Torralba, 2006 for review). Moreover, scene gist
extraction is so efficient it requires only minimal attention
to be allocated to the scene (Cohen, Alvarez, & Nakayama,
2011). Therefore, scene gist is fast, requires minimal
attention, and contains sufficient information to bias even
the first fixation toward scene regions that are more likely
to be semantically informative (e.g., the counter tops in
the kitchen scene in Fig. 1a). We speculate that scene gist
initially produces only a coarse representation of where
meaningful information is likely to occur in the scene, and
that subsequent fixations then refine this coarse semantic
representation. The increase in correlation between the
fixation density and meaning maps as the trial unfolds
(Fig. 3a) suggests that this semantic refinement process
increases the likelihood to fixate and/or refixate meaningful
scene regions, and that the refined semantic map is harder
to suppress.

Scene gist also offers a plausible explanation for why
the semantic bias is involuntary: scene gist extraction is
involuntary (Greene & Fei-Fei, 2014). Greene and Fei-
Fei (2014) recently used a modified Stroop paradigm
where images of objects and scenes were presented
with superimposed congruent or incongruent nouns. They
found slower classification for nouns when placed on an
incongruent scene, and this effect was modulated by the
degree of attention allocated to the scene. This suggests
that as long as attention is at least partially allocated
to the scene, scene categorization is involuntary. Our
findings that the first fixation is biased toward semantically
informative scene regions in a scene-independent task adds

converging evidence from eye movement data that scene
gist extraction is involuntary. Additionally, our analysis
of the spatial distribution and meaning values of the first
fixations suggests that the semantic bias from scene gist can
quickly guide fixations to meaningful scene regions within
and outside of foveal attention.

While our results suggest scene semantics bias attention
in a scene-independent task, they also demonstrate that
image salience is effectively suppressed. Weak image-based
guidance has been previously observed for isolated, local
scene regions (Henderson, Malcolm, & Schandl, 2009;
Vincent, Baddeley, Correani, Troscianko, & Leonards,
2009), and across the entire scene in scene-dependent
viewing tasks (Henderson & Hayes, 2017, 2018; Henderson
et al., 2018; Peacock et al., 2019). In our scene-independent
viewing task, image salience accounted for very little unique
variance above and beyond meaning. This result suggests
that image salience may be almost completely suppressed
while performing a scene-independent task.

Eye movements are the primary way we interact with
our environment. This makes understanding the factors
that guide our visual attention in complex scenes a central
issue in cognitive science. Here we have provided new
evidence that semantic features are rapidly prioritized and
may involuntarily guide attention during even a scene-
independent viewing task. Moving forward it will be
important to look beyond image salience and task relevance
for the deeper role of high-level scene semantics in how we
understand attentional guidance in real-world scenes.
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Kümmerer, M., Wallis, T. S. A., Gatys, L. A., & Bethge, M. (2017).
Understanding low- and high-level contributions to fixation
prediction. In 2017 IEEE international conference on computer
vision (pp. 4799–4808).

Mackworth, N. H., & Morandi, A. J. (1967). The gaze selects
informative details within pictures. Perception & Psychophysics,
2(11), 547–552.

Malcolm, G. L., Rattinger, M., & Shomstein, S. (2016). Intrusive
effects of semantic information on visual selective attention.
Attention, Perception, and Psychophysics, 78, 2066–2078.

O’Connel, T. P., & Walther, D. B. (2015). Dissociation of salience-
driven and content-driven spatial attention to scene category with
predictive decoding of gaze patterns. Journal of Vision, 15(5), 1–
13.

Oliva, A., & Torralba, A. (2006). Building the gist of a scene: The
role of global image features in recognition. Progress in Brain
Research, 155 B, 23–36.

Peacock, C. E., Hayes, T. R., & Henderson, J. M. (2019). Meaning
guides attention during scene viewing even when it is irrelevant.
Attention, Perception, and Psychophysics, 81, 20–34.

SR Research. (2010). EyeLink 1000 user’s manual, version 1.5.2.
Mississauga: SR Research Ltd.

Vincent, B. T., Baddeley, R., Correani, A., Troscianko, T., & Leonards,
U. (2009). Do we look at lights? Using mixture modeling to
distinguish between low- and high-level factors in natural image
viewing. Visual Cognition, 17(6–7), 856–879.

Walther, D., & Koch, C. (2006). Modeling attention to salient proto-
objects. Neural Networks, 19, 1395–1407.

Wolfe, J. M., & Horowitz, T. S. (2017). Five factors that guide attention
in visual search. Nature Human Behaviour, 1, 1–8.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Psychon Bull Rev (2019) 26:1683–1689 1689


	Scene semantics involuntarily guide attention during visual search
	Abstract
	Method
	Participants
	Stimuli
	Apparatus and procedure
	Fixation density maps
	Saliency maps
	Meaning maps
	Map-level correlation metric

	Results
	Discussion
	Acknowledgements
	Open Practices Statement
	References
	Publisher's note




