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Abstract
During visual search, both top-down factors and bottom-up properties contribute to the guidance of visual attention, but selection
history can influence attention independent of bottom-up and top-down factors. For example, priming of pop-out (PoP) is the
finding that search for a singleton target is faster when the target and distractor features repeat than when those features trade roles
between trials. Studies have suggested that such priming (selection history) effects on pop-out search manifest either early, by
biasing the selection of the preceding target feature, or later in processing, by facilitating response and target retrieval processes.
The present study was designed to examine the influence of selection history on pop-out search by introducing a speed–accuracy
trade-off manipulation in a pop-out search task. Ratcliff diffusion modeling (RDM) was used to examine how selection history
influenced both attentional bias and response execution processes. The results support the hypothesis that selection history biases
attention toward the preceding target’s features on the current trial and also influences selection of the response to the target.
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Top-down factors related to task goals (Folk, Remington, &
Johnston, 1992; Wolfe, Butcher, Lee, & Hyle, 2003; Yantis,
1998, 2000) and bottom-up factors related to salience
(Bundesen, 1990; Müller, Heller, & Ziegler, 1995;
Theeuwes, 1992, 1994, 2010; Treisman & Gelade, 1980;
Wolfe, Cave, & Franzel, 1989; Yantis, 1993, 2000) modulate
attentional selection. Evidence also suggests that selection
history modulates selection during visual search (Awh,
Belopolsky, & Theeuwes, 2012). Value-driven capture studies
have shown that extrinsic value becomes linked to features,
facilitating selection of those features during search
(Anderson, Laurent, & Yantis, 2011a, 2011b). Contextual
cuing studies have revealed that repeating a search context,
such as the locations of targets and distractors, speeds search
(Chun & Jiang, 1998; Chun & Nakayama, 2000). And pop-
out search studies have demonstrated that search for a single-
ton target is facilitated when target and distractor features re-
peat between trials (e.g., Kristjánsson & Campana, 2010;
Lamy, Antebi, Aviani, & Carmel, 2008; Lamy, Carmel,

Egeth, & Leber, 2006; Lamy, Yashar, & Ruderman, 2010;
Maljkovic & Nakayama, 1994, 1996, 2000).

Maljkovic and Nakayama (1994) observed priming of pop-
out (PoP) by finding faster responses to a singleton target when
its distinguishing feature (color) on trial n – 1 repeated on trial n,
even though the color per se was irrelevant. Such effects reveal
that selection history biases attention toward information en-
countered during recent search episodes and, importantly, that
history influences visual search even when that history conflicts
with the stimulus salience or task goals (Awh et al., 2012).

Although PoP is well-established, several mechanisms
have been proposed for the effect. According to enhanced-
salience or preattentive accounts (Becker, 2008; Bichot &
Schall, 2002; Maljkovic & Nakayama, 1994, 1996, 2000),
encoding the target feature boosts the salience of that feature
on the following trial; hence, priming enhances the signal
strength. In support of this, Maljkovic and Nakayama found
that repetition of noncritical features, such as response fea-
tures, did not influence PoP. Additionally, Bichot and Schall
found that neural activation in areas of the frontal eye fields,
which are associated with activation within salience maps,
was greater when features repeated. And Becker found that
feature repetition sped saccades toward targets and away from
fixation, suggesting that selection history influenced early,
preattentive visual processes.
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Others have proposed that priming biases attention to select
features that are associated with recently encountered targets
(Amunts, Yashar, & Lamy, 2014; Lleras, Kawahara, Wan, &
Ariga, 2008; Tseng, Glaser, Caddigan, & Lleras, 2014; Yashar
& Lamy, 2010; Yashar, White, Fang, & Carrasco, 2017).
Thus, the features of a recent target are more likely to be
selected on the current trial, but their salience is unchanged.
In support of this, Yashar and Lamy (2010; Yashar et al.,
2017) found that PoP emerged during feature discrimination
tasks requiring focused attention on the target, but not during
localization tasks that did not require focused attention, even
though the target saliences in both tasks were equivalent.
Similarly, Lleras et al. (2008) found that the distractor preview
effect (DPE ; Ariga & Kawahara, 2004; Goolsby,
Grabowecky, & Suzuki, 2005; Goolsby & Suzuki, 2001)—
an intertrial effect in which responding is slower if the target
feature has been previewed in a target-absent display—was
absent in detection but not in discrimination tasks, presumably
because the latter required target selection.

Still others have suggested that selection history exerts an
influence during response selection after a target is selected
(Hillstrom, 2000; Huang, Holcombe, & Pashler, 2004; Huang
& Pashler, 2005; Thomson & Milliken, 2011, 2013). That is,
the visual system verifies whether a selected item is the target
by comparing it to recent targets, with retrieval being facilitat-
ed if features are repeated. In support of this, Huang et al.
(2004) found that repetition of target features interacted with
repetition of the response, suggesting that priming influenced
postselection response-execution processing.

Additionally, some have proposed that several mechanisms
may be influenced by feature priming (e.g., Ásgeirsson,
Kristjánsson, & Bundesen, 2015; Kristjánsson & Campana,
2010). For example, Lamy et al.’s (2010; Yashar, Makovski, &
Lamy, 2013) dual-stage account proposes that selection history
influences both selection and retrieval. To support this, Lamy
et al. (2010) examined the time course of the interaction between
response repetition and target feature repetition observed by
Huang et al. (2004), and they found that PoP interacted with
response repetition at long but not at short delays. This likely
occurred because at short delays there was insufficient time to
compare the current to the previous targets. Similarly,
Ásgeirsson and Kristjánsson (2011) found Huang et al.’s inter-
action between target repetition and response priming during
inefficient, but not during efficient, search, thus suggesting that
at least two stages are affected by visual repetition priming.

Recently, Tseng et al. (2014) examined the mechanisms re-
sponsible for PoP and DPE by applying Ratcliff diffusion
modeling (RDM; Ratcliff, 1978, 1981; Ratcliff & McKoon,
2008; Ratcliff & Rouder, 1998; Ratcliff, Van Zandt, &
McKoon, 1999) to saccadic response times (RTs) obtained in
a pop-out search task. Subjects made saccades toward a color
singleton andwithheld saccades if no singleton appeared. Tseng
et al. found that only the bias parameter (z in RDM and B in

Tseng et al., 2014) predicted PoP and the DPE. This parameter
reflects a pretrial (presearch) tendency to make saccades toward
the previous target color on the current trial; hence, Tseng et al.
showed that priming biased attention toward the selection of
features associated with recently encountered targets.

RDM assumes that evidence accumulates over time until a
response threshold is reached, at which time a decision and a
response are made to categorize a stimulus; diffusion models
can be adapted to different situations to make predictions
about what processes operate during decisions (Voss,
Rothermund, Gast, & Wentura, 2013; Voss, Rothermund, &
Voss, 2004; Voss, Voss, & Lerche, 2015). Figure 1 illustrates
the RDM: A decision process begins at z and continues until
the lower boundary (0) or the upper boundary (a) is reached, at
which point a response is made and the decision process ter-
minates. The process is noisy, due tomomentary influences on
the diffusion process.

RDM is defined by several parameters, which relate to dif-
ferent processes. The upper threshold (a) is the distance be-
tween response thresholds and corresponds to liberal–conserva-
tive response criteria. (In my implementation of RDM, the up-
per boundary is associated with correct responses and the lower
boundary with errors.) Starting point (z) or relative starting
point (zr; Voss et al., 2015) is the pretrial bias toward a response.
In the present study, this was bias toward selecting a correct or
an incorrect target and response. If responding is unbiased, zr =
a/2 = .5. Any difference in zr between conditions reflects a
pretrial influence on decision-making. Drift rate (v) is the aver-
age rate of evidence accumulation toward a boundary. In the
present study, this was evidence accumulation toward a correct
response and reflected the efficiency of target processing or
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Fig. 1 The Ratcliff diffusion model. The evidence accumulation process
starts in each trial from a starting point z within interval sz. Evidence
accumulates in a noisy manner, with a mean drift rate v and intertrial
variation sv. The evidence accumulates until one of two decision
thresholds (0, a) is reached, which are separated by the boundary
separation a. The response made (correct or error, in this example) is
based on whichever boundary is reached first. A nondecision time t0
with intertrial variation st0 is added to the RT. The predicted RT
distributions are depicted outside the thresholds
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attentional engagement (Voss et al., 2013). The nondecision
constant (t0) is the duration of nondecision processes, such as
response execution and encoding. RDM also allows one to
model intertrial variability in starting point (sz), drift rate (sv),
and nondecision processes (st0). In their adaptation of RDM,
Voss et al. (2015) included a difference in nondecision constant
(d), which is related to response preparation or inhibition.

In the present study, I examined the processes underlying
PoP by applying RDM to data obtained in a three-item pop-
out search task that required a binary response to the targets
(which side of a target was missing). This task allowed for
correct and incorrect responses, which were mapped onto the
upper and lower thresholds, respectively, and allowed for an
examination of whether priming history influenced response
execution in addition to attentional selection. Tseng et al.
(2014) applied RDM analyses to data obtained in a task that
required saccades to targets but no manual response; hence,
theirs was more like a detection task.

To examine priming’s influences on selection and
responding, the study used a speed–accuracy manipulation. In
one block, subjects were instructed to favor speed over accuracy,
and in another block they were told to favor slow, accurate
responding over speed. This manipulation should increase the
boundary separation (a) for correct versus incorrect responses
under accuracy instructions, due to a more conservative criteri-
on, and should have different influences on the RDM parame-
ters. Following Tseng et al. (2014), if selection history biased
attentional selection (zr), accuracy instructions should promote
correct selection and responding to the target, and should result
in a larger difference (PoP effect) in zr [Δzr = zr(switch) – z-
r(repeat)] for accuracy instructions [Δzr(accuracy) >
Δzr(speed)]. Second, speed instructions should encourage faster
attentional engagement and accumulation of evidence when
features repeat than when features switch. This should result in
a larger PoP effect (Δv) for speed instructions [Δv(accuracy) >
Δv(speed)]. Third, these countervailing effects might result in
no observable influence of instructions on PoP for RTs or accu-
racy, though this is speculation. Finally, if selection history in-
fluences response execution, differences in the nondecision pa-
rameters (t0 and d) should be found between the speed and
accuracy conditions. In particular, because accuracy instructions
promote careful responding, larger differences in both t0 and d
should be observed in the accuracy condition [Δt0 (accuracy) >
Δt0 (speed) andΔd (accuracy) >Δd (speed)].

Method

Subjects

A power analysis indicated that nine subjects were needed to
detect an effect of Cohen’s f = 0.25 at a power of .80 (α = .05).
A total of n = 14 University of Scranton undergraduates

participated (nine female, five male; two left-handed). The
subjects ranged from 18 to 20 years old (M = 18.58 years,
SD = 0.90) and reported normal or corrected-to-normal vision.
All subjects passed an Ishihra colorblindness test. (Three of
the subjects were subsequently removed from the sample; see
the Results below.)

Apparatus

The experiment was programmed and presented using E-
Prime software (Version 2.0.10242; Psychology Software
Tools, 2008) on a Dell 755 computer with a Pentium Core 2
Duo processor with 1.96 GB RAM (2.33 GHz). Subjects sat
approximately 60 cm from a Dell E178Fpv monitor with a
resolution of 1,024 × 768 running at 60 Hz. A five-button
response box was used for responding.

Stimuli

The search displays contained three diamonds (1.1° × 1.1°)
appearing on a black background (0.16 cd/m2; RGB: 0, 0, 0).
Each diamond was missing its left or right corner (0.14°), but
the missing corner of each diamond was chosen randomly in
order not to identify the target. One diamond was a color
singleton target, and the other two were homogeneously col-
ored nontargets, with the colors of the target and two nontar-
gets chosen randomly on each trial to be either red (20.44 cd/
m2; RGB: 255, 0, 0) or green (20.62 cd/m2; RGB: 10, 177,
31). A white cross (25.77 cd/m2; RGB: 255, 255, 255) ap-
peared throughout each trial in order to maintain fixation.
Each diamond appeared at a different one of 12 locations on
the circumference of an imaginary ellipse (10° wide × 8° high)
centered on the screen (distances between the objects were not
equated).

Procedures

Subjects were informed that they would see three diamonds,
one of which was a different color, and their task was to
indicate whether its left or the right corner of one was missing.
Subjects pressed the left key on the response box for the left
corner and the right key for the right corner. Subjects were
informed that the colors of the diamonds and the missing
corner were both chosen randomly, so the target color and
the missing corner were uncorrelated.

Subjects completed the task in two conditions: (1) In a
speed-instruction condition, subjects were asked to respond
quickly and not to worry about errors. (2) In an accuracy-
instruction condition, subjects were encouraged to be as ac-
curate as possible, even if that meant responding more slowly.
The speed and accuracy conditions were blocked and
counterbalanced for order across subjects. In both conditions
each subject completed a practice block of 32 trials, followed
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by eight blocks of 96 trials each; all blocks were separated by
self-paced breaks.

Each trial began with a fixation display of a white cross for
500 ms. Next, the search display was presented for 2,000 ms
or until the subject had responded. The next trial began after a
100-ms delay. If a subject responded incorrectly or took longer
than 2,000 ms to respond, a 500-Hz tone was played during
the delay.

Results

The data from two subjects were excluded due to error rates
above 30%. One additional subject was excluded due to mak-
ing no errors in at least one condition, resulting in poor model
fit. Analyses were conducted on the remaining n = 11 subjects.
For the RTanalyses, only trials with correct responses on both
the current and preceding trials were used, which resulted in
the removal of 11.4% of trials. For the error analyses, only
trials with a correct response on the preceding trial were used.
The data in the speed and accuracy conditions were sorted on
the basis of the target and nontarget colors in trial n – 1 and
trial n, to create a repeat condition (colors repeated) and a
switch condition (colors switched). Each subject’s mean RT
(MRT) and percentage of errors were calculated for each con-
dition. TheMRTs and percent errors averaged over all subjects
appear in Table 1.

Response times

A 2 (Instructions: speed vs. accuracy) × 2 (Transition: repeat vs.
switch) repeated measures analysis of variance (ANOVA) on
MRT (Fig. 2) revealed a main effect of instructions [F(1, 10) =
14.40, MSE = 15,452.07, p = .004, Cohen’s f = 1.20], due to
faster responding in the speed condition. The effect of transition
was also significant [F(1, 10) = 48.15, MSE = 5,323.94, p <

.001, f = 2.19], because of a PoP effect of 153 ms [118, 187].
The interaction was nearly significant [F(1, 10) = 3.64,MSE =
692.87, p = .085, f = 0.60], with the PoP effect being larger in
the accuracy condition [F(1, 10) = 43.11, p < .001, f= 2.07] than
in the speed condition [F(1, 10) = 42.90, p < .001, f = 2.07].

Errors

A 2 (Instructions) × 2 (Transition) repeated measures ANOVA
on errors revealed a main effect of instructions [F(1, 10) =
28.18,MSE = 0.0018, p < .001, f = 1.68], due to fewer errors
in the accuracy condition. The effect of transition was again
significant [F(1, 10) = 16.96, MSE = 0.0004, p = .002, f =
1.30], showing a PoP effect of 2.40%. The interaction was not
significant [F(1, 10) = 1.67,MSE = 0.0003, p = .225, f = 0.54],
though the PoP effect was larger in the speed condition.

Diffusion model analysis

Correct responses were assigned to the upper boundary and
errors to the lower boundary of the model (Fig. 1). The RT
distributions for correct and error responses were entered into
a diffusion-model analysis using fast-dm (Voss & Voss, 2007;
Voss et al., 2015), with parameters being estimated separately
for each subject. Drift rate (v), nondecision constant (t0), re-
sponse execution bias (d), and starting point (zr) were estimat-
ed in each Instruction × Transition condition. Other parame-
ters (a, sv, szr, st0) were estimated separately for the speed and
accuracy conditions but were held constant across the repeat
and switch conditions. Chi-square optimization was used for
the estimation (criterion = 4). The computing time was
8,616.68 s (M = 783.33, SD = 664.87). Table 2 provides the
parameter estimates averaged over the 11 subjects.

The parameters held constant across transitions (a, sv, szr,
and st0) were compared between the accuracy and speed

Table 1 Mean RTs, SDs, and percent errors, as a function of switch and
repeat condition and speed and accuracy condition

Condition Between-Trial
Transition

MRT SD %Error

Speed Switch 758 [740, 776] 130 11.29%

Repeat 620 [603, 638] 72 8.22%

Overall 689 [630, 748] 100 9.80%

PoP 138 [120, 155] 3.10%

Accuracy Switch 915 [898, 933] 170 3.81%

Repeat 747 [730, 765] 104 2.01%

Overall 831 [772, 890] 134 2.90%

PoP 168 [150, 185] 1.80%

Values in brackets are the 95% confidence limits based on the within-
subjects error term (Eq. 2; Hollands & Jarmasz, 2010)
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Fig. 2 Mean RTs in the Instruction × Transition design. Error bars show
the 95% confidence limits based on the within-subjects error term (Eq. 2;
Hollands & Jarmasz, 2010)
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conditions. As predicted, a difference in boundary separation
(a) was apparent between the speed and accuracy conditions
[t(10) = 6.23, SE = 0.098, p < .001 (two tailed), d = 1.88],
suggesting that the subjects were more conservative when
accuracy was stressed. No other differences were statistically
significant [ts < 1.42, ps > .187].

The parameters allowed to vary by instruction and transi-
tion (v, t0, d, and zr) were entered into separate 2 (Instructions)
× 2 (Transition) repeated measures ANOVAs, the results of
which are reported in Table 3. For starting point (zr), the effect
of instructions was significant and, importantly, the interaction
was significant, resulting from a positive effect (Δzr = .122) in
the accuracy condition [F(1, 10) = 13.23, p = .005, f = 1.15], as
compared to a negative effect (Δzr = – .137) in the speed
condition [F(1, 10) = 5.36, p = .043, f = 0.73]. For drift rate
(v), the effect of transition was significant, due to greater drift
(faster evidence accumulation) for repeat (M = 3.018) than for
switch (M = 2.160) trials. Importantly, the interaction was also
significant, shown by a significant effect (Δv = – 1.45) in the
speed condition [F(1, 10) = 30.84, p < .001, f = 1.76], as
compared to a nonsignificant effect (Δv = – 0.27) in the ac-
curacy condition [F(1, 10) = 1.02, p = .335, f = 0.32]. For
nondecision time (t0), the effect of transition was significant,

with a smaller nondecision time for repeat trials (M = 0.406)
than for switch trials (M = 0.477). This nearly interacted with
instructions, with a larger difference in the accuracy condition
[Δt0 = 0.098; F(1, 10) = 9.54, p = .011, f = 0.98] than in the
speed condition [Δt0 = 0.045; F(1, 10) = 70.25, p < .001, f =
2.64]. For response execution bias (d), the interaction was
significant, because of a negative PoP effect (Δd = – .093)
for speed instructions [F(1, 10) = 15.53, p = .003, f = 1.24] but
a positive effect (Δd = .158) for accuracy instructions [F(1,
10) = 4.77, p = .054, f = 0.69].

Each mean zr was compared to .5 (unbiased decisions). For
repeat trials, the starting point was significantly less than .5 for
speed instructions [t(10) = – 5.39, SE = 0.031, p < .001 (two-
tails), d = 1.62] and nonsignificantly greater than .5 for accu-
racy instructions [t(10) = 1.43, SE = 0.060, p = .183 (two-tails),
d = 0.43]. For switch trials, the starting point was nonsignifi-
cantly less than .5 for speed instructions [t(10) = – 1.52, SE =
0.022, p = .159 (two-tails), d = 0.46] and for accuracy instruc-
tions [t(10) = – 1.41, SE = 0.022, p = .188 (two-tails), d = 0.42].

Model fit

Fits were examined graphically. Predicted RT and error distri-
butions were generated for each subject and each condition
using the construct-samples routine in fast-dm (Voss & Voss,
2007; Voss et al., 2015). Each subject’s model parameters
were used to generate separate data sets of N = 1,000 trials.
A total of 11 (Subjects) × 2 (Instructions) × 2 (Transition) data
sets were generated, for a total of 44,000 trials.

First, the observed (empirical) proportions of correct re-
sponses and MRTs in each of the four conditions were com-
pared against the predicted proportions of correct responses
and MRTs (Voss, Rothermund, & Brandtstädter, 2008; Voss
et al., 2013; Voss et al., 2004; Voss et al., 2015). Figure 3 plots
the predicted values against the empirical values for all sub-
jects in all conditions. Points lie close to the line of perfect
congruency, suggesting good fits of the diffusion model and
no bias in the predicted data.

Second, quantile–probability (Q–P) plots were constructed
by plotting the .1, .3, .5, .7, and .9 RT quantiles for the empir-
ical and predicted distributions against the proportions of

Table 2 Means and standard deviations of estimates for the diffusion model parameters

Instruction Transition a zr v t0 d szr sv st0

M SD M SD M SD M SD M SD M SD M SD M SD

Speed Switch 1.28 0.32 .467 .071 1.76 0.50 0.452 0.036 – .040 .110 .288 .134 1.19 0.68 0.193 0.083

Repeat – – .330 .104 3.21 1.10 0.407 0.040 .053 .103 – – – – – –

Accuracy Switch 1.89 0.32 .469 .072 2.56 0.59 0.502 0.098 .004 .123 .266 .136 1.09 0.54 0.129 0.090

Repeat – – .591 .212 2.82 1.18 0.404 0.093 – .154 .250 – – – – – –

If a parameter was fixed across conditions, the value is presented only in the top row

Table 3 Results of repeated measures ANOVAs on starting point (zr),
drift rate (v), nondecision time (t0), and response execution biases (d)

Parameter Effect F(1, 10) MSE p f

zr Instructions 8.22 0.023 .017 0.91

Transition 0.08 0.007 .784 0.09

Instructions × Transition 11.65 0.016 .007 1.08

v Instructions 0.36 1.269 .562 0.19

Transition 26.34 0.307 <.001 1.62

Instructions × Transition 8.29 0.458 .016 0.91

t0 Instructions 1.62 0.004 .232 0.40

Transition 17.62 0.003 .002 1.33

Instructions × Transition 3.09 0.002 .109 0.56

d Instructions 4.54 0.016 .059 0.67

Transition 0.77 0.015 .400 0.28

Instructions × Transition 10.12 0.017 .010 1.01
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correct and incorrect responses (Voss et al., 2015; see Ratcliff,
2002; Ratcliff & Smith, 2010, for explanations of Q–P plots).
Figure 4 shows the overall Q–P plot for the experiment, with
the empirical quantiles denoted by the digits 1–5 and the pre-
dicted quantiles from the diffusion model indicated by lines.

As can be seen in the plot, the accuracy of the diffusion model
was quite high, with close correspondence between the em-
pirical and predicted quantiles. In short, on the basis of graph-
ical inspection of the empirical and predicted statistics, the
diffusion model fit the data quite well.

Fig. 3 Individual model fits. The figure displays the relationship between
the empirical statistics and the predicted statistics on the basis of fits of the
diffusion model. Each symbol represents the mean of a single subject in a

single experimental condition. The top panel shows mean RTs, and
bottom panel shows proportions correct
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Discussion

This study used a speed–accuracy manipulation in a pop-out
search task along with diffusion modeling to examine how se-
lection history biased attentional selection and response
execution. Accounts of intertrial priming have proposed that
selection history increases feature salience, biases selection, or
facilitates response execution, and some have proposed thatmore
than one process is affected by priming. Previously, Tseng et al.
(2014) used RDM and found that selection history biased selec-
tion of the items most likely to be the target on the current trial.
The present study required manual responses to targets—in line
with other PoP studies—and using RDM examined how selec-
tion history biased response execution in addition to attentional
selection. The results supported the predictions made earlier.

First, Δzr was larger following accuracy instructions, sug-
gesting that a preference for accurate responding increased prim-
ing’s influence on attentional selection of the likely target—that
is, increased the bias to select the most recent target’s feature.
Second, Δv was greater following speed instructions, suggest-
ing that a preference for fast responding promoted efficient pro-
cessing of recent target features—whether or not those features
distinguished the target on the current trial. Finally, bothΔt0 and
Δdwere larger for accuracy instructions, suggesting that a pref-
erence for accuracy increased the reliance on previous encoun-
ters with targets while executing the current response.

These results are consistent with selection history affecting at
least two processes: (1) attentional selection of the most recent
target’s features, and (2) postselection responding. That selection
history biased attention toward the target feature can be seen in
the PoP effects on zr and v and the influence of the speed–
accuracy manipulation on Δzr and Δv, because zr and v reflect

bias to select a target and the efficiency of target processing,
respectively. Section history’s effect on response execution can
be seen in the PoP effects and speed–accuracy interactions for t0
and d. Because t0 and d are assumed to reflect response execu-
tion and bias, respectively, the priming effects on t0 and d indi-
cate that selection history influenced postselection decisions.

These countervailing effects resulted in no difference in
PoP for MRTs between the speed and accuracy instructions,
which shows a benefit of diffusion modeling and the analysis
of full RT distributions (e.g., ex-Gaussian; Kristjánsson &
Jóhannesson, 2014). Analyses of MRTs alone might obscure
underlying processes, so by utilizing modeling, the contribu-
tions of specific processes can be uncovered. Indeed, model-
ing may begin to uncover the relationship between bottom-up,
top-down, and selection history processes on visual search
and selective attention. Although the RDM analyses used in
this study suggest that priming influenced both attentional
selection and response execution, the results do not rule out
the possibility of selection history enhancing the salience of
the preceding target color (preattentive account). Neither the
experimental manipulations nor the RDM analysis were set up
to examine this additional mechanism that may underlie PoP.

In short, the results add to those of studies supporting the
position that at least two mechanisms are affected by selection
history (e.g., Ásgeirsson et al., 2015; Kristjánsson, 2009;
Kristjánsson & Campana, 2010; Kristjánsson, Ingvarsdóttir
& Teitsdóttir, 2008; Lamy et al., 2010; Yashar et al., 2013).
Importantly, the present study is one of only two that have
used diffusion modeling to examine selection history’s influ-
ence on search. The results replicated and extended those of
Tseng et al. (2014) by showing that selection history biased
postperceptual response processes in addition to attentional
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selection. Indeed, the results support those obtained by
Ásgeirsson et al. (2015), who modeled search performance
on the basis of the assumptions of Bundesen’s (1990) theory
of visual attention, and concluded that priming influences at
least two mechanisms. Thus, during visual search, selection
history biases attention to select the likely target, while also
biasing retrieval of the most probable response.
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