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Abstract
In models such as the search of associative memory (SAM: Gillund & Shiffrin, Psychological Review, 91(1), 1–67 1984)
model, associations in paired-associate tasks are only formed between the pair of to-be-remembered items. The temporal
context model (TCM: Howard & Kahana, Journal of Mathematical Psychology, 46, 268–299 2002) deviates from SAM by
positing that long-range associations are formed between the current item and all previously presented items, even in paired-
associate tasks, where cross-pair associations are formed in addition to within-pair associations (Davis, Geller, Rizzuto, &
Kahana, Psychonomic Bulletin & Review, 15, 64–69 2008). We tested this proposal in an associative recognition task by
constructing rearranged pairs where the distance in within-list serial position between the two pair members was manipulated
between one and five pairs. Models such as TCM would predict that FAR should be highest for rearranged pairs that are
constructed from pair members that were adjacent to each other on the study list, whereas models such as SAM predict that
FAR should be equal for rearranged pairs regardless of whether they are constructed from adjacent or remote pairs. Results
from our experiment and from three archival datasets found that FAR for rearranged pairs did not depend on whether the
constituent items came from nearby or remote pairs, suggesting that participants were not forming associations across pairs
of items in the task.
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How are associations formed among a set of to-be-
remembered items? An early proposal came from dual-
store models, which proposed that associations are formed
between items that co-occupy a capacity-limited short-
term memory buffer with the strength of association being
proportional to the time within the buffer (Atkinson &
Shiffrin, 1968). This was formalized in the search of
associative memory model (SAM: Gillund & Shiffrin,
1984). If a list of items ABCDEF was studied and a
participant’s buffer capacity was four, during presentation of
D, items A, B, and C would already be present in the buffer
and associations between A, B, C, and D would be formed.

What about when pairs of words such as A-B, C-D, and
E-F are presented for tasks such as associative recognition
or cued recall? If pair C-D is presented and items A
and B are in the buffer, both within-pair and cross-pair
associations would be formed, increasing the likelihood
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of false alarming to a rearranged-pair such as A-D in
associative recognition, or producing C if A were presented
as a cue for cued recall. For that reason, it was proposed
that the buffer is emptied between pair presentations such
that only within-pair associations are formed (Gillund &
Shiffrin, 1984).

In the temporal context model (TCM: Howard &
Kahana, 2002), however, associations are formed between
temporally contiguous events. Specifically, items are
associated to a gradually changing context representation.
One should note that TCM’s definition of context differs
radically from models such as SAM, where context
is defined to be independent of the items. In TCM,
context is a recency-weighted representation of the previous
items, such that item-context associations produce strong
associations between the current and immediately preceding
item and weaker associations to earlier items. Item-
context associations in TCM ironically fulfill the same
role as inter-item associations in SAM. For example,
for a list ABCDEF, a strong association should be
formed between F and E while the weakest association
will be between F and A. TCM differs from buffer
approaches because items never “drop out” of the context
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representation—rather, associations are always formed
between the current and previous items, but the associative
strength falls off exponentially as items recede into the
past. This relation depends on parameter values—higher
rates of contextual change make older items less active in
context and decrease their associative strength to the current
item. A great deal of evidence in free recall has supported
the model’s predictions (e.g., Lohnas & Kahana, 2014;
Sederberg et al., 2010).

Davis et al. (2008) found evidence for TCM’s long-range
association formation in cued recall. Davis et al. reasoned
that if long-range associations are formed between pairs on
the study list, participants should be more likely to make
within-list intrusions from pairs that were studied near a cue
word on the list than from pairs than for pairs that were more
distally related. That is, for a list of pairs such as A-B, C-
D, E-F, and G-H, when presented with the cue G, a higher
likelihood of erroneously recalling a word from the adjacent
E-F pair than from the distal A-B pair would be indicative
of participants forming associations across word pairs. Data
from Davis et al. supported TCM’s predictions; within-list
intrusions in cued recall tended to come from nearby pairs
rather than distal pairs.

Recently, Hintzman (2016) criticized models such as
TCM and argued that association by temporal contiguity
is unlikely to be a general learning mechanism in episodic
memory, as there have been several failures to discover
evidence for such learning in paradigms outside of free
recall. In particular, Thorndike (1931) used repeated paired-
associate learning, but found no evidence that associations
had formed between items from different pairs. While such

results are contradictory to the findings of Davis et al.,
Hintzman argued that their results might be due to the
usage of auditory presentation where pairs were separated
by temporal gaps, potentially causing participants to
mistakenly form associations between items from different
pairs. Hintzman’s criticism is somewhat unfair, as Caplan
et al. (2006) found contiguity in within-list intrusions with
visual presentation, although the effect was much weaker
than reported by Davis et al.

Hintzman proposed that instead of learning by contiguity,
participants tailor their learning to the requirements of the
memory task. In free recall, learning the order of the study
items is beneficial to reproducing the entire sequence, and
thus participants may engage in strategies such as rehearsing
the order of the items. Healey (2018) found evidence
consistent with this proposal. When participants expected a
free recall task, participants were very likely to follow recall
of an item with a nearby item from the list, suggesting that
associations were formed between the list items. However,
when an incidental-learning procedure was used (the free
recall test was unexpected), effects of temporal contiguity
were considerably reduced and even eliminated in some
cases, suggesting that participants are most likely to form
associations between items when it is beneficial for a later
memory test.

We aim to test Hintzman’s proposal in the associative
recognition (AR) task—an illustration is in Fig. 1. During
study, participants learn pairs such as A-B, C-D, E-F, etc.
and at test are presented with studied pairs such as A-
B, which are referred to as intact pairs that they are
asked to endorse, in addition to pairs that are composed of

Fig. 1 Illustration of the study phase (top) and test phase (bottom) of the associative recognition task along with the different pair types. Intact
pairs are identical to studied pairs, whereas rearranged pairs are constructed from two different words on the study list. “Lag” refers to the number
of pairs that separate the rearranged pairs
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studied items in novel arrangements such as C-F, which are
referred to as rearranged pairs, which they are to reject.
Because rearranged pairs are composed of studied items,
item information alone is insufficient to perform the task.
Rather, participants have to form associations between the
items. However, only within-pair associations are required.
Forming cross-pair associations is not only unnecessary,
but detrimental as it increases the likelihood of incorrectly
endorsing rearranged pairs. Figure 1 shows C-F, which is a
rearranged pair separated by a single pair (lag-1) while B-K
is separated by five pairs (lag-5). In most AR experiments,
this lag is uncontrolled.

Davis et al. proposed that learning in paired-associate
tasks is consistent with the long-range association formation
in TCM. Accordingly, each pair on the study list should be
associated to members of preceding pairs, such that for a list
A-B, C-D, and E-F, during presentation of E-F, E will be
strongly associated to F, weakly associated to C and D, and
receive even weaker associations to A and B. This learning
mechanism predicts that the false alarm rate (FAR) to lag-
1 pairs should be higher than to temporally separated pairs
such as lag-5 pairs. While TCM has not yet been extended to
AR, it has been extended to item recognition, which relied
on the same learning mechanism as in recall tasks (Healey
& Kahana, 2016). Our investigation is focused on whether
AR is consistent with this learning mechanism, specifically
whether AR shows evidence for cross-pair associations as
Davis et al. proposed.

In models such as SAM, associations are only formed
between members of the currently presented pair. Thus,
FAR to rearranged pairs from each lag should be identical
regardless of whether the pairs were constructed from
adjacent or remote pairs. SAM implements Hintzman’s
proposal of task-specific learning strategies because it states
that learning is optimized to fit the requirements of the
memory task, and in paired-associate tasks only within-pair
associations are required. Other models of AR exclusively
form within-pair associations, including REM (Shiffrin
& Steyvers, 1997), TODAM (Murdock, 1982), and the
models of Osth and Dennis (2015) and Cox and Shiffrin
(2017). In these models, the similarity between the test pair
and each pair in memory is calculated; these similarities
are then aggregated to produce a memory strength index
of the test pair. These models differ in their theoretical
assumptions—endorsement of rearranged pairs is due to
either confusions between the items in the test pair and
the other items in memory (SAM & REM), interference
from the pairs in memory (TODAM), or interference
from associations learned prior to the study list (Osth &
Dennis, 2014, 2015). However, these models all share the
assumption that false alarms are not due to the formation
of cross-pair associations and predict equal FAR for all
rearranged pair-lags.

We tested for the presence of cross-pair associations
in an AR task where lag between members of rearranged
pairs was controlled. We follow with analyses of three
archival datasets where lag was uncontrolled, but offer a
wider range of lags than our experiment. An advantage of
AR for testing for the existence of cross-pair associations
is that FAR to rearranged pairs are regularly above floor
levels. In cued recall, however, within-pair intrusions are
rare. In order to achieve sufficient numbers of within-pair
intrusions, Davis et al.’s Experiment 2 forced participants
to produce a response to each recall cue. Because the null
hypothesis is of theoretical interest, we analyze our data
using Bayes factors calculated from Bayesian ANOVAs in
JASP, which enable the quantification of evidence for and
against the null hypothesis.

Experiment 1

Participants performed associative recognition where rear-
ranged pair-lag was varied between one and five pairs,
which is the range of lags in prior work testing contigu-
ity effects in free and cued recall (Davis et al., 2008). We
collected a large set of participants (over 100) and a rea-
sonable number of responses in each lag. We supplement
analyses of FAR with analysis of how drift rates from the
EZ diffusion model (Wagenmakers et al., 2007) vary across
lag. Diffusion models offer the advantage of combining
response times (RTs) and proportions into a single measure
that drives performance, namely drift rates, and separate
this influence from other factors that affect RT and accu-
racy, such as speed-accuracy thresholds and nondecision
processes. While the “full” diffusion model offers additional
parameters for variability in drift rate and nondecision time,
the EZ diffusion model has been found to have more power
to detect true effects due to its simplicity (van Ravenzwaaij
et al., 2017). Data and experiment code can be found online
(https://osf.io/64qyf/).

Method

Participants

One-hundred and twelve first-year students at the University
of Melbourne who participated in exchange for course
credit.

Materials

The experiment used 1151 words between 40 and 350
CELEX counts per million (M = 102.26) that were between
four and nine letters in length (M = 5.89 letters).
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Procedure

At study, each word pair was presented in capital letters with
three spaces between them. Sixty pairs were presented for
2250 ms with a 250-ms blank interstimulus interval between
presentations. Participants then performed a distracter task
for 30 s that was a card game where playing cards are
presented one at a time and participants are asked to press
the spacebar in response to a set of rules, such as when two
cards in a row share the same suit or value.

Test lists were composed of 60 pairs, of which 30
were intact pairs and 30 were rearranged pairs. The
between-pair lag for words within rearranged pairs was
parametrically manipulated between one and five. Six pairs
were constructed for each lag. Responses faster than 200 ms
and slower than 8000 ms received a “TOO FAST” or “TOO
SLOW” feedback and were excluded from analyses.

Participants first performed a short practice phase where
they studied four word pairs and were tested on two intact
and two rearranged pairs with accuracy feedback.

Participants engaged in a total of eight study-test cycles,
resulting in 240 intact and 240 rearranged trials, with 48
observations for each rearranged pair lag.

Results

For each analysis throughout, we omitted any participants
at or below chance (d ′ <= 0) along with participants
that had 0% FAR to avoid floor effects. This resulted in
the omission of two participants with d ′ = −.24 and
−.19. We also omitted responses with latencies <= 500 ms
(2.2% of responses), as accuracy of these responses did not
exceed chance (in AR accuracy does not rise above chance
until 550–600 ms, Gronlund & Ratcliff, 1989). These

excluded responses did not vary systematically across trial
types. Finally, we excluded pairs from the first two serial
positions, as inspection of serial position data revealed a
slight primacy effect where both intact and rearranged pairs
from primacy positions were endorsed more frequently.

Overall hit rates (HR) and FAR collapsed across lags can
be seen in panel a of Fig. 2. FAR for each lag can be seen
in panel b. FAR did not differ across lags, BF01 = 8.60.
Panel c shows drift rates for each lag calculated from the EZ
diffusion model, which is calculated from the mean correct
rejection rate and the variance of the correct RT distribution
for each lag. Drift rates did not differ across lags, BF01 =
100.86. Jeffreys (1961) suggested that BF01 in the range of
3–10 indicates substantial evidence for the null hypothesis
and BF01 > 100 is considered extreme evidence. Thus, the
present results do not provide evidence for the hypothesis
that participants form associations across pairs of items.

Re-analyses of archival datasets

We additionally analyzed three archival datasets. Because
lag was uncontrolled, there was insufficient data in some
cells to obtain stable estimates of RT variance, so we
restricted analyses to FAR in these datasets.

The maximum possible lag in each dataset was the list
length (L) minus one. Following analyses in Experiment 1,
we excluded the first two pair positions, making the
maximum lag L − 3. Considerably fewer observations are
available at the highest lags due to a restriction on the
possible serial positions that can contribute to such lags.
For this reason, we excluded the three highest lags due to
few observations and a more restricted set of serial positions
contributing. Each of these datasets can be found on our
OSF page (https://osf.io/64qyf/).

a b c

Fig. 2 Data from Experiment 1. Panel a shows overall HR and FAR. Panel b shows FAR for each rearranged pair lag, and panel c shows drift rates
for each lag calculated from the EZ diffusion model. Error bars indicate 95% within-subjects confidence intervals calculated using the method of
Morey (2008)
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Fig. 3 Overall HR and FAR (collapsed across rearranged pair lags) for
the data from Cox et al. (2018) and Popov et al. (2017) Experiment
1, and Pantelis et al.’s (2008) Experiment 3. Error bars indicate 95%
within-subjects confidence intervals

Cox et al. (2018)

Four-hundred sixty-two participants performed five tasks—
in addition to AR, they performed item recognition, free
recall, cued recall, and the lexical decision task, but we only
analyzed the AR data. Participants studied 20 pairs without
advance knowledge of which memory test they would be
given. During AR tests, participants were tested on ten intact
and ten rearranged pairs. Participants did three study-test
cycles of AR, producing a total of 30 rearranged pair tests
per participant.

We excluded ten participants for having d ′ <= 0 and
47 participants for not false alarming. Overall HR and FAR
can be seen in Fig. 3. FAR for each lag can be seen in
panel a of Fig. 4. FAR did not vary across lags, BF01 =
355, 406.27, with the BF showing extreme evidence for the
null hypothesis.

Popov et al. (2017) Experiment 1

Forty participants studied 21 word pairs. At test, participants
were presented with seven intact pairs and 14 rearranged
pairs, of which seven shared a relation with one of the intact
pairs (e.g., book-writer and meal-chef share the relation
“is created by”) and seven which did not. Our analysis
collapsed across both pair types. Participants completed
three study-test cycles for a total of 42 rearranged pair trials.

One participant was excluded for poor performance
(d ′ = −.03) and three were excluded for not false alarming.

FAR for each lag can be seen in panel b of Fig. 4. FAR did
not differ across lags, BF01 = 26.10.

Pantelis et al. (2008) Experiment 3

Thirty-six participants studied 16 pairs of 16 synthetic
faces and names. At test, participants were tested on
16 pairs—eight were rearranged pairs. Responses were
given in the form of six-point confidence responses which
ranged from one (“sure incorrectly-paired”) to six (“sure
correctly-paired”). Participants completed ten study-test
cycles resulting in 80 rearranged pair observations per
participant.

We defined FA as confidence of 4 or higher to rearranged
pairs. Two participants were excluded for not false alarming.
FAR for each lag can be seen in panel c of Fig. 4. FAR
showed little change across lags, BF01 = 36.26, with the
BF showing strong evidence for the null hypothesis. We
additionally subjected each participant’s mean confidence
rating at each lag (panel d of Fig. 4) to the same analysis—
these showed little change across lags, BF01 = 36.84.

Discussion

Theories such as TCM posit that learning occurs by
associating items to a representation of recently experienced
items. Davis et al. claimed that this also applies to
paired-associate tasks, and that learning should not just
occur between members of the presented pair, but there
should additionally be associations to words from previous
pairs and this learning should be stronger for temporally
adjacent pairs than remote pairs. We tested for the presence
of such cross-pair associations in associative recognition
by evaluating the extent to which the distance between
members of rearranged pairs on the study list affects FAR.
Both a new experiment where lag between rearranged pair
members was controlled and analysis of three archival
datasets revealed that FAR were unaffected by rearranged
pair lag: FAR were roughly equivalent for rearranged pairs
constructed from temporally adjacent pairs as opposed to
remote pairs. These results suggest that participants were
not cross-pair associations.

These results dovetail with findings from the literature
on recognition memory for faces. Some studies have tested
lures composed of morphs of two studied faces. While
these studies have found higher FAR for face-morphs than
novel faces, there are no differences in FAR for face-
morphs where the two constituent faces were adjacent
on the list versus morphs where the faces were remote
(Busey & Tunnicliff, 1999; Reinitz & Hannigan, 2001).
Busey and Tunnicliff (1999) found virtually identical FAR
to face-morphs constructed from adjacent faces versus
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a b

c d

Fig. 4 FAR at each rearranged pair lag for the data from Cox et al. (a), Popov et al. (b), and Pantelis et al. (2008). Panel d shows mean confidence
ratings at each rearranged pair lag for the data from Pantelis et al. (2008). Error bars indicate 95% within-subjects confidence intervals

faces that were separated by 20 faces on the study
list.

The lack of evidence for cross-pair associations in
associative recognition is consistent with the learning
assumptions in the majority of models of the task. SAM,
REM, and other models assume that associations are only
formed between members of the currently presented pair.
These models embody Hintzman (2016)’s proposal that
encoding strategies are adapted to the nature of the task.
In AR, cross-pair associations are not only unnecessary,
they are detrimental to performance as they increase false
alarms to rearranged pairs. However, the present results also
do not speak to whether associations are directly formed
between items (as in SAM) or indirectly via context as an
intermediary (as in TCM).

A reviewer pointed out that TCM could accommodate
the present results if the parameter governing the rate of
contextual change increases to the point where only the
current pair members remain active in the context layer, and
thus only within-pair associations are formed. This is indeed
very likely, but it requires that the model behave differently
than Davis et al.’s proposal, who proposed that cross-pair

associations are formed in paired-associate tasks. Instead,
this parameterization would be consistent with Hintzman’s
proposal that encoding is tailored to the nature of the
memory task.

An open question concerns why AR shows no evidence
for cross-pair associations while intrusions in cued recall
provide positive evidence (Caplan et al., 2006; Davis
et al., 2008), despite the fact that cross-pair associations
are unnecessary for cued recall as well. One possibility
concerns the fact that cued recall is a demanding task and
most trials elicit omissions (Davis et al., 2008). It is possible
that during study of a pair, participants sometimes rehearse
other pairs in an effort to reduce omissions but at the cost
of introducing associative confusions with the current pair.
This is of course speculation and requires further testing.
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