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Abstract
It is well established that measures of reasoning ability and of working memory capacity (WMC) correlate positively. However,
the question of what explains this relationship remains open. The purpose of this study was to investigate the capacity hypothesis,
which ascribes causality to WMC. This hypothesis holds that people high in WMC are more successful in capacity-demanding
cognitive tasks than people lower in WMC because they can temporarily maintain more information in the form of sub-goals,
hypotheses, and partial solutions. Accordingly, this hypothesis predicts that the correlation between WMC and reasoning
performance should increase as the capacity demands of the reasoning items increase. We tested this prediction using items from
Raven’s Progressive Matrices and two measures of WMC, complex span and the k estimate from the Visual Arrays task. Neither
WMCmeasure showed the effect predicted by the capacity hypothesis. Furthermore, the results cannot be attributed to restriction
of range in performance on the individual reasoning items. This finding adds to existing evidence calling into question the
capacity hypothesis, and, more generally, the view that WMC has a causal influence on fluid intelligence.

Keywords Fluid intelligence . Reasoning ability . Raven’s matrices .Workingmemory capacity

Introduction

Research has established that scores on tests of fluid intelligence
(Gf), such as Raven’s Progressive Matrices, correlate positively
and moderately with estimates of working memory capacity
(WMC) from tasks requiring simultaneous storage and process-
ing of information (see Conway&Kovacs, 2013, for a review).
However, the question of what, exactly, accounts for this cor-
relation remains open. One possibility is that the causal arrow
goes from WMC to Gf. More specifically, the ability to reason
may be constrained by the amount of information a person can
temporarily hold in an active state. As Unsworth, Fukuda, Awh,
and Vogel (2014) stated:

BIndividuals with large capacities can simultaneously
maintain more information inWM than individuals with
smaller capacities. In terms of gF, this means that high
capacity individuals can simultaneously attend to multi-
ple goals, sub-goals, hypotheses, and partial solutions

for problems which they are working on allowing them
to better solve the problem than low capacity individuals
who cannot maintain/store as much information^ (p. 3).

While this capacity hypothesis of the WMC-Gf correlation
remains popular, nearly all measures of cognitive ability cor-
relate positively and moderately with each other. This finding
of Bpositive manifold^ amongmeasures of cognitive ability is,
in fact, one of the most replicated findings in psychology (see
Jensen, 1998). Thus, by itself, the finding that measures of
WMC correlate with measures of Gf is insufficient to establish
causation; additional tests of the hypothesis are required.

One such test is to evaluate whether the correlation between
WMC and Gf increases as a function of the presumed
information-processing demands of reasoning items. The capac-
ity hypothesis implies that items that draw more heavily on
WMC should be better at discriminating between high- and
low-capacity reasoners. Accordingly, one approach to testing
the capacity hypothesis is to analyze different items on tests of
Gf in terms of differences in the extent to which they loadWMC.

Carpenter, Just, and Shell (1990) developed one measure of
the extent to which different items in Raven's Progressive
Matrices load WMC. The measure is the number of rule
tokens required to solve an item. The concept of a rule token
is illustrated in Fig. 1 with two Raven’s-like items. In the item
on the left, only a single rule token is required to solve the
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problem: addition— an element from one column is added to
another to produce the third. By contrast, in the item on the
right, three rule tokens are required: (1) distribution of three
shapes — each row contains one diamond, one square, and
one triangle; (2) distribution of three textures of the line —
each row has one dark line, one striped line, and one clear line;
and (3) constant-in-a-row — the orientation of the line is the
same within a row. Thus, rule tokens are patterns characteriz-
ing the relations between the figural elements of a Raven’s
item. In theory, as the number of rule tokens for items in-
creases, the number of sub-goals, hypotheses, and partial so-
lutions that the test taker must explore and hold inmind should
also increase. Accordingly, for a given item, the number of
rule tokens can be interpreted as an index of capacity demand.

This study builds on previous work that examined Raven’s
performance at the item level. Using an analytical approach
introduced by Salthouse (1993) and Carpenter et al.’s (1990)
classification of Raven’s items, Unsworth and Engle (2005)
tested whether capacity accounts for the WMC-Gf relation-
ship. Participants completed a working-memory span task
(operation span) to measure WMC and Raven’s Progressive
Matrices to measure Gf. Unsworth and Engle then examined
whether the point-biserial correlation (rpb) betweenWMC and
Raven’s item solution accuracy (i.e., incorrect or correct) in-
creased as the number of rule tokens increased. Finding no
support for this hypothesis, they concluded that the WMC-Gf
relationship is not attributable to individual differences in ca-
pacity. As Unsworth and Engle (2005) stated, BThe results of
the present study strongly suggest that the number of goals or
sub-results that can be held in memory does not account for
the shared variance between working memory span measures
and fluid intelligence^ (p. 78).

Support for the capacity hypothesis has remained elusive.
For instance, Wiley, Jarosz, Cushen, and Colflesh (2011) ex-
amined item-level correlations between WMC and Raven’s
accuracy, but found that the correlations did not increase as
the number of rule tokens increased. Rather, they found that
the WMC-Gf correlation was stronger for items that required

new combinations of rules. Wiley et al. (2011) suggested that
these items place greater demands on executive functions
(e.g., resistance to proactive interference from previous items),
resulting in stronger WMC-Gf correlations. However, this
finding has not been replicated (Harrison, Shipstead, &
Engle, 2015; Little, Lewandowsky, & Craig, 2014).

Little et al. (2014) carried out the only study we know of to
observe an increasing WMC-Gf correlation as the capacity
demands of the Raven’s items increased. Little et al. argued
that the key difference between this study and previous studies
was the strength of the overall WMC-Gf correlation in their
sample (r = .56, compared to r = .34 in Unsworth & Engle
(2005) and r = .33 in Wiley et al. (2011)), along with ceiling
effects (i.e., very high accuracy rates) on early Raven’s items.
As Little et al. (2014) explained:

BAs the overall correlation between WMC and Raven's
performance increases, the item-specific correlations
can no longer be constant but must also increase across
item difficulty. This is a necessary consequence of near
ceiling performance on the early items which declines as
the items become more difficult combined with a high
overall correlation between Raven's and WMC^ (p. 4).

This explanation suggests that restriction of range pro-
duced the pattern of results Little et al. (2014) observed, be-
cause it attenuated the WMC-Gf correlation for early items,
leaving the later items’ correlations stronger by comparison.
Therefore, in the present study we examine and correct for the
effects of restriction of range.

It should also be noted that working memory span tasks are
not Bprocess-pure^measures of capacity. That is, these measures
capture more than just the amount of information a participant
can temporarily maintain in an active state. For instance, in op-
eration span, the participant must solve a series of arithmetic
equations while attempting to remember a letter following each
for later recall. Thus, operation span may be influenced not only
by howmany letters participants can hold inmemory, but also by

Fig. 1 Two Raven’s-like items adapted from Carpenter et al. (1990). In the left panel, a single rule token is required to solve the problem; in the right
panel, three rule tokens are required
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their arithmetic skill and use of mnemonic strategies for remem-
bering the letters, among other factors.

Arguably a more direct measure of capacity is the k
estimate from the widely administered visual arrays task
(Luck & Vogel, 1997). In this task, participants are
shown two arrays of colored squares, one after another,
with a brief delay in between. The second array is ei-
ther identical to the first array, or the color of one
square is different. Participants must determine whether
the two arrays are the same or different. k reflects the
number of colored squares (units of information) a par-
ticipant can remember.

In the present study, we tested the capacity hypothesis by
having participants complete the visual arrays task, two work-
ing memory span tasks, and Raven’s Matrices. The empirical
question is whether the different measures of WMC will con-
verge on a null relationship betweenWMC andGf, supporting
and extending Unsworth and Engle's (2005) finding, or
whether k and complex span will dissociate, perhaps because
complex span is not process pure as an assessment of capacity.

Method

Participants

The participants were undergraduate students. In total, 311
participants contributed data to the study. Nearly all the par-
ticipants were between the ages of 18 and 25 years; approxi-
mately 75% were female.

Procedure

Listed in order of administration, participants completed the
following cognitive ability tests. Participants were given a
short break between tests.

Visual arrays This task was modeled after Luck and Vogel’s
(1997) whole-display no-load task. As depicted in Fig. 2, a
memory array of two to eight colored squares was displayed

for 200 ms, followed by a blank display for 900 ms. This was
followed by a test array, which was either identical to the
memory array, or differed by the color of one of the squares.
The test array was displayed until the participant used the
keyboard to indicate whether the memory array and test array
were the same or different. Following the participant’s re-
sponse, the next trial began.

Participants completed four practice trials and 80 test trials.
Later test trials had larger set sizes. Set size refers to the num-
ber of squares in an array. There were 12 trials at each of set
sizes 2, 3, 4, 5, and 6, and ten trials at each of set sizes 7 and 8.
There were an equal number of same trials and different trials
at each set size.

We used two scoring methods. The first calculated the per-
centage of correct responses (i.e., Bvisual arrays accuracy^); a
participant who guessed randomly would earn a score of ap-
proximately 50%. The second method used Pashler’s (1988)
formula for estimating capacity:

k ¼ N
h− f
1− f

� �

In this formula, k represents capacity, N is the relevant set
size, h is the hit rate, and f is the false-alarm rate. The hit rate is
computed as follows:

h ¼ d þ 1−dð Þ f

Here, d represents the probability that the participant detects
a change on different trials. The false alarm rate represents the
proportion of trials in which a participant responded Bdifferent^
on same trials. Participants with a false alarm rate of 100%were
given an estimated capacity of zero for that set size. A separate
estimate of capacity was computed for set sizes 2–8.

Operation span Participants must solve math equations, and
remember a letter that follows each equation (Unsworth et al.,
2005). After a series of equation-letter trials, participants must
recall the letters in the order in which they were presented. There
were three blocks of five sets of equation-letter trials. The mea-
sure was the number of letters recalled in the correct order.

Fig. 2 Illustration of the visual arrays task. An array of colored squares is
presented for 200 ms, followed by a 900-ms blank delay interval.
Participants are then presented with a test array, and use the keyboard to

indicate whether the test array and the memory array are the same or
different
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Symmetry span Participants must make symmetry judge-
ments about abstract patterns, and remember the location of
a red square that appears after each pattern (Oswald et al.,
2015). After a series of symmetry-square trials, participants
must recall the location of the red squares in the order in which
they were presented. There were 12 sets of pattern-square
trials. The measure was the number of square locations
recalled in the correct order.

Raven’s advanced progressive matrices Participants are pre-
sented with a set of patterns arranged in a 3 × 3 formation. The
pattern in the lower right is missing, and participants must
choose the alternative that best completes the set. Participants
completed the 18 odd-numbered items from Raven’s Advanced
Progressive Matrices (Raven & Raven, 1998). The time limit
was 10 min; the measure was the number correct.

Number series Participants are presented with a series of num-
bers following a pattern. Participants must select from four
alternatives the number that logically completes the pattern.
Participants completed 15 items from the test of primary men-
tal abilities (Thurstone, 1938). The time limit was 4.5 min; the
measure was the number correct.

Letter sets Participants are presented with five sets of four
letters (e.g., ABCD) arranged in a row. Participants must
choose the set that does not follow the same pattern as the
other four. Participants completed 20 items from the ETS
Kit of Factor-Referenced Tests (Ekstrom, French, Harmon,
& Derman, 1976). The time limit was 5 min; the measure
was the number correct.

Data screening

Six participants did not complete the visual arrays task andwere
excluded from analysis. Of the remaining 305 participants, 49
participants demonstrated chance-level performance or worse
on visual arrays (visual arrays accuracy ≤ 50%) and were ex-
cluded. This left a usable sample size of 256 participants. There
were no values more than 3.5 SDs from sample means.

Measures of capacity

We averaged k estimates at set sizes 2–8 for each participant
and refer to this variable as k. We also created a composite
variable representing performance on working memory span
tasks by averaging standardized (z) scores on operation span
and symmetry span.

Classification of Raven’s items

As our operational definition of capacity demand, we catego-
rized Raven’s items according to the number of rule tokens
required to solve each problem using Carpenter et al.’s (1990)

Table 1 Descriptive statistics for cognitive ability measures

Measure N M SD Range Skew Kurtosis α

Visual arrays (k) 256 3.28 0.75 .91 – 5.00 -0.53 0.12 .65

Operation span 255 36.36 18.34 0 – 75 0.11 -0.66 .81

Symmetry span 255 17.62 9.11 0 – 42 0.18 -0.53 .68

Raven’s matrices 256 8.32 3.28 0 – 16 -0.04 -0.72 .69

Number series 256 8.43 2.47 2 – 15 0.05 -0.14 .68

Letter sets 255 9.67 2.88 2 – 18 0.11 -0.02 .66

Table 2 Correlation matrix

Measures 1. 2. 3. 4. 5. 6.

1. Visual arrays (k) -

2. Operation span .04 -

3. Symmetry span .22 .48 -

4. Raven’s matrices .26 .16 .25 -

5. Number series .27 .24 .26 .29 -

6. Letter sets .20 .27 .23 .29 .33 -

Note. Listwise n = 253. Correlations greater than .12 are statistically
significant at p < .05

Table 3 Descriptive statistics and k-solution accuracy correlation for
Raven’s items

Raven’s item Rule tokens N M SD rpb

1 3 256 .75 .44 .13

3 2 256 .70 .46 .12

5 2 256 .83 .37 .13

7 1 256 .56 .50 .10

9 2 256 .71 .45 .16

11 1 256 .79 .41 .25

13 3 256 .36 .48 -.03

15 2 256 .65 .48 .07

17 2 256 .58 .49 .18

21 4 256 .33 .47 .21

23 4 255 .33 .47 .20

25 3 255 .33 .47 .07

27 2 252 .25 .44 .09

29 3 248 .15 .36 -.01

31 4 236 .19 .40 .09

33 2 224 .21 .41 .06

35 4 203 .15 .36 -.03

Note. Items 11, 15, 21, and 25 were not classified by Carpenter et al.
(1990) because they contained small grids or crosshatching that could
not be properly displayed on the monitors they had available to them at
the time. We classified these items using Carpenter et al.’s (1990) frame-
work. For each item, incorrect = 0 and correct = 1
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analysis. Of the 18 items, two required only one rule token,
seven items required two rule tokens, four items required three
rule tokens, and four items required four rule tokens. (Item
#19 could not be classified using Carpenter et al.’s (1990)
framework and was excluded from analysis.) Because
Raven’s is a timed test, some items were not attempted.
Unattempted items were excluded from analysis.

Results

Descriptive statistics are presented in Table 1. k varied substan-
tially across participants (M = 3.28, SD = 0.75), as did perfor-
mance on Raven’s (M = 8.32, SD = 3.28) and the other reason-
ing tests. Correlations are presented in Table 2. Correlations
among the Gf measures (avg. r = .30), and between the
WMC measures and the Gf measures (avg. r = .24), were in
the expected range (e.g., Ackerman, Beier, & Boyle, 2005).

Visual arrays (k) and Raven’s accuracy

To reiterate, the capacity hypothesis of the WMC-Gf relationship
predicts that the correlation betweenWMC and solution accuracy

on Raven’s items should increase as a function of the capacity
demands of the items (i.e., number of rule tokens). To test this
hypothesis, for each Raven’s item, we first computed the point-
biserial correlation (rpb) between k and solution accuracy (i.e.,
incorrect = 0 or correct = 1). The results are shown in Table 3.

Next, we grouped Raven’s items by number of rule tokens,
and calculated the sample size-weighted average correlation
between k and solution accuracy for each group of items (see
Table 4 and Fig. 3). We tested for differences between all
possible pairs of dependent correlations using Steiger’s
(1980) formula. None of the correlations differed significantly
from one another (all ps > .05). The largest difference was one
rule token (r = .18) versus three rule tokens (r = .04), z =
1.877, p = .060, but this difference was in the direction oppo-
site to that predicted by the capacity hypothesis. Thus, con-
trary to the capacity hypothesis, the average correlation be-
tween k and Raven’s accuracy did not increase as a function of
the capacity demands of the Raven’s items.

However, range restriction may have attenuated the k-ac-
curacy correlation for items with more rule tokens. SDs tended
to be smaller for items with two to four rule tokens than for
items with one rule token (see Table 4). Therefore, we
corrected each of the correlations in Table 4 for explicit range
restriction using Pearson’s (1903) formula (see, e.g., Wiberg
& Sundström, 2009). The Bunrestricted^ standard deviation
for each group of rule tokens was set to .36, the same value
obtained for items requiring one rule token. The corrected k--
accuracy correlations were rc = .18 for items requiring one rule
token, rc = .18 for two rule tokens, rc = .06 for three rule
tokens, and rc = .16 for four rule tokens. None of these corre-
lations are significantly different to one another (all ps > .10).

We also examined the relationship between number of rule
tokens and solution accuracy, to confirm that number of rule
tokens is related to the difficulty of the items. Items requiring
more rule tokens did, in fact, have lower average accuracy
rates, F(3, 765) = 145.67, p < .001. A polynomial trend

Table 4 Average k-solution accuracy correlation grouped by number of
rule tokens

Number
of rule
tokens

Mean
n

Accuracy
M

Accuracy
SD

Mean k-
accuracy rpb

p value for k-
accuracy rpb

1 256 .67 .36 .18 .004

2 251 .57 .24 .12 .058

3 254 .40 .25 .04 .526

4 238 .28 .29 .13 .045

Note. Accuracy M and SD are reported for the full sample (n = 256)
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Fig. 3 The open circles (connected by the solid line) represent the
average point-biserial correlations between visual arrays (k) and solution
accuracy for Raven’s items, grouped by number of rule tokens. The filled

circles represent individual point-biserial correlations between visual ar-
rays (k) and accuracy on each Raven’s item
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analysis indicated a large linear relationship, F(1, 255) =
321.70, p < .001, partial η2= .56, and a small cubic relation-
ship, F(1, 255) = 5.47, p = .020, partial η2= .02. The large
linear relationship in particular weighs against an interpreta-
tion of our results which holds that number of rule tokens
failed to moderate the relationship between k and solution
accuracy simply because number of rule tokens bears no rela-
tionship to performance.

Working memory span tasks and Raven’s accuracy

Finally, to replicate Unsworth and Engle’s (2005) findings, we
tested whether the correlation between working memory span
performance and accuracy on Raven’s items differed as a
function of the number of rule tokens. Consistent with the
preceding results, none of the correlations differed significant-
ly from one another (all ps > .12; see Table 5 and Fig. 4). In
fact, the trend in correlations across number of rule tokens is
the opposite of what is predicted by the capacity hypothesis.

We then corrected each of the correlations in Table 5 for
restriction of range using the same approach as before. Setting
the Bunrestricted^ standard deviation to .36 for all rule token
groups resulted in corrected working memory span-accuracy

correlations of rc = .17 for items requiring one rule token, rc =
.13 for two rule tokens, rc = .11 for three rule tokens, and rc =
.07 for four rule tokens. None of these correlations differ sig-
nificantly from one another (all ps > .16).

Discussion

That there is a positive relationship between measures ofWMC
and of Gf is beyond dispute, but the question of what accounts
for this relationship remains open. According to the capacity
hypothesis (Unsworth et al., 2014), having a higher level of
WMC facilitates problem solving by allowing individuals to
simultaneously maintain more sub-goals, hypotheses, and par-
tial solutions in an active state. This hypothesis leads to the
prediction that the correlation between WMC and Gf should
increase as a function of the capacity demands of the Gf items.

We tested this prediction using items from Raven’s
Progressive Matrices, which can be classified according to the
number of rule tokens that are required to solve each item. Items
that required more rule tokens had lower accuracy rates,
supporting the argument that the number of rule tokens indi-
cates the demands of the reasoning items. Contrary to the ca-
pacity hypothesis, however, the relationship between an esti-
mate of WMC from the visual arrays paradigm (k) and solution
accuracy on Raven’s items did not increase with number of rule
tokens. Furthermore, replicating the results of Unsworth and
Engle (2005), the relationship between performance on work-
ing memory span tasks and accuracy on Raven’s items did not
differ as a function of capacity demands, either. Thus, our re-
sults suggest that no matter how WMC is measured, it is not a
causal factor underlying variation in Gf.

If capacity does not account for the WMC-Gf correlation,
what does? There are a number of possibilities. One is the
ability to control attention (Engle, 2018): individuals who
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Fig. 4 The open circles (connected by the solid line) represent the
average point-biserial correlations between the working memory span
composite and solution accuracy for Raven’s items, grouped by the

number of required rule tokens. The filled circles represent individual
point-biserial correlations between the working memory span composite
and accuracy for each Raven’s item

Table 5 Average correlation between working memory span composite
and solution accuracy for Raven’s items by the number of required rule
tokens

Number of
rule tokens

Mean n Mean working
memory
span-accuracy rpb

p value for
working memory
span-accuracy rpb

1 256 .17 .006

2 251 .09 .155

3 254 .08 .204

4 238 .06 .357
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are better able to control attention to maintain relevant infor-
mation or disengage from irrelevant information may perform
better on tests of both Gf and WMC (see also Stanovich &
Toplak’s, 2012, concept of cognitive decoupling). In the con-
text of problem solving, attentional control might allow par-
ticipants to flexibly shift from testing one hypothesis to anoth-
er. In tests of WMC, attentional control might allow partici-
pants to resist the effects of distractors and proactive interfer-
ence on memoranda.

Indeed, one limitation of the present study is ambiguity
about the construct of capacity and its relationship to atten-
tional control (Shipstead et al., 2015). In general, there is dis-
agreement in the literature as to what WMC tasks measure.
Capacity is often defined as the number of units of information
that can be held in an active state (see Cowan, 2017, for a
review), but some researchers have argued that measures of
capacity should be interpreted as indicators of executive atten-
tion (e.g., Engle, 2018). In the present investigation, we tested
a claim that invoked a Bcapacity as units of information^
model of WMC. Whether capacity estimates really index ca-
pacity, or control of attention, or some combination of the two,
our results suggest that the contribution of these factors to
reasoning performance does not increase as the capacity de-
mands of the Raven’s items increase.

Conclusion

The capacity hypothesis argues that WMC constrains Gf. Item-
level analyses using an estimate of capacity (k) and Raven’s
Advanced Progressive Matrices provided no support for this
hypothesis. Taken together with the results of Unsworth and
Engle (2005), our replication of their results, and Salthouse’s
(1993) results, there appears to be little evidence that WMC is a
causal factor underlying individual differences in Gf. What ac-
counts for the WMC-Gf relationship remains an open question.
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