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Abstract
Our ability to represent temporal, spatial, and numerical information is critical for understanding the world around us. Given the
prominence of quantitative representations in the natural world, numerous cognitive, neurobiological, and developmental models
have been proposed as a means of describing how we track quantity. One prominent theory posits that time, space, and number
are represented by a commonmagnitude system, or a common neural locus (i.e., Bonn & Cantlon inCognitive Neuropsychology,
29(1/2), 149–173, 2012; Cantlon, Platt, & Brannon in Trends in Cognitive Sciences, 13(2), 83–91, 2009; Meck & Church in
Animal Behavior Processes, 9(3), 320, 1983; Walsh in Trends in Cognitive Sciences, 7(11), 483–488, 2003). Despite numerous
similarities in representations of time, space, and number, an increasing body of literature reveals striking dissociations in how
each quantity is processed, particularly later in development. These findings have led many researchers to consider the possibility
that separate systems may be responsible for processing each quantity. This review will analyze evidence in favor of a common
magnitude system, particularly in infancy, which will be tempered by counter evidence, the majority of which comes from
experiments with children and adult participants. After reviewing the current data, we argue that although the commonmagnitude
system may account for quantity representations in infancy, the data do not provide support for this system throughout the life
span.We also identify future directions for the field and discuss the likelihood of the developmental divergence model of quantity
representation, like that of Newcombe (Ecological Psychology, 2, 147–157, 2014), as a more plausible account of quantity
development.
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Our lives are inundated with temporal, spatial, and numerical
information. Given the fundamental nature of quantity pro-
cessing, it may not be surprising that infants, children, adults,
and even nonhuman species rely on quantity information to
navigate the world. The ability to track quantities is vital for
basic learning processes such as foraging (e.g., Levey, 1988;
Loiselle & Blake, 1991; Osborne et al., 1999; Shettleworth,
Krebs, Stephens, & Gibbon, 1988), language acquisition
(through the tracking of statistical information; Conway,
Bauernschmidt, Huang, & Pisoni, 2010; Romberg &
Saffran, 2010; Saffran, Aslin, & Newport, 1996), and
decision-making (see Hyde, Porter, Flom, & Stone, 2013;
Lusardi, 2012; Peters et al., 2006; Reyna, Nelson, Han, &

Dieckmann, 2009), to name a few. Further emphasizing the
pervasiveness of quantity processing is evidence that basic
quantitative abilities may underlie formal academic achieve-
ment in humans (time, space, and number: Skagerlund &
Träff, 2016; space: Bonny & Lourenco, 2015; number:
Holloway & Ansari, 2009; Mazzocco, Feigenson, &
Halberda, 2011; space and number: Geary & vanMarle,
2016; number and time: Odic et al., 2016). Given the ubiquity
and importance of quantity representation, it is essential to
understand how basic quantitative processing occurs.

Theories of quantity representation

Several theories have been put forth to describe how quantities
are represented. The most prominent, and the focus of this
article, is that of the common magnitude system. Through
experiments in which rats were able to generalize rules in
one domain (e.g., time) to another domain (e.g., number),
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Meck and Church (1983) were the first to suggest that a single,
shared cognitive system (the analog magnitude system, or
AMS), located within a specific neural locus, was responsible
for processing time and number. Expanding this theory to
include spatial magnitudes, Walsh (2003) offered a theory of
magnitude (ATOM), positing that time, space, and number are
represented by a common magnitude system in which
quantities are specifically linked via a common metric for
action. That is, Walsh (2003) argues that processing quantities
using a single system facilitates sensorimotor actions.
Although Bonn and Cantlon (2012, 2017) agree that quanti-
ties are represented in a similar fashion, they believe the com-
mon currency to be ratio calculations rather than actions.
According to this view, comparisons between two of the same
quantities (number vs. number) or two different quantities
(number vs. time) rely on tracking the ratios between them,
rather than attending to the actual quantities themselves.1

Despite much support for a common system representing
all or at least some quantity representations throughout part of
the life span, others have suggested that distinct modules are
responsible for quantity processing. That is, the idea is that
although there are similarities in the way that time, number,
and space are represented, there are distinct cognitive/neural
loci responsible for tracking each of these quantities,
undermining claims of a single common magnitude system.
For example, some have proposed a single system for tracking
number alone—the approximate number system (ANS)—
thought to be an innate, domain-specific structure that allows
for the representation of number (Dehaene, 1997; Dehaene,
Dehaene-Lambertz, & Cohen, 1998; Odic & Starr, 2018).
Other researchers have focused exclusively on interval timing
abilities (e.g., Buhusi & Meck, 2009) or spatial abilities (e.g.,
Vasilyeva & Lourenco, 2012), considering these domains to
be distinct from each other.

A plethora of research identifying commonalities in how
we track temporal, numerical, and spatial information has pro-
vided support for claims of a commonmagnitude system (e.g.,
time, space, and number: Crollen, Grade, Pesenti, & Dormal,
2013; de Hevia, Izard, Coubart, Spelke, & Streri, 2014;
Lourenco & Longo, 2010; number and space: Dehaene,
Bossini, & Giraux, 1993; DeWind & Brannon, 2012; number

and time: Dormal, Dormal, Joassin, & Pesenti, 2012; Meck &
Church, 1983; space and time: Bottini & Casasanto, 2013;
Vallesi, Binns, & Shallice, 2008). Despite this, research ex-
plicitly exploring predictions of a common magnitude system
has also revealed numerous inconsistencies across spatial,
temporal, and numerical processing, particularly later in de-
velopment (e.g., time, space, and number: Agrillo, Piffer, &
Adriano, 2013; Droit-Volet, Clément, & Fayol, 2008; Odic,
2018; Skagerlund & Träff, 2016; time and number: Baker,
Rodzon, & Jordan, 2013; Hamamouche, Keefe, Jordan, &
Cordes, 2018; Lewis, Zax, & Cordes, 2017; Young &
Cordes, 2013; space and number: Geary & Vanmarle, 2016;
Odic et al., 2013). In response to these inconsistencies,
Newcombe (2014) proposed the developmental divergence
account, which serves as a compromise between these two
theories. She suggested that although a common magnitude
system is present in infancy, representations for each quantity
diverge over the course of development. Newcombe, Levine,
and Mix (2015) offer support for this theory by highlighting
evidence supporting the idea that at least space and number
representations are first represented by a single system. The
signal clarity hypothesis, which suggests that in infancy all
quantities are seen as a single dimension, and thus the con-
founded nature of quantity facilitates infants’ understanding of
quantity, is also consistent with the developmental divergence
model (Cantrell & Smith, 2013; Cantrell, Boyer, Cordes, &
Smith, 2015). In this article, we review the evidence for and
against a common magnitude system and conclude that, while
not conclusive, the data provide the strongest support for the
developmental divergence model (Newcombe, 2014).

Implications of a common magnitude system

Determining whether or not a common magnitude system
exists throughout development is important for several rea-
sons. First and foremost, investigating the likelihood of this
system will inform current cognitive models of quantity pro-
cessing, guiding research in this important domain. Much of
the research in the field over the past several decades has been
motivated by the proposal of the common magnitude system.
Thus, by fine-tuning our understanding of how time, space,
and number are represented, we can refine the questions we
address regarding how these quantity representations shape
our understanding of the world. Moreover, the common mag-
nitude account has shaped research into educational interven-
tions (e.g., Siegler & Ramani, 2009). Siegler and Ramani
(2009), for instance, show that drawing children’s attention
to the spatial representation of number through linear board
games facilitates children’s understanding of number. As
such, a more complete understanding of quantity representa-
tion may be critical for creating more advanced interventions.
More broadly, understanding the likelihood of a common

1 Recently, Leibovich and colleagues argued that a single system represents all
quantities, but over development, number processing separates from continu-
ous quantities, such as time and space (Bsense of magnitude theory^). Because
numerosity is often confounded with other continuous dimensions (e.g., a
larger number of items also takes more space), supporters of the sense of
magnitude theory assert that numerical representations are simply an artifact
of representations of continuous quantities (Leibovich, Katzin, Harel, &
Henik, 2017). According to this view, early in development, infants are unable
to track number—they are only able to represent continuous quantity dimen-
sions. Over time, as children develop language, they become able to discrim-
inate number from (e.g., space). Key to this theory is the idea that numerical
information is not readily trackable early in development—that our ability to
track number only emerges over the course of development as children come
to understand that quantity information is highly correlated in the environment.
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magnitude system may also facilitate neurobiological investi-
gations in mapping of the human brain, which may be partic-
ularly important for furthering our knowledge of cognitive
disorders, such as Turner syndrome and attention-deficit/hy-
peractivity disorder (ADHD), which typically involve comor-
bid quantity processing deficits.

Predictions of a common magnitude system

Although there is reason to believe the relation between num-
ber and space is stronger than the connections between num-
ber and time or time and space, the common magnitude ac-
count predicts all quantities to be represented by a single sys-
tem. That is, the same cognitive system is used to represent the
duration of a sound, the number of clouds in the sky, or the
distance between two points. As such, we will review litera-
ture across the three domains of time, number, and space.
Although the specific predictions of a common magnitude
system have not been clearly outlined, we investigate six dis-
tinct pieces of behavioral and neural evidence that have been
offered in favor of this account.

First, according to this account, temporal, spatial, and nu-
merical precision should adhere to similar behavioral signa-
tures, including comparable (1) discrimination precision
among quantities, as measured by adherence to Weber’s law.
In addition to adhering to Weber’s law, discrimination preci-
sion is predicted to be comparable across development, and
within individuals. That is, temporal, spatial, and numerical
acuity should become more precise at a comparable rate
across development, and temporal, numerical, and spatial
magnitude acuity should be identical, or at least correlated,
within the same individuals.

If a single system were responsible for processing all quan-
tity information, one would also expect frequent (2) interac-
tions across quantity representations. A common magnitude
system implies that temporal, numerical, and spatial magni-
tudes are represented via a common mental currency; and as
such, it is likely that representations of one quantity may be
confused with representations of another, leading to biased
responding (e.g., Meck & Church, 1983). Thus, it would be
highly likely that, for example, spatial magnitude information
would interfere with and/or bias, for example, numerical judg-
ments (herein referred to as quantity interference). Relatedly,
if quantitative information was transformed into a common
currency, one would expect rules learned in one quantitative
domain to be spontaneously generalized to the other domains
(i.e., cross-domain transfer), resulting in the mapping of one
quantity onto another (e.g., number being mapped to space;
cross-domain mapping).

The common magnitude account would also predict iden-
tical (3) response biases in identical contexts. Although inves-
tigations of quantity representation often take place in

controlled lab settings, quantity processing in the real world
occurs in variable contexts. For instance, we may need to
judge the distance between a speeding car and the crosswalk
where we stand, or the number of seconds it will take for the
car to reach the intersection. These real-world contexts intro-
duce emotional responses and/or limitations on cognitive pro-
cessing that may take away from our ability to make accurate
quantitative judgments. Importantly, if time, space, and num-
ber were represented by the same mental magnitudes via a
single system, one would expect these external factors to af-
fect quantity processing identically.

Moreover, this account also anticipates temporal, numeri-
cal, and spatial processing to have identical relations to (4)
formal learning, specifically, math achievement (e.g., calcu-
lation, problem solving). Although the relation between nu-
merical acuity and math abilities should be straightforward—
mathematical abilities rely on an understanding of basic nu-
merical concepts—it is less clear why a relation between tem-
poral and/or spatial processing and mathematical abilities
should exist. Although research has supported ties between
basic timing and math, and, separately, between spatial pro-
cessing and math, a common magnitude would suggest that
these relations should be identical—that is, temporal, numer-
ical, and spatial abilities should predict the same aspects of
mathematical processing.

In addition to comparable behavioral patterns, a common
magnitude system, presumably located at a common neural
locus, predicts overlapping (5) neural activation to occur dur-
ing temporal, numerical, and spatial tasks. That is, temporal,
numerical, and spatial processing should not only invoke
identical brain activation patterns but finer grain analyses at
the neuronal level should also reveal a common representa-
tional code. Relatedly, because quantity processing should be
tied to a single neural locus, any impairments to this quantity
processing system should result in identical temporal, numer-
ical, and spatial deficits. Thus, (6) clinical investigations
should reveal similar quantity processing impairments. In par-
ticular, the comorbidity of temporal, numerical, and spatial
processing impairments should be very high.

We review existing data addressing a common magnitude
system, focusing in particular on these six assumptions. Our
review reveals strong support for a common magnitude sys-
tem early in development; however, we conclude that the
current evidence does not support the presence of the com-
mon magnitude system throughout the life span. Instead, we
argue, data reveal, at least by midchildhood, that time, space,
and number are more likely represented by three distinct
magnitude systems. Although more data are needed to ad-
dress a developmental account, we end by discussing the
possibility of a developmental divergence model like that
of Newcombe (2014), in which a single locus may be pres-
ent at birth but quickly diverges into three separate systems
over early childhood.
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Behavioral signatures

Research demonstrating remarkable similarities in the behav-
ioral signatures of temporal, numerical, and spatial processing
has frequently been offered as evidence in favor of a common
magnitude system (e.g., time, space, and number: Agrillo
et al., 2013; Dormal & Pesenti, 2013; Gallistel, 1990; space
and number: de Hevia, Vanderslice, & Spelke, 2012; time and
number: Meck & Church, 1983). Although there are many
similarities, there are also many striking inconsistencies in
the behavioral data of children and adults, which cast doubt
on the likelihood of the common magnitude system
supporting quantity representations throughout all of
development.

Discrimination precision

A myriad of studies reveal that temporal, numerical, and spa-
tial magnitude (i.e., length or area) discriminations follow
Weber’s law; that is, the speed and accuracy with which two
values are discriminated is dictated by the ratio between them,
not their absolute difference (Stevens, 1957). Importantly, this
pattern is present across species, and across human develop-
ment (nonhuman animals: e.g., Jordan & Brannon, 2006;
Meck & Church, 1983; Tudusciuc & Nieder, 2010; see
Gallistel, 1990, for a review; human development: Brannon,
Lutz, & Cordes, 2006; Brannon, Suanda, & Libertus, 2007;
Cantlon & Brannon, 2007; Droit-Volet et al., 2008;
Feigenson, 2007; Halberda & Feigenson, 2008; Izard, Sann,
Spelke, & Streri, 2009; Odic, 2018; Odic et al., 2013; Provasi,
Rattat, & Droit-Volet, 2011), suggesting that this is not a
learned pattern of responding, but instead reflects something
inherent in the way we represent these quantities.

Although we are able to discriminate magnitudes early in
development, this ability becomes more precise with age (e.g.,
Droit-Volet et al., 2008; Halberda & Feigenson, 2008; Odic
et al., 2013), with the most dramatic changes occurring in
infancy (see Feigenson, 2007, for a review). Proponents of a
common magnitude system have emphasized findings of
comparable developmental trajectories for spatial, temporal,
and numerical discriminations in infancy. These data demon-
strate that infants as young as 6 months of age consistently
discriminate changes involving a 1:2 ratio change in number
(Xu & Spelke, 2000), duration (VanMarle & Wynn, 2006),
and surface area (i.e., spatial magnitude; Brannon et al.,
2006), but consistently fail to detect a 2:3 ratio change for
these same quantities. Following the same trajectory, 10-
month-old infants successfully discriminate a 2:3, but not a
3:4 ratio change for time (Brannon et al., 2007) and number
(Xu & Spelke, 2000; see Cordes & Brannon, 2008, for a
review), although no published studies have assessed area
discriminations at this age.

Although similar levels of precision at varying points of
development in infancy have been reported, the data are less
consistent with regard to the acuity of quantity representations
in children and adults. Spatial and numerical acuity differ in
childhood (Geary & Van marle, 2016; Odic et al., 2013), al-
though the direction of the difference has varied across re-
ports. Moreover, 2-year-olds to 12-year-olds’ performance
on temporal, spatial, and numerical discrimination tasks reveal
distinct, independent developmental trajectories for each
quantity (Odic, 2018). Specifically, despite spatial discrimina-
tions (both area and length) maturing to adult-like levels of
performance in adolescence, temporal discriminations contin-
ue improving throughout early adulthood. Numerical abilities
peak after spatial dimensions, but before temporal ones.
Differences in discrimination precision have also been report-
ed in adulthood, such that adults reliably discriminate an 8:9
ratio difference of number, but a finer 9:10 ratio of area (Odic
et al., 2013). Temporal acuity remains lower than spatial or
numerical acuity in both children and adults (Droit-Volet et al.,
2008, Experiment 1).

Although there is overwhelming evidence to suggest that
comparable developmental trajectories exist in infancy, but
not later on, some have argued that differences in stimulus
format may account for distinct discrimination precision.
Whereas numerical and spatial stimuli can be presented in
either a simultaneous manner (i.e., an array of items or a par-
ticular line length presented for a brief period) or a sequential
manner (i.e., the number of dots displayed one at a time, or the
length of space an item travels), time is inherently incremental
(accumulating over time, i.e., sequential). Critically, this
means that the mode of presentation of temporal stimuli is
typically distinct from that of numerical and spatial stimuli,
potentially undermining our ability to make a fair comparison
of acuity levels for these distinct quantities. Few studies have
consciously controlled the presentation mode of quantitative
stimuli when investigating similarities in quantity processing.
In one of the few studies to do so, Droit-Volet et al. (2008)
systematically controlled for presentation format by present-
ing temporal, numerical, and spatial stimuli in a sequential
format. The authors found that only when presentation format
was similar, acuity across the three quantities was comparable
in children and adults. These findings suggest that differences
in acuity—at least between that of timing and the other quan-
tities—may, in fact, be driven primarily by differences in pre-
sentation format. That is, time, space, and number may be
more similar when all three quantities are presented visually
and/or sequentially (Droit-Volet et al., 2008; see also Cai &
Connell, 2015, for space and time). Importantly, however,
differences in acuity across number and space, reported from
studies in which both quantities are tested using a simulta-
neous presentation, cannot be explained away by differences
in presentation format (e.g., Droit-Volet et al., 2008; Geary &
Vanmarle, 2016; Odic, 2018; Odic et al., 2013). Future work
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will be critical in determining the role of presentation format
in quantity discrimination across the life span.

Although a common magnitude system would not be
discounted by subtle differences in the discriminability of
each quantity, the finding of consistent, unique developmental
trajectories in quantity acuity undermine predictions of a sin-
gle quantity processing system throughout the entire life span.
In particular, the fact that numerical and spatial acuity—both
of which are typically presented simultaneously—continue to
differ throughout development undermines the common mag-
nitude account. Despite this, the consistency of the acuity with
which infants discriminate quantities supports the possibility
that a common magnitude system may be present early in
development.

Individual differences If temporal, numerical, and spatial mag-
nitudes are represented by a single common currency, then we
should also expect similar levels of acuity for these three
quantities within the same individual—that is, one’s ability
to detect changes in number should track with their ability to
detect changes in time and space. There is mixed evidence
regarding how well representational acuity of these three
quantities correlates within the same individuals (e.g., time,
space, and number: Agrillo et al., 2013; De Visscher, Noël,
Pesenti, & Dormal, 2017; Odic, 2018; number and space:
Geary & Vanmarle, 2016; Odic et al., 2013; time and number:
Hamamouche et al., 2018; Odic et al., 2016; Young& Cordes,
2013). Although some studies have revealed similar represen-
tational acuity of these distinct quantities (DeWind &
Brannon, 2012; Jang & Cho, 2016; Lourenco & Bonny,
2017), others have not found a correlation between tasks
(e.g., Agrillo et al., 2013;2 Hamamouche et al., 2018; Odic
et al., 2016). Although the ratios used in each task should not
affect the likelihood of a correlation between tasks, it should
be noted that those studies showing correlations tend to use
the same ratios across quantities (see DeWind & Brannon,
2012; Jang & Cho, 2016; Lourenco & Bonny, 2017; but see
Young & Cordes, 2013). Importantly, if the ratio is indeed
affecting the likelihood of a correlation between quantities,
this would indicate that it is the method of measurement, not
necessarily the underlying quantity representations that are
resulting in the lack of a correlation.

Although these variations in quantity discrimination under-
mine claims of a common magnitude system in childhood and
adulthood, the absence of a correlation is not necessarily
grounds for discounting the possibility of such a system. One
possible explanation for this is low reliability between the tasks
(see Norris & Castronovo, 2016). Supporting this possibility
are data showing no correlation between comparable numerical

discrimination tasks when the dot arrays were created using
different methods (Clayton, Gilmore, & Inglis, 2015; see also
DeWind & Brannon, 2016). Additionally, there are many chal-
lenges in interpreting correlational data, and thus we must be
cautious when considering correlations. Although the absence
of a correlation between tasks is not enough evidence to
completely discount the common magnitude account, it adds
to the list of counterevidence of such a system post-infancy.
Importantly, because of limitations on the number of tasks that
can be administered to a single infant, no work to date has
explored whether individual acuity measures for time, number,
or space correlate within infant participants.

Interactions across representations of time, number,
and space

Evidence of a common magnitude system has also been
drawn from notable interactions between representations of
time, space, and number. Here, we review evidence of these
interactions, while also providing alternative explanations for
such interactions. Namely, we posit that findings of quantity
interactions may instead be accounted for by domain-general
processes such as analogical reasoning, not necessarily by the
existence of a common magnitude system. Importantly, al-
though domain-general processes may explain the findings
of cross-domain interactions in childhood and adulthood,
these capacities are not fully developed in infancy, thus leav-
ing open the possibility of a common magnitude system early
on.

Interference across domains Quantity interference between
numerical, spatial, and temporal judgments has been demon-
strated in children, adults, and even nonhuman primates (e.g.,
time and number: Agrillo, Ranpura, & Butterworth, 2010;
Dormal, Seron, & Pesenti, 2006; Droit-Volet, Clément, &
Fayol, 2003; time and space: Bottini & Casasanto, 2013;
Merritt, Casasanto, & Brannon, 2010; number and space:
Clayton & Gilmore, 2015; Nys & Content, 2012). In general,
interference is defined as the disruption of quantity processing
by irrelevant quantitative information, particularly from a dif-
ferent domain (i.e., differences in item size biasing judgments
of the number of items). For example, when participants are
instructed to select the more numerous of two arrays, in which
half of the trials are congruent in spatial quantity (i.e., the more
numerous array also has a greater cumulative surface area) and
the other trials are incongruent in spatial quantity (i.e., cumu-
lative area is the same in both arrays, such that the more
numerous array contains smaller individual elements), re-
sponses are slower and less accurate on incongruent trials
relative to congruent trials (e.g., Clayton & Gilmore, 2015;
DeWind & Brannon, 2012; Gilmore et al., 2013; Hurewitz,
Gelman, & Schnitzer, 2006; Nys & Content, 2012). That is,
whenmaking a numerical judgment, participants are unable to

2 In this study, the same ratios were used for the temporal and spatial tasks, but
different ratios were employed on the numerical task. None of the correlations
reached significance.
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ignore the spatial extent of the arrays, leading to biased re-
sponses. Mirroring these findings, similar experiments explor-
ing the impact of numerical information on spatial judgments
have revealed the reverse pattern, such that participants are
less precise in judging relative spatial extent when the array
with the greater cumulative area has fewer items (e.g., Barth,
2008; Hurewitz et al., 2006; Nys & Content, 2012).

Temporal judgments also interact with spatial and/or nu-
merical information; however, studies have revealed an asym-
metrical pattern of interference. That is, numerical and spatial
information have been found to bias temporal judgments, but
temporal information does not alter numeric or spatial judg-
ments in either children (space: Bottini & Casasanto, 2013;
Casasanto, Fotakopoulou, & Boroditsky, 2010; number:
Droit-Volet et al., 2003) or adults (space: Casasanto &
Boroditsky, 2008; Merritt et al., 2010; Xuan, Zhang, He, &
Chen, 2007, but see Cai & Connell, 2015; number: Dormal
et al., 2006, but see Agrillo et al., 2010). In one study, children
watched two animals move across a computer screen. The
animals traveled either (1) different distances over differing
periods of time; (2) different distances, but over the same
amount of time; or (3) the same distance, but over a different
amount of time. After watching the animals, children were
asked questions regarding the distance and/or duration of the
animal’s movement. Results revealed that competing spatial
information (traveling different distances) drastically reduced
accuracy on temporal questions (BDid the two snails stop at
the same time?^), but competing temporal information (trav-
eling for different amounts of time) did not affect spatial judg-
ments (BDid the two snails stop at the same place?^; Bottini &
Casasanto, 2013). Although results of this work indicate that
more numerous and physically larger stimuli are judged as
lasting longer (e.g., Xuan et al., 2007), some work suggests
that this does not mean the stimuli are actually perceived as
lasting longer, but instead that the spatial information biases
decisions about time (Yates, Loetscher, & Nicholls, 2012).

Two studies concurrently pitted all three quantities against
each other, resulting in conflicting findings (Dormal &
Pesenti, 2013; Lambrechts, Walsh, & van Wassenhove,
2013). Dormal and Pesenti (2013) instructed participants to
judge which of two sequentially presented arrays was (1) more
numerous, (2) physically longer, or (3) presented for the lon-
ger duration. Importantly, each array varied in numerosity (the
number of dots), spatial extent (the length of the dot array),
and presentation duration. Results were consistent with previ-
ous findings revealing asymmetry, such that both numerical
and spatial cues interfered with temporal judgments, but tem-
poral cues did not affect numerical or spatial ones (Dormal &
Pesenti, 2013). On the other hand, Lambrechts et al. (2013)
also asked participants to judge the numerosity, spatial extent,
or duration of displays; however, their paradigm differed in
two critical ways. First, the arrays were presented simulta-
neously. That is, the dots were displayed all at once rather than

one at a time. Secondly, half of the participants were told
which quantity to judge before seeing the stimuli (prospective
judgment condition), whereas the other half of the participants
were told which judgment to make after seeing the stimuli
(retrospective judgment condition). Performance was compa-
rable regardless of condition (prospective vs. retrospective
judgment); however, the results indicated the reverse pattern
of interference: Temporal judgments were not affected by
space or number, yet temporal cues affected both numerical
and spatial judgments. Thus, although there is clear evidence
for quantity interference, there is some inconsistency in the
reported direction of the phenomenon.

Another form of quantity interference has been shown
using a cross-domain adaptation paradigm. In this work, par-
ticipants are first shown a spatial prime of two circles that vary
in size. After a specified duration, the circles disappear and are
replaced with dot arrays. Participants are then asked to select
which dot array is more numerous. When comparing large
numerosities, judgments are biased by the previously present-
ed spatial display, such that participants were more likely to
select the more numerous of two arrays when the choice was
preceded by a larger circle (Zimmermann & Fink, 2016; see
also Burr & Ross, 2008). These data provide further evidence
that spatial information can bias numerical judgments.

What accounts for this interference? Proponents of the
common magnitude system posit that if time, number, and
space are represented by a common mental currency, then it
would be reasonable to expect different quantity representa-
tions to interfere with our ability to make quantity
judgments—that is, magnitude representations of one quantity
may be indistinguishable with magnitude representations of
another quantity, leading to biased responding.

On the other hand, these interference effects may occur
because quantity judgments were based upon encoding mag-
nitude information via linguistically mediated generic con-
cepts such as Bmore,^ Bless,^ Ba lot,^ Bbig,^ and so on.
Interference among quantities may also occur at the response
stage when choosing which array contained, for example,
Bmore.^ Thus, using the same linguistic term is used to de-
scribe numerical, spatial, and temporal quantities may lead to
biases, at either the encoding or response stage (see Kadosh,
Kadosh, Linden, Gevers, Berger, & Henik, 2007; Odic &
Starr, 2018). Given that English speakers often use spatial
language to talk about time, but they do not use temporal
language to refer to space (Lakoff & Johnson, 1980), one
might expect spatial information to bias temporal judgments,
but spatial judgments to be unaffected by temporal informa-
tion. In fact, several studies have found support for this asym-
metrical relationship in both children (Bottini & Casasanto,
2013; Cassasanto, Fotakopoulou, & Boroditisy, 2010) and
adults (Casasanto & Boroditsky, 2008; Merritt et al., 2010;
Xuan et al., 2007). Despite this, one recent study undermines
this linguistic account by revealing cross-domain interference
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occurring even when linguistic cues cannot be used at the
encoding or response stage. In this study, participants’ spatial
judgments were biased even when Arabic numerals were pre-
sented subliminally and thus language was unlikely to be in-
voked to encode or respond to quantity information
(Lourenco, Ayzenberg, & Lyu, 2016).

Although a linguistic encoding account is not supported,
many critics of the commonmagnitude account still argue that
interference across quantity representations should not be tak-
en as definitive evidence for a single, representational system.
Interactions across quantity representation may be predicted
even in the absence of a common magnitude system. That is,
one would still predict interactions between quantities if sep-
arate, but parallel quantity systems were simultaneously acti-
vated when making quantitative judgments (see Odic & Starr,
2018, for a similar argument). Given that response biases are
found in quantitative processing in the context of stimuli not
posited to be represented in the common magnitude system
(e.g., emotional stimuli result in temporal overestimation and
numerical underestimation: Young & Cordes, 2013; filled in-
tervals are perceived as lasting longer than empty intervals:
Wearden, Norton, Martin, & Montford-Bebb, 2007), these
interactions may not necessarily be driven by a common sys-
tem. Moreover, symmetrical cross-domain interference is a
requisite of a common magnitude system. Thus, the finding
of asymmetrical patterns of interference, particularly in the
case of time, similarly undermine claims of a common mag-
nitude system. In sum, findings of interference among quan-
tity representations are neither conclusive proof of nor clear
evidence against a common system.

Cross-domain transfer Another behavioral phenomenon pro-
vided as support for a common magnitude system is that of
cross-domain transfer, in which rules learned within one quan-
titative domain are applied to a different quantitative domain,
either through explicit instruction or via spontaneous transfer.
Meck and Church (1983), the first to posit a single AMS for
tracking time and number, provided some of the first evidence
of spontaneous cross-domain transfer. In their study, rats were
trained to press one lever when a stimulus was presented for 2
seconds and another lever when a stimulus was presented for 8
seconds. Then, during the testing phase, ambiguous stimuli
that did not vary in duration (always lasted 4 seconds), but
varied in numerosity, were presented. Results revealed that
numerical stimuli were classified according to the previously
learned temporal rules, suggesting that the rats spontaneously
transferred the temporal rule to the domain of number (Meck
& Church, 1983; see also Roberts, Coughlin, & Roberts,
2000).

Spontaneous cross-domain transfer has also been reported
in human infants (e.g., de Hevia, Izard, Coubart, Spelke, &
Streri, 2014; Lourenco & Longo, 2010). For example, when
habituated to arrays of dots that are increasing in number (e.g.,

four items—eight items—16 items), infants subsequently
looked longer when presented with a series of lines decreasing
in length (a novel ordinal direction), compared with lines in-
creasing in length, suggesting infants spontaneously general-
ized an Bincreasing^ rule from number to spatial extent and
thus looked longer to the stimuli violating that rule (de Hevia
et al., 2014; de Hevia & Spelke, 2010; Lourenco & Longo,
2010; space and time: Srinivasan & Carey, 2010). Similarly,
other work has found infants to generalize Bincreasing^ or
Bdecreasing^ rules between number and time, time and spatial
extent, and spatial extent and number (de Hevia et al., 2014;
Lourenco & Longo, 2010). These findings have prompted
researchers to propose that infants may perceive temporal,
spatial, and numerical quantitative information as falling with-
in a single magnitude continuum.

Children also show cross-domain transfer (e.g., de Hevia
etal., 2012). In one study, preschoolers’ watched as an exper-
imenter matched cards that varied in either numerosity, length,
or brightness. For example, the experimenter may match a
card with a specific line length to a card containing a specific
number. After only three examples, the child was presented
with a card with a specific line length and was asked to choose
which of two cards varying in numerosity was the best match.
Children easily mapped number onto space (and vice versa)
and for space onto brightness (although less robustly).
Notably, however, children were unable to map numerosity
onto brightness (de Hevia et al., 2012). In line with findings
with human infants, these findings reveal children are capable
of making cross-domain mappings.

Other evidence of domain transfer comes from work in-
volving the mental number line. Some researchers suggest
there is a mapping between number and space (referred to as
a mental number line), with smaller numerical values falling
in the left side of space and larger values falling on the right
side of space. Evidence in favor of this has shown that chil-
dren (Siegler & Opfer, 2003), as well as literate and illiterate
adults (Dehaene, Izard, Spelke, & Pica, 2008; Seigler &
Booth, 2004), readily map numbers onto explicit number lines
without extensive instruction providing support for a relation
between number and space. Stronger evidence of a mental
number line is derived from work involving the spatial–
numerical association of responses codes (SNARC) effect.
The SNARC effect is the phenomenon that individuals from
Western cultures are faster to associate small numerical values
with the left side of space and larger numerical values with the
right side of space, consistent with reference to a mental num-
ber line running from left to right (e.g., infants & children: de
Hevia, Veggiotti, Streri, & Bonn, 2017; Patro&Haman, 2012;
van Galen & Reitsma, 2008; Yang et al., 2014; adults:
Dehaene et al., 1993). For instance, when participants judge
the parity (odd/even) of numbers, participants are faster to
respond with their left hand when the digit corresponds with
a small value and with their right hand when the digit is a
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larger value (Dehaene et al., 1993). Similarly, in implicit prim-
ing tasks, adults are faster to detect items in the left visual field
after priming with a small-valued number and faster to detect
items in the right visual field when primed with larger num-
bers (Fischer, Castel, Dodd, & Pratt, 2003). These findings
indicate that both children and adults may encode number
according to a mental number line with smaller values asso-
ciated with the left side of space and larger values on the right.

Early accounts of the SNARC effect suggested that the
imposition of number along a spatial continuum may be a
function of cultural reading conventions. In support of this
claim, cross-cultural work has shown that the direction of
the SNARC effect tracks with the reading direction of the
culture, such that individuals in cultures that read from right
to left exhibit a Breverse^ (i.e., right-to-left) SNARC effect
(Dehaene et al., 1993). However, more recent findings have
undermined claims that this phenomenon is solely a function
of culture, by demonstrating the SNARC effect in nonhuman
animals (Rugani, Vallortigara, Priftis, & Regolin, 2015).
Newborn chicks were trained to locate food behind a panel
on which five dots were displayed. During critical test trials,
however, chicks saw two side-by-side panels, both of which
contained a novel but identical number of dots (e.g., eight dots
on each). Consistent with a left-to-right mapping of number in
space, chicks were more likely to retrieve food from behind
the left panel when the number of dots at test was smaller than
the trained value, and from the right panel when the number of
dots was larger than the trained value. Evidence for a similar
left-to-right mapping has also been found in 55-hour-old hu-
man infants (Rugani et al., 2017). These data have led Rugani
et al. (2015) to suggest that humans, and other animals, may
be evolutionarily predisposed to represent numbers from left-
to-right in space—an orientation that could be the result of
asymmetrical brain maturation in which the right hemisphere
(which processes the left visual field) develops more rapidly
than the left hemisphere during early development (Rugani
et al., 2017). If this is the case, then the left-to-right orientation
may be available early in life, but still subject to cultural in-
fluences later in life.

Time seems to be similarly mapped onto space (the mental
timeline; Santiago, Lupáñez, Pérez, & Funes, 2007; see
Bonato, Zorzi, & Umiltà, 2012, for a review). Much like work
asking individuals to place numbers onto a spatial number
line, several studies have asked individuals to order images
of items, people, or plants at different stages of time (i.e.,
images of a seed, a sprout, and a full-grown flower) on a
spatial timeline. These investigations have revealed both chil-
dren and adults consistently place events in a systematic spa-
tial representation (Boroditsky & Gaby, 2010; Fuhrman &
Boroditsky, 2007; Tversky, Kugelmass, & Winter, 1991).
Like the number line, the direction of the mental timeline
depends on language and culture. Individuals from cultures
who read left to right represent the past on the left and the

future on the right (e.g., Boroditsky, 2001, 2008; Boroditsky,
Fuhrman, & McCormick, 2011; Fuhrman & Boroditsky,
2007); Mandarin speakers process the mental timeline in a
vertical fashion, with earlier events being above later events
(Boroditsky, 2001; Boroditsky et al., 2011); Hebrew speakers
process time as moving right to left (Fuhrman & Boroditsky,
2007); and individuals of the Pormpuraaw community envi-
sion time as moving east to west (Boroditsky & Gaby, 2010).

Mirroring the SNARC effect, individuals from Western
cultures are also more likely to associate short durations with
the left side of space and long durations with the right side
(Conson, Cinque, Barbarulo, & Trojano, 2008; Vallesi et al.,
2008). That is, individuals are quicker at responding to short
durations with their left hand and longer durations with their
right, an effect coined the spatial–temporal association of re-
sponse codes (STARC; Vallesi et al., 2008). Relatedly, partic-
ipants are quicker at judging words that are associated with the
past (e.g., before, yesterday, previously) with their left hand
and words that are associated with the future (e.g., after, to-
morrow, subsequently) with their right (Santiago et al., 2007).
The STARC effect also varies by culture, such that individuals
who read right to left exhibit a reverse STARC effect (Ouellet,
Santiago, Israeli, & Gabay, 2010). Work with preverbal in-
fants indicates that unlike the SNARC effect, the STARC
effect does not hold this early in life (de Hevia et al., 2017),
which casts some doubt on the likelihood of time, space, and
number being indistinguishable at first. To date, no work has
demonstrated the STARC effect in nonhuman animals.

Although cross-domain mappings provide some evidence
in favor of the common magnitude account, some of these
mapping tasks specifically instruct adults and children to map
the quantity onto space, leaving it unclear whether individuals
naturally map information in this way or are simply following
task instructions. In this case, it is likely that participants in-
voke analogical reasoning abilities to perform cross-domain
mappings. It should be noted that young children are not only
capable of forming analogies but that this ability is relatively
stable in early childhood (Alexander et al., 1989; Crisafi &
Brown, 1986; Goswami & Brown, 1990). For example, when
placing numbers on a number line, children or adults may
decide where the number falls proportionally between the
end points and thus place the number proportionally along
the line (e.g., we know that 10 is halfway between 1 and 20,
so it must be located at the midpoint of the line). Notably, this
explicit analogical reasoning across domains is found for non-
quantitative ordinal sequences as well. There is substantial
evidence that individuals who read left to right tend to map
any ordered information (e.g., the alphabet, days of the week,
months of the year) in a left-to-right pattern (Gevers, Reynvoet,
& Fias, 2003, 2004; Hurst, Leigh Monahan, Heller, & Cordes,
2014; Previtali, de Hevia, & Girelli, 2010). Again, these se-
quences (letters, days of theweek, etc.) are not likely part of the
common magnitude system, suggesting that these findings of
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explicit cross-domain mappings may not be indicative of a
common magnitude system, but instead a general propensity
to map any ordinal information in space.3 Thus, it is possible
that cross-domain mapping in children and adults is not indic-
ative of a common magnitude system, but instead a tendency
to map any ordered information in a consistent fashion.

Animals and human infants, however, do not receive (or
understand) explicit instructions on these types of mapping
tasks; thus, cross-domain mappings in these populations sug-
gest strong evidence of a common magnitude system. Thus, it
seems less likely that analogical reasoning may account for
evidence of spontaneous cross-domain transfer. Why? First,
because there are not explicit instructions on how to perform
the task, it seems unlikely that participants reveal a consistent
pattern of responding without a consistent mental model of
how quantities may map onto each other. And, second, given
that most evidence of spontaneous transfer is found in data
from human infants, and the earliest evidence of analogy use
reported is at 13 months of age (Chen, Sanchez, & Campbell,
1997), it seems unlikely that cross-domain transfer in infancy
is a function of analogy use. Although cross-domain interfer-
ence in infancy has been shown to predict comparable inter-
ference in preschool children, even when controlling for ana-
logical reasoning abilities (Aulet & Lourenco, 2018), future
work will be important for determining whether spontaneous
cross-domain transfer is found in later childhood and
adulthood.

Response biases identical contexts

If time, number, and space were represented by a common
magnitude system, then we would predict identical contexts
to result in comparable quantitative biases. However, several
studies reporting unique quantitative biases in comparable sit-
uations contradict this prediction. For example, an extant lit-
erature reveals that emotional content affects our ability to
process time (for reviews, see Droit-Volet, Fayolle, Lamotte,
& Gil, 2013; Droit-Volet & Meck, 2007), such that children
and adults overestimate time in the presence of angry faces, in
particular, relative to neutral or happy ones (Doi & Shinohara,
2009; Droit-Volet, Brunot, & Niedenthal, 2004; Gil & Droit-
Volet, 2012; Gil, Niedenthal, & Droit-Volet, 2007; Tipples,
2008; Young & Cordes, 2013; see also Bar-Haim, Kerem,
Lamy, & Zakay, 2010; Tipples, 2011). More recently, howev-
er, work has revealed that the same emotional faces result in
the underestimation of number (Baker et al., 2013; Doi &
Shinohara, 2016; Hamamouche, Hurst, & Cordes, 2016;
Lewis et al., 2017; Young & Cordes, 2013; see also

Ashkenazi, 2018; Hamamouche, Niemi, & Cordes, 2017).
That is, children and adults underestimate number in the con-
text of happy and angry faces relative to neutral ones, whereas
they overestimate time in the context of angry faces. Not only
is the direction of impact on temporal and numerical judg-
ments opposite (overestimation in the case of time, underesti-
mation in the case of number), the particular emotional stimuli
provoking these reactions differ across quantities (angry faces
uniquely affect temporal processing, whereas both happy and
angry faces affect numerical processing).

As another example, the imposition of cognitive load (re-
membering and alphabetizing letters while making temporal
or numerical judgments) leads to a similar pattern of opposing
biases: underestimation of number, and marginal overestima-
tion of time (Hamamouche et al., 2018; but see Block,
Hancock, & Zakay, 2010; Brown, 1997, for temporal
underestimation during cognitive load). Although it is un-
known how early in development these biases occur, the op-
posing patterns of bias found for temporal and numerical pro-
cessing under cognitive load and emotional stimuli in child-
hood and adulthood provide strong evidence against a com-
mon magnitude system at this point in development.

Although unique temporal and numerical processing biases
occur in the presence of emotional content and cognitive load,
it is unknown how spatial extent is affected by external stim-
uli. Although this work has provided evidence against a com-
mon magnitude system, future work is necessary to determine
if emotion and/or cognitive load lead to spatial overestimation
or underestimation. The findings of this research may unveil
important information regarding the cognitive mechanism(s)
responsible for these quantitative biases, while also addressing
claims of a common magnitude system. Additionally, this
work has been limited in the types of external stimuli used.
Future work investigating whether there are other contexts
that reveal further dissociations, may also guide investigations
of quantity representation.

Relation to formal learning

Interestingly, numerical, spatial, and temporal processing
have each been shown to relate to mathematics achievement,
suggesting a common link among these representations.
However, upon further inspection, the data point to the fact
that specific quantities (e.g., spatial processing) are more
closely linked to math topics that share similarities in content
(e.g., geometry), further discounting the common magnitude
theory.

Numerical acuity The relation between numerical acuity (the
precision with which an individual can discriminate between
two sets on the basis of their numerosity) and formal math has
been well-established across numerous mathematical tasks
and ages ranges (e.g., Bonny & Lourenco, 2013; Halberda,

3 Although this is a strong alternative account, some have argued that unique
processes may be involved in mapping ordered sequences (e.g., number) in
space and mapping two quantities (e.g., brightness and number) onto one
another (e.g., de Hevia & Spelke, 2013).
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Mazzocco, & Feigenson, 2008; Mazzocco et al., 2011; Starr,
Libertus, & Brannon, 2013; for a review, see Feigenson,
Libertus, & Halberda, 2013). For example, numerical acuity
at 6 months is predictive of performance on a standardized
math assessment at age 3 (Starr et al., 2013), and pre-
schoolers’ approximate sense of number has been shown
to predict their math abilities at age 6 (Mazzocco et al.,
2011). A correlation between our approximate sense of
number and formal math abilities is also present in
adulthood; Libertus, Odic, and Halberda (2012) discov-
ered a significant relation between undergraduates’ ap-
proximate sense of number and their math SAT scores.
Further, the predictive relation between numerical acuity
and math achievement appears to be stable over time—
formal math abilities in kindergarten predict numerical
acuity at 14 years of age (see Feigenson et al., 2013).

More recent training studies have suggested the possibility
of a causal relation between our approximate number and
formal math abilities (e.g., Hyde, Khanum, & Spelke, 2014;
Khanum, Hanif, Spelke, Berteletti, & Hyde, 2016; Park,
Bermudez, Roberts, & Brannon, 2016; Park & Brannon,
2013; Wang, Odic, Halberda, & Feigenson, 2016). In one
study, children’s performance on a symbolic math task was
improved following nonsymbolic addition and nonsymbolic
numerical comparison training. Importantly, training in line
length addition (i.e., spatial magnitude training) or in bright-
ness comparison, however, did not improve symbolic math
performance. Moreover, this improvement was specific to
mathematics, as children’s performance on a verbal task did
not improve with training (Hyde et al., 2014; however, see
Park & Brannon, 2014, for an alternative account in adults).

Although the relation between numerical acuity and math
achievement is well documented, newer work has doubted the
strength of the relation (e.g., Gilmore et al., 2013; Inglis,
Attridge, Batchelor, & Gilmore, 2011; Price, Palmer,
Battista, & Ansari, 2012; Skagerlund & Träff, 2014). For in-
stance, some have argued that inhibitory control (Fuhs &
McNeil, 2013; Gilmore et al., 2013), an ability to order quan-
tities (Lyons & Beilock, 2011; Price & Fuchs, 2016), or sym-
bolic understanding of number (Göbel, Watson, Lervåg, &
Hulme, 2014) facilitates this relation. Moreover, this relation
appears to hold in childhood, but it is less consistent in adult-
hood (see Inglis et al., 2011; Price et al., 2012). Nuances in the
casual nature of this relation are also important to note. For
instance, while training nonsymbolic number appears to im-
prove math performance, training math skills does not lead to
enhanced numerical acuity (Lindskog, Winman, & Poom,
2016), and adults’math abilities appear to improve only when
the nonsymbolic number training involves manipulating ap-
proximate quantities, rather than just comparing them (Park &
Brannon, 2014). Importantly, this relation would still be likely
if a domain-specific module, such as the ANS, were respon-
sible for numerical processing.

Spatial acuity The relation between spatial abilities and math-
ematics may be driven by a common ability to perform mental
manipulations (e.g., mental rotation, arithmetic decomposition
[which requires breaking down a number into different com-
ponents, such as 12 = 10 + 2]; see Mix & Cheng, 2012, for
review). Importantly, though, mental manipulation is not the
same as representing spatial magnitude (i.e., the size or length
of an item), which is purportedly supported by a common
magnitude system. Very few studies have explored the relation
between spatial magnitude acuity (e.g., area or length discrim-
ination), which is directly relevant to a common magnitude
system, and formal math abilities.4 This work has reported a
relation between area discrimination (i.e., judging spatial mag-
nitude) and geometry and calculation abilities (Bonny &
Lourenco, 2015; Geary & Van marle, 2016; Lourenco,
Bonny, Fernandez, & Rao, 2012). In one study, preschoolers’
abilities to decide which of two shapes contained a larger
surface area were related to their ability to solve geometry
questions as well as their ability to engage in simple numerical
calculations (Bonny & Lourenco, 2015). In another study,
area discrimination acuity predicted preschoolers’ math abili-
ties (as assessed by a standardized math test including differ-
ent mathematical competencies). However, this relation did
not hold above and beyond other nonsymbolic, numerical
abilities, such as nonverbal calculation and ordinal number
comparison (Geary & Van marle, 2016), consistent with the
idea of a common mechanism underlying both numerical and
spatial abilities. In adults, area acuity uniquely accounts for a
significant amount of variance in geometry performance and
calculation abilities (Lourenco et al., 2012). Thus, spatial acu-
ity appears to be specifically linked to geometry and calcula-
tion abilities.

Temporal acuity There is also a relation between temporal
acuity and formal math (e.g., Odic et al., 2016; Skagerlund
& Träff, 2016); however, the reasoning for this relation is less
obvious. Some have argued that a unique relation between
temporal and spatial abilities may mediate the relation be-
tween time and math (Kramer, Bressan, & Grassi, 2011),
whereas others have suggested that the ability to manipulate
ordered magnitude, which is important for both numerical and
temporal processing, may be key in understanding the relation
between temporal processing and mathematics (Skagerlund &
Träff, 2016).

Evidence in support of this relation has reported that chil-
dren at risk for developing dyscalculia (a developmental

4 Although some studies have explored the relation between spatial scaling
abilities (the ability to locate where an item should be located along a linewhen
the line increases or decreases in size) and the ability to indicate proportional
information along a line (e.g., Möhring, Frick, & Newcombe, 2018), overt
similarities between the two tasks make it likely that these tasks are gauging
the same underlying proportional abilities, not necessarily the relation between
spatial skills and mathematical abilities.
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mathematics disorder) tend to experience impoverished
timing abilities early on (Tobia, Rinaldi, & Marzocchi,
2016). In another study, elementary school students completed
a battery of symbolic (e.g., arithmetic, symbolic ordinal judg-
ments) and nonsymbolic quantity tasks (numerical discrimi-
nation, temporal discrimination). Results revealed that both
numerical acuity and temporal acuity correlated with math
abilities, and these relations held after controlling for acuity
in the other domain and working memory (Odic et al., 2016).
That is, although both timing and numerical abilities were
related to math abilities, they each offered unique predictive
value, undercutting the idea that they were tapping into similar
representations by a common magnitude system.

Although links between formal mathematics achievement
and temporal, spatial, and numerical abilities have been
established, the fact that temporal and spatial acuity predict
distinct aspects of math achievement, whereas numerical acu-
ity predicts several aspects of mathematics, undercuts claims
of a single magnitude system. For instance, spatial abilities
appear closely linked to geometry and calculation (Lourenco
et al., 2012), whereas timing abilities appear to be specifically
related to multidigit calculation abilities (Skagerlund & Träff,
2016). Explorations of these relations in infancy and child-
hood also demonstrate unique relations between nonsymbolic
acuity and formal math. Starr et al. (2013), for example, found
a significant relation between infant numerical acuity, but not
area acuity, and math abilities at age 3. Moreover, under the
premise of a common magnitude system, one would predict
the relation between quantity processing (e.g., time) and math
to disappear when controlling for performance on another
quantity (e.g., number). However, reports indicate quantity
processing in one domain (i.e., time) continues to significantly
predict mathematics when controlling for quantity processing
in another domain (i.e., number; Odic et al., 2016). Overall,
the relations between quantity processing and mathematics do
not provide substantial support for the existence of a common
magnitude system.

Neural signatures

The work discussed thus far has concerned similarities and
differences among behavioral data across quantity representa-
tions; however, parallels in neural and clinical investigations
have also provided insight into the plausibility of a common
magnitude system. Although neural and clinical evidence
point to some commonalities in quantity processing, we argue
that the data are not nearly robust enough to support the exis-
tence of a single system. In particular, distinct topographic
organizations for number and space (Harvey, Fracasso,
Petridou, & Dumoulin, 2015) indicate that separate neural
networks are likely responsible for quantity processing.
Moreover, comorbid processing deficits seem linked to

clinical disorders that emerge early in development, as op-
posed to later in life.

Patterns of neural activation

Neurobiological investigations give pause to claims of the
existence of a common locus of activation for quantitative
processing. Although some evidence of comparable neural
activation during quantity processing has been offered in sup-
port of the common magnitude account (space and number:
Dormal, Andres, & Pesenti, 2012; time and number: Dormal,
Dormal, et al., 2012), several studies have revealed unique
brain activation patterns during quantity processing, specifi-
cally during timing tasks (e.g., Gooch, Wiener, Hamilton, &
Coslett, 2011; Mattell & Meck, 2004; Vuokko, Niemivirta, &
Helenius, 2013). The general consensus is that the
intraparietal sulcus (IPS) is active during numerical and spatial
processing; in contrast, subcortical areas have been identified
as the primary locus of timing. Importantly, the common mag-
nitude system would predict not only common brain activa-
tion patterns but also a common representational code across
quantities. Despite some evidence for similar neural activation
patterns when processing these distinct quantities, there is no
evidence for a common representational code for both
quantities—at least in respect to space and number
(Borghesani et al., 2018). Given that timing appears less con-
nected to both space and number, it is unlikely that a common
representational code exists between space and timing or num-
ber and timing.

Number A substantial literature suggests that the IPS is acti-
vated during numerical processing. For instance, IPS activa-
tion has been reported when individuals make numerical judg-
ments (i.e., which array of dots is more numerous; Castelli,
Glaser, & Butterworth, 2006; Dormal & Pesenti, 2012; Fias,
Lammertyn, Reynvoet, Dupont, & Orban, 2003; Pesenti,
Thioux, Seron, & De Volder, 2000; Piazza, Mechelli,
Butterworth, & Price, 2002; Venkatraman, Ansari, & Chee,
2005).5

5 Although the IPS has been identified as the neural locus of numerical pro-
cessing, it is important to note that a network of brain regions—not solely the
IPS—is responsible for this process. In addition to the IPS, the right middle
and inferior frontal gyri and the right supplementary motor area appear to be
activated during numerical processing (Dormal, Dormal, Joassin, & Pesenti,
2012). Moreover, a meta-analysis conducted by Sokolowski, Fias, Mousa, and
Ansari (2017) revealed activation in the frontoparietal network, specifically,
the bilateral parietal and frontal cortex, and the bilateral middle occipital gyri
during nonsymbolic number processing. The parietal cortex, more broadly, has
also been implicated in numerical processing. In particular, Harvey, Klein,
Petridou, and Dumoulin (2013) determined the topographic organization of
numerosity within the parietal cortex. Importantly, number-specific neural
models best predict numerosity judgments compared with other nonnumerical
features (e.g., convex hull, density) that might vary with numerosity, indicating
that this mapping is unique to number (Harvey & Dumoulin, 2017).
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This pattern of activation, which is seen throughout devel-
opment (Cantlon, Brannon, Carter, & Pelphrey, 2006), be-
comes more localized with age (Ansari & Dhital, 2006).
Further emphasizing the role of the IPS in numerical process-
ing are data revealing that children who suffer from
dyscalculia, a number-processing disorder, have weaker acti-
vation in the IPS when engaging in numerical tasks compared
with typically developing peers (Mussolin et al., 2010; Price,
Holloway, Räsänen, Vesterinen, & Ansari, 2007).

Although patterns of activation give some insight into the
neural locus of quantity processing, the most stringent test
occurs when a specific brain region is deactivated. This work
has revealed that applying transcranial magnetic stimulation
(TMS, a process that uses magnetic fields to activate, or render
inactive, specific brain regions) to the left IPS, but not adjacent
brain regions, leads to impaired numerical processing
(Cappelletti, Barth, Fregni, Spelke, & Pascual-Leone, 2007).
Comparable findings have been reported when applying TMS
to the right IPS (Dormal, Andres, & Pesenti, 2012). Together,
this evidence suggests that the IPS is critical in numerical
processing.

Space Spatial processing also appears to rely heavily on the
IPS (Dormal, Andres, et al., 2012; Fias et al., 2003; but see
Cantlon et al., 2006). For example, IPS activation occurs in
adults when they judge which of two discrete, linearly ar-
ranged arrays of dots or two rectangles are physically longer
(Dormal & Pesenti, 2009). Moreover, when processing spatial
locations, adults show activation in the right posterior parietal
cortex and IPS. TMS studies also emphasize the role of the
IPS in spatial processing—deactivating the IPS (Bjoertomt,
Cowey, & Walsh, 2002; Dormal, Andres, et al., 2012) or the
posterior parietal cortex (Göbel, Calabria, Farne, & Rossetti,
2006) through the use of TMS also disrupts spatial abilities.

Despite evidence supporting the role of the IPS in both
numerical and spatial processing, direct comparisons of nu-
merical and spatial tasks within the same individuals indicates
that the patterns of brain activation are not completely over-
lapping. For example, one study instructed children and adults
to make judgments about either the number of items on the
screen (number), the orientation of the items (space), or the
color of the items (control) and found both age-specific and
task-specific neural activations. Although both numerical and
spatial judgments elicited activation in adults’ right posterior
superior parietal lobe, nonoverlapping activations occurred in
the right angular gyrus and the right IPS for numerical judg-
ments and in the superior and inferior parietal lobe regions for
spatial ones. Children, on the other hand, showed no overlap-
ping activations during numerical and spatial tasks
(Kaufmann et al., 2008). In another experiment, adults
showed similar activations in the right posterior parietal cortex
and IPS when processing spatial (locations on a screen) and
numerical (Arabic numerals) stimuli, yet contrasts also

revealed unique activations in regions solely associated with
spatial or numerical processing (Coull & Frith, 1998). It
should be noted that the majority of these studies involve
spatial tasks that do not require spatial magnitude judgments,
thus a lack of neural overlap may not completely undermine a
common magnitude account. However, Harvey et al. (2015)
investigated topographic mappings of object size (spatial
magnitude) and numerosity. Although data revealed some
overlap in the topographic organization of both number and
object size tuning, the properties of the mappings were largely
distinct, further indicating differences in spatial and numerical
representations (Harvey et al., 2015). Thus, although the IPS
may be activated in both spatial and numerical processing,
each quantity recruits a unique network of brain regions, mak-
ing it unlikely that a common magnitude system fully under-
lies quantity processing.

Time Support for IPS involvement in the case of timing, how-
ever, is less clear. Some studies have reported IPS activation
during timing tasks (see Coull, Vidal, Nazarian, & Macar,
2004; Pouthas et al., 2005) and impaired timing abilities when
TMS is applied to the IPS (Walsh & Pascual-Leone, 2003).
And, a few studies have found overlapping activation in the
IPS, precentral, middle, and superior frontal gyri (Dormal,
Dormal et al., 2012) or the inferior frontal gyrus and right
intraparietal cortex (Hayashi et al., 2013, Experiment 1) dur-
ing both temporal and numerical processing.

Despite some comparable findings, there are many rea-
sons to believe the IPS is not central to timing. First, par-
ticipants were slower at making numerical, but not tempo-
ral judgments, after TMS was applied to the left and right
IPS (Dormal, Andres, & Pesenti, 2008). Moreover, it has
been argued that the activation of the IPS during timing
tasks may be attributed to attentional factors rather than
specifically to making temporal judgments (e.g., Casini &
Ivry, 1999; Harrington, Haaland, & Knight, 1998; Meck,
Church, Wenk, & Olton, 1987). Extensive work with
humans and rodents points to the cerebellum and basal
ganglia as the center of temporal processing (see Mattell
& Meck, 2004; Rammsayer & Classen, 1997), with
cortico-striatal circuits within the basal ganglia being par-
ticularly important during suprasecond (>1 second) timing
(Buhusi & Meck, 2009; Coull et al., 2004; Hinton & Meck,
2004; Meck, Penney, & Pouthas, 2008). The fact that the
cerebellum and the basal ganglia are involved in timing,
but less so during numerical or spatial tasks, points to dis-
tinct neural loci for temporal magnitude judgments com-
pared with numerical and spatial ones. It should be noted,
however, that these brain regions (specifically the cerebel-
lum) are also involved in visual and auditory perception
(Baumann et al., 2015), and so its involvement in timing
may reflect a more general perceptual processing function,
rather than a unique role in timing. Still, the general
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consensus seems to be that neurobiological studies do not
support the existence of a common neural locus for tem-
poral, numerical, and spatial processing—that is, they do
not support a common magnitude system.

Clinical investigations

Evidence in support of a common magnitude system, howev-
er, is derived from clinical investigations revealing comorbid
quantity processing deficits (see Vicario, Yates, & Nicholls,
2013, for a review), primarily in developmental disorders. For
example, patients with genetic disorders such as Turner syn-
drome exhibit deficits in both spatial and temporal processing,
in addition to poorer math abilities, compared with their IQ-
matched peers (Silbert, Wolff, & Lilienthal 1977). Similarly,
children with chromosome 22q11.2 deletion syndrome show
difficulties in mathematics, spatiotemporal processing
(Simon, 2008), and numerical processing (Simon, Bearden,
Mc-Ginn, & Zackai, 2005; Simon et al., 2008). Children with
ADHD suffer from compromised numerical (Kaufmann &
Nuerk, 2008) and temporal processing abilities (Smith,
Taylor, Rogers, Newman, & Rubia, 2002). Relatedly, children
with dyscalculia also endure impaired numerical, temporal,
and spatial abilities (Skagerlund & Träff, 2014; time only:
Tobia et al., 2016; Vicario, Rappo, Pepi, Pavan, & Martino,
2012). Moreover, estimating spatial (e.g., Irving-Bell, Small,
& Cowey, 1999), temporal (e.g., Basso, Nichelli, Frassinetti,
& di Pellegrino, 1996; Danckert et al., 2007), and numerical
(e.g., Cappelletti, Freeman, & Cipolotti, 2007; Zorzi, Priftis,
& Umiltà, 2002) magnitudes is difficult for patients who ex-
perience hemispatial neglect (i.e., the lack of awareness of one
side of space) after brain trauma.

Although the comorbidity of quantity processing defi-
cits hint at the possibility of a common magnitude system,
it is important to note that these individuals often also
experience domain-general processing difficulties. Thus,
the overlapping deficits may be indicative of an overall
processing deficit rather than a common neural mecha-
nism for quantity processing. For instance, children with
ADHD (Kuntsi, Oosterlaan, & Stevenson, 2001; Mariani
& Barkley, 1997; Westerberg, Hirvikoski, Forssberg, &
Klingberg, 2004) and Turner syndrome (e.g., Hart,
Davenport, Hooper, & Belger, 2006) experience working
memory difficulties in addition to quantity processing def-
icits. Thus, comorbid difficulties processing quantity in
clinical populations may reflect overall processing deficits
rather than damage to a common neural locus.

Moreover, clinical populations in which quantity process-
ing deficits present as independent of each other hint at a
possible dissociation between temporal, numerical, and spatial
processing in the brain (time, space, and number: Cappelletti,
Freeman, & Cipolotti, 2009; time and number: Cappelletti,
Freeman, & Cipolotti, 2011). For instance, individuals

suffering from Parkinson’s disease are documented as having
impaired timing abilities, but process number similarly to
healthy, age-matched peers (Dormal, Grade, Mormont, &
Pesenti, 2012). Moreover, patients who experience brain trau-
ma do not always experience simultaneous impairments in all
quantity processing. In a case study, a patient with a right
hemisphere lesion displayed temporal processing deficits but
was able to process numerical and spatial information normal-
ly (Cappelletti, Freeman, & Cipolotti, 2009). A related study
revealed numerical, but not temporal, deficits in a patient with
a left hemispheric lesion, and temporal, but not numerical,
deficits in a different patient with a right hemispheric lesion
(Cappelletti, Freeman, & Cipolotti, 2011).

Importantly, the clinical data suggest that simultaneous
spatial, numerical, and temporal deficits are typically found
in developmental disorders, presenting from early in develop-
ment, such as in the case of ADHD or learning disabilities.
Disorders and/or brain injuries occurring later in life, however,
appear to result in distinct quantity processing deficits (al-
though hemispatial neglect is an exception). Thus, these find-
ings provide support for the developmental divergence model
in which a commonmagnitude systemmay be present early in
development, but it quickly diverges into separate systems
over time.

The developmental divergence model

Despite some evidence in favor of a common magnitude sys-
tem throughout development, strong counter evidence sug-
gests that a single quantity-processing system does not exist
across the entire life span. How are quantities represented if
not by a commonmagnitude system? Although more research
is needed to fully understand potential variations to the com-
mon magnitude account, we next discuss the developmental
divergence model, like that of Newcombe (2014), as what we
consider to be a more plausible model of quantity
representation.

A somewhat complementary account to the common mag-
nitude theory, the developmental divergence model suggests
that wemay be innately endowed with a single representation-
al system for quantity processing, yet over the course of de-
velopment, the system divides into several separable systems
(Newcombe, 2014). For example, sometime during early de-
velopment, the ANS may emerge from the common magni-
tude system to represent number whereas a specific spatial
system may develop to represent space. Unlike the sense of
magnitude account, which suggests that number separates
from continuous representations of quantity such as spatial
dimensions over development (Leibovich et al., 2017), the
developmental divergence model suggests that all three
quantities—continuous and discrete alike—diverge from one
another over time. According to both accounts, quantity
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representations may follow a similar pattern early in develop-
ment because infants are born with a generalized system for
representing magnitude. There are many ways in which a
common magnitude system may work in infancy. For in-
stance, infants may be unable to distinguish between time,
space, and number and instead simply consider Bquantity^
in the world around them. Being regularly inundated with
new information may be particularly taxing for young infants’
working memory and attention, making it difficult to accurate-
ly differentiate between stimuli in the environment. The natu-
ral correlations that exist amongst quantities (i.e., more apples
take up more space and take longer to eat) may similarly make
it harder for infants to distinguish among these quantities early
on. Regardless, early in development, a common magnitude
system may be a particularly useful way to efficiently use
limited cognitive resources. The evidence of similar develop-
mental trajectories (space: Brannon et al., 2006; time:
Brannon et al., 2007; number: Xu & Spelke, 2000) and
cross-domain transfer in infancy (e.g., de Hevia et al., 2014;
Lourenco & Longo, 2010), but not necessarily during later
childhood (e.g., Odic, 2018) support the possibility that a
common magnitude system is present early in development.

Contrary to the commonalities observed across representa-
tions of quantity in infancy, a growing body of evidence indi-
cates remarkable differences in the ways these quantities are
represented in older individuals. Both children and adults dis-
criminate temporal, numerical, and spatial magnitudes with dif-
fering levels of precision (see Droit-Volet et al., 2008; Odic,
2018), and temporal, numerical, and spatial information do
not equally bias quantity judgments in another domain (e.g.,
Dormal& Pesenti, 2013). Further, data from children and adults
indicate unique brain activation patterns when processing these
quantities (e.g., space and number: Dormal, Andres, et al.,
2012; time and number: Dormal, Dormal, et al., 2012), and
distinct quantitative biases in the presence of emotionally laden
stimuli when processing time and number (e.g., Young &
Cordes, 2013). Evidence such as this suggests that the likeli-
hood of a single system accounting for representations of time,
number, and space later in children and adults is low. Unlike
infants, children and adults have better developed cognitive
capacities and are better able to quickly process information.
For example, young children’s language abilities improve dras-
tically as demonstrated by an ability to rapidly learnwords (e.g.,
Goldfield & Reznick, 1990; Schafer & Plunkett, 1998;
Woodward, Markman, & Fitzsimmons, 1994). Moreover, cog-
nitive control, executive functioning, and working memory
abilities become exceedingly advanced in infancy and early
childhood (Bunge, Dudukovic, Thomason, Vaidya, &
Gabrieli, 2002; Diamond & Doar, 1989; Diamond, Towle, &
Boyer, 1994; see Bunge & Wright, 2007, for a review). And,
information processing speed becomes significantly better over
the first year of life (Rose, Feldman, & Jankowski, 2002).
These broad cognitive developments make children and adults

better equipped to use several, unique systems to represent
quantity, and emphasize the need for a common magnitude
system in infancy.

Support for the divergence model is furthered by evidence
revealing broad synaptic pruning leading to localization of
brain functions in early to middle childhood (e.g., Giedd
et al., 1996; Thompson et al., 2000; van der Knaap et al.,
1990). Studies across several domains, including language
(Mills, Coffey-Corina, & Neville, 1997; Minagawa-Kawai,
Mori, Naoi, & Kojima, 2007; Perani et al., 2011) and facial
recognition (de Haan, Pascalis, & Johnson, 2002; Halit, de
Haan, & Johnson, 2003) have found early general activation
followed by later neural localization of function. As such, it is
conceivable that quantity representations may follow a similar
pattern: in infancy a single, neural locus may be responsible for
all quantitative information; however, over the course of de-
velopment, specific brain regions may become specialized to
uniquely support temporal, numerical, and spatial capacities.

Substantially more work is needed to address the many
open questions regarding the proposed divergence model. Of
particular importance is determining what might provoke di-
vergence across development. One possibility is that over de-
velopment, children gain a great deal of experience with quan-
titative information, which likely helps them differentiate
time, space, and number. Related to this idea is work by
Gibson and Gibson (1955), revealing differentiation of stimuli
with practice. According to this work, space, time, and num-
ber may be indistinguishable at first, but increased exposure
and developing expertise of quantitative information over
time may be at the root of the proposed developmental diver-
gence. A second, nonmutually exclusive possibility is that
formal education provides children with distinct symbols to
measure temporal, spatial, and numerical quantities (e.g., cen-
timeters for space, seconds for time, and number words for
number). Learning these formal labels might also shape our
nonsymbolic representations of quantity, leading to an en-
hanced ability to distinguish between quantitative information
and thereby causing these representations to diverge. If so, we
would expect number to diverge first (since number words are
acquired during early childhood, whereas spatial and temporal
words are not learned until later); however, the current evi-
dence suggests that spatial representations may be the first to
diverge (Odic, 2018). Thus, more work is needed to determine
what specifically instigates this divergence. Other factors, in-
cluding but not limited to burgeoning linguistic abilities and/
or developing domain-general capacities, may also prompt the
divergence of a common magnitude system throughout the
course of development and warrant further investigation.

If a developmental divergence model provides the best ac-
count of quantity representation, other open questions, such as
the specific time at which the divergence occurs, also exist.
Although 3-year-olds have comparable spatial and numerical
acuity, performance on spatial and numerical tasks begins to
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deviate around age 4 (time, space, and number: Odic, 2018;
space and number: Geary & Vanmarle, 2016; Odic et al.,
2013), indicating that the third year of life may mark an im-
portant transition for quantity representations. Temporal dis-
criminations may also separate around this time, as 4-year-
olds’ accuracy on temporal tasks is much lower than on spatial
tasks, and by age 5, performance on temporal and numerical
tasks begins to differ (Odic, 2018).

Another unresolved question is whether or not the develop-
mental divergence model is limited to time, space, and number,
or if it may encompass a broader set of quantities to include
speed, loudness, brightness, and so on. Given that discrimina-
tion of speed (e.g., Möhring, Libertus, & Bertin, 2012) and
brightness (e.g., Starr & Brannon, 2015) also adhere to
Weber’s law, one might think that the same system should
represent all quantities. However, other evidence has been pro-
vided to suggest that some quantities may align more readily
than others. De Hevia and Spelke (2013), for instance, found
that infants less readily mapped number onto brightness than
they mapped number onto space, suggesting a more privileged
relationship between the latter quantities. In related work, de
Hevia, Vanderslice, and Spelke (2012) found that children also
struggled with mapping number onto brightness, and
Srinivasan and Carey (2010) showed that adults had difficulty
mapping loudness onto space. Future workmust investigate not
only the development of temporal, spatial, and numerical mag-
nitudes but also explore how other quantity dimensions such as
loudness and brightness may be integrated (or not) in this early
system.

Developmental designs and consistent paradigms will be
necessary for assessing the plausibility of the developmental
divergence model. Critically, few studies have explored spa-
tial, temporal, and numerical processing between 10 months
and 3 years of age, and even fewer have assessed the devel-
opment of all three quantities in children using the same par-
adigm (although see Droit-Volet et al., 2008; Odic, 2018).
Better understanding of the development of spatial and tem-
poral representations during late infancy will be necessary for
assessing the plausibility of the divergence model, specifical-
ly, to determine at what point these quantities are no longer
represented by a common metric (see Odic, 2018).
Longitudinal research may also shed light on the format of
quantity representations.

Implications of the developmental divergence model

Although data in favor of a common magnitude system has
shaped numerous educational interventions (e.g., Siegler &
Ramani, 2009), it is important to consider the implications
of separate quantity processing systems—particularly for chil-
dren and adults. For instance, treating individuals with comor-
bid quantity-processing deficits may be less straightforward in
the presence of separate quantity-processing systems after

infancy. Thus, rather than treating all quantity deficits by
gaining experience with a single quantity (e.g., number), sep-
arate experiences with each quantity may be necessary.
Knowing that separate systems may be responsible for quan-
tity processing may also guide future neurobiological investi-
gations by allowing for a clear identification of the location of
each of these systems in the brain.

Limitations of the developmental divergence model

Although this model seems plausible, there are several alter-
native explanations that must be seriously considered. For
instance, although common developmental trajectories have
been put forth as evidence in favor of a common magnitude
system in infancy, it is possible that similar acuity emerges not
because infants are using a common magnitude system, but
instead because of their limited abilities early on. For example,
infants have limited working memory (e.g., Reznick, Morrow,
Goldman, & Snyder, 2004; Ross-Sheehy, Oakes, & Luck,
2003) and poor visual acuity (e.g., Harter & Suitt, 1970)
among many other domain-general limitations. Therefore,
any of these limits on domain-general abilities may hinder
their ability to perform standard discrimination tasks unless
there are very large changes in quantity, which attract their
attention. Although this may explain comparable develop-
mental trajectories in infancy, but not in childhood or adult-
hood, it would not align with a common magnitude system,
and these possibilities must be explored to fully understand
the plausibility of a common magnitude system in infancy.

One might also wonder how quantity processing in nonhu-
man animals fits into the developmental divergence model.
Indeed, much of the animal literature supports the common
magnitude account. For instance, animals show comparable
temporal and numerical discrimination abilities (Meck &
Church, 1983) and they, too, map number onto space
(Rugani et al., 2017; Rugani et al., 2015). Much like infants,
animals are not equipped with language faculties, and thus
having a common magnitude system may be a more accessi-
ble way to represent quantities. On the other hand, many an-
imals have advanced cognitive capacities, such as working
memory (e.g., in pigeons: Honig, 2018; in rats: Beatty &
Shavalia, 1980), which may support unique quantity-
processing systems. Thus, one might expect animals to be able
to manage separate quantity processing systems, like children
and adults. In fact, research shows that spatial discriminations
are comparable in adult humans and nonhuman primates
(humans and monkeys: Tudusciuc & Nieder, 2010; humans,
monkeys, and apes: Schmitt, Kröger, Zinner, Call, & Fischer,
2013), which hints at the possibility that adult humans and
nonhuman primates may use a distinct spatial processing
mechanism. If animals use unique quantity-processing sys-
tems, whether these systems develop in parallel, or diverge
over the course of development, remains unclear. While we
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predict that language and/or increased experience with each
unique quantity might promote the divergence of quantity
processing systems in children, it is unlikely that either of
these situations causes a divergence in animals. Future re-
search with animal models will be crucial for determining
(1) whether or not animals employ a single quantity process-
ing system throughout development and (2) if the systems
diverge, what causes this divergence.

Conclusions

Space, time, and number are necessary for understanding the
world around us. Not only are these quantitative processes
important for basic learning, they also facilitate daily activi-
ties, such as language acquisition and foraging (e.g., see
Gallistel, 1990, for review). Although the commonmagnitude
system (Cantlon et al., 2009; Meck & Church, 1983; Walsh,
2003) has been the dominant theory for several decades, a
growing body of literature has doubted such a system.
Throughout this review, evidence in favor of a common mag-
nitude system was contrasted with strong counter evidence.
We contend that a common magnitude system is not present
throughout the life span given the current data. As such, we
have suggested the developmental divergence model as an
alternative model for quantity representation.

Although the commonmagnitude system is a parsimonious
account, it requires a stringent examination of the data. Certain
pieces of evidence certainly favor a common magnitude sys-
tem, such as adherence to Weber’s law (e.g., space: Brannon
et al., 2006; number: Izard et al., 2009; time: Provasi et al.,
2011) and similar developmental trajectories in infancy (see
Feigenson, 2007, for a review). Despite some data in favor of
this account, it still remains unclear exactly how andwhy these
quantities may be processed by a single system. Cantlon et al.
(2009) identifies the potential evolution of the common mag-
nitude system by stating that Bthe common algorithms and
neural processes underlying magnitude judgments may in-
stead derive from a shared evolutionary heritage.^ (p. 89).
Yet, even if a common magnitude system has evolved over
time, what benefit does this system offer? It is possible that a
single cognitive structure may have evolved for tracking quan-
tity to account for the fact that the different forms of quantita-
tive information is highly correlated in the natural world. By
using a single structure to process quantity, other cognitive
resources would be free for other processing purposes. Thus,
representing all quantities via a common magnitude system
might facilitate or increase the ease with which quantities are
processed in our everyday lives (see Gallistel, 1990).

Despite this, there are numerous examples in which the
basic premises of the common magnitude system are
undermined. Unique neural activations occur when process-
ing each quantity (number: Ansari, Lyons, Ivan Eimeren, &

Xu, 2006; Vuokko et al., 2013 time: Gooch et al., 2011;
Mattell & Meck, 2004; space: Dormal & Pesenti, 2009), dis-
tinct biases arise when making temporal and numerical judg-
ments in the presence of emotional content (Young & Cordes,
2013), and nonsymbolic temporal, spatial, and numerical
judgments predict unique aspects of formal mathematics
(e.g., Skagerlund & Träff, 2016). Although the evidence
makes it unlikely that a common magnitude system exists
throughout the entire life span, the current data are consistent
with the possibility that a common system may exist in infan-
cy, which quickly diverges into separable, specialized systems
across development. The common magnitude system may fa-
cilitate processing in young infants by freeing up other limited
cognitive resources. Moreover, neural systems specializing
over development is not uncommon (see de Haan et al.,
2002; Mills et al., 1997), and thus it is likely that quantity
representations follow a similar path.

Understanding the format of nonsymbolic quantity repre-
sentations is critical, as basic quantitative processing con-
sumes our everyday lives. Research on quantity representa-
tions will be especially important for assessing the suggested
variation to the commonmagnitude account.What is the plau-
sibility of a divergence model? At what point in development
does the system diverge? What prompts this divergence? In
assessing the developmental divergence model, research will
need to carefully control for inherent differences across quan-
tities, such as input modality and presentation format.
Regardless of the outcome, future work will shed light on
the representational formats of each quantity, allowing for
better evaluation of the systems used for quantity representa-
tion more broadly.

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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