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Abstract
Forensic handwriting examiners currently testify to the origin of questioned handwriting for legal purposes. However,
forensic scientists are increasingly being encouraged to assign probabilities to their observations in the form of a likelihood
ratio. This study is the first to examine whether handwriting experts are able to estimate the frequency of US handwriting
features more accurately than novices. The results indicate that the absolute error for experts was lower than novices, but the
size of the effect is modest, and the overall error rate even for experts is large enough as to raise questions about whether
their estimates can be sufficiently trustworthy for presentation in courts. When errors are separated into effects caused by
miscalibration and those caused by imprecision, we find systematic differences between individuals. Finally, we consider
several ways of aggregating predictions from multiple experts, suggesting that quite substantial improvements in expert
predictions are possible when a suitable aggregation method is used.

Keywords Judgment and decision-making · Bayesian modeling · Expertise · Wisdom of crowds

Introduction

What makes someone an expert? On the one hand,
legal scholarship and rules of evidence often cite the
importance of knowledge, skill, experience, training, or
education in a particular discipline (for example in Rule
702 of the U.S. Federal Rules of Evidence, 2016 and Section
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79 of the Australian Evidence Act (Cth), 1995; see Martire
and Edmond (2017)). From a scientific perspective, both
popular accounts (Gladwell, 2008; Ericsson & Pool, 2016)
and scholarly literature on the development of expertise
place an emphasis on the critical role of deliberate practice
(Ericsson et al., 1993). Nevertheless, genuine expertise
is more than mere experience: it should also produce
expert performance, characterized as “consistently superior
performance on a specified set of representative tasks for
a domain” (Ericsson & Lehmann, 1996, p. 277). Yet in
many situations “performance” is not at all straightforward
to define, as there are very often no agreed upon ground
truths or gold standards that can be used as the basis for
assessment (Weiss et al., 2006). Indeed, this is the situation
for many forensic science disciplines (Taroni et al., 2001).

An alternative approach suggests that expertise can be
characterized in terms of the ability to make fine-grained
discriminations in a consistent manner, as captured by
measures such as the Cochran–Weiss–Shanteau (CWS)
index (Weiss & Shanteau, 2003). This approach is appealing
insofar as it can be applied even when objective gold
standards are not available, but has one substantial
drawback: it characterizes expertise in terms of the
precision (i.e., discriminability and consistency) of expert
performance rather than the accuracy (i.e., correctness).
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One might hope that precision and accuracy are related,
but in real life there are no guarantees that this is
so. Whether one is considering the widespread belief
in phrenology in the 19th century (Faigman, 2007),
disproportionate trust in unreliable (Saks & Koehler, 2005)
or unvalidated forensic methods (President’s Council of
Advisors on Science and Technology, 2016), beliefs in
conspiracy theories (Goertzel, 1994) or “groupthink” that
plagues decision-making processes (Janis, 1982), it is clear
that communities of people can come to considerable
agreement about incorrect claims. A phrenologist might
indeed produce very precise judgments, making fine-
grained discriminations about a person’s character in a
consistent way based on their physiognomy, but that does
not mean the judgments of phrenologists are sufficiently
accurate to be considered expert in a scientific sense. From
a practical standpoint, therefore, the distinction between
the precision of an individual and the accuracy of their
judgments is of critical importance.

In this paper, we explore this question in a real-
world domain, using forensic handwriting expertise as
our testing ground. The domain is one of considerable
practical importance: forensic handwriting examinations
can be used to establish the origin of a questioned sample
of handwriting for legal purposes (Dyer et al., 2006), and
these judgments can be accorded considerable weight at
trial. The task is heavily reliant on subjective judgment, with
human examiners completing these assessments via visual
comparison of handwriting samples (Dror & Cole, 2010).
Traditionally handwriting and other feature-comparison
examiners (e.g., fingerprint) have been permitted to make
categorical judgments (‘match’ or ‘no-match’) without
providing information about the uncertainty associated with
their conclusion. Past research has suggested that forensic
handwriting examiners are remarkably accurate in their
ability to make these types of authorship determinations
(e.g., Sita, Found, & Rogers, 2002; Found & Rogers, 2008;
Kam, Gummadidala, Fielding, & Conn, 2001).

However, in the United States, the President’s Council of
Advisors on Science and Technology 2016 and the National
Academies of Science 2009 have both strongly criticized the
traditional approach—arguing that unqualified categorical
opinions are scientifically unsupportable. Consistent with
these criticisms, many forensic scientists now endorse
the use of likelihood ratios—the relative probability of
the observations under different hypotheses as to their
provenance—as the appropriate method for providing
expert testimony (Aitken et al., 2011). As part of adopting
this approach, handwriting examiners may be called upon to
observe handwriting features and then assign probabilities
to feature occurrence if, for example, two handwriting
samples originated from the same versus different writers
(Dror, 2016). How plausible is it that human handwriting

experts are capable of producing genuinely superior
performance than novices on this task?

On the one hand, there is cause for optimism: research
examining visual statistical learning reveals that people can
automatically and unconsciously learn statistical relation-
ships from visual arrays given relatively limited exposure
(Fiser & Aslin, 2001, 2002; Turk-Browne, Jungé, & Scholl,
2005). Further, experts have previously been found to have
enhanced domain-specific statistical learning in compari-
son to novices (Schön & François, 2011). Indeed, it has
sometimes been argued that the relevant probabilities (e.g.,
of seeing a particular handwriting feature given that two
writing samples originated from the same versus differ-
ent writers) can be estimated by the examiner based on
their subjective experiences (Biedermann et al., 2013). On
the other hand, the applied problem is essentially a prob-
ability judgment task, and there is considerable evidence
that people tend not to be well calibrated at such tasks
(e.g., Lichtenstein et al. (1982), but see Murphy and Daan
(1984) in contexts where feedback is fast and accurate).
Accordingly, there is some uncertainty as to whether foren-
sic examiners will possess the relevant expertise in a fashion
that would justify the use of such judgments in a legal
context.

Our goal in this paper is to present the first empirical
data examining this question, and in doing so, highlight
the importance of distinguishing precision from accuracy
in the assessment of expert performance. Our approach
relies on a recently collected database of handwriting
features (Johnson et al., 2016). This database was funded
by the US National Institute of Justice (NIJ) to statistically
estimate the frequency of handwriting features in a sample
representative of the US adult population. We were able to
access the estimates before they became publicly available.
This allowed us to rely on a measure of “ground truth”
that was not yet available to experts in the field. Using
this database we were able to compare the performance of
experts and novices, as well as people with high exposure
to the relevant stimulus domain (US participants) and those
whose experience pertains to a potentially different set of
environmental probabilities (non-US participants).

Methods

Participants

One-hundred and fifty participants were recruited from
forensic laboratories, mailing lists, and universities via
email invitation. Participants not completing the experiment
or not providing complete professional practice information
in order for their expertise to be determined were excluded
(n = 52). Two handwriting specialists who had not
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Fig. 1 Stimuli and results. On each trial, participants were presented
an image and verbal description of a handwriting feature exemplar.
They were asked to estimate the percentage of the US population of
adult writers who had the feature in their handwriting. The handwriting
features varied according to case (upper or lower), style (cursive or
printed) and occurrence categories (1% - top row, 25%, 50%, 75%
and 99% - bottom row). The range of occurrence probabilities in
each category is indicated on the left figure axis. The graphs on
the right show experts’ and novices’ mean absolute error for each
occurrence category by country (US or non-US). Error bars represent
95% within-cell confidence intervals

produced any expert reports or statements and one who was
involved in the NIJ project were also excluded. The final
sample comprised eighteen court-practicing handwriting
specialists (henceforth ‘experts’; M = 149.9 investigative
and court reports from 2010-2014, range = 9–1285; 8 US-
based, 10 not) and 77 participants reporting no training,
study or experience in handwriting analysis (36 US-
based, 41 not). The participants that were not US-based
were located in Australia (46.3%), Canada (3.2%), the
Netherlands (2.1%), South Africa (1.1%), or Germany
(1.1%). A $100 iTunes voucher was offered for the most
accurate performance. Materials and data are available at
https://osf.io/n2g4v/.

Stimuli

Participants were presented exemplars of handwriting
features selected from the NIJ database (Johnson et al.,
2016). Sixty feature exemplars (30 cursive and 30 printed
handwritten forms) were selected, 12 with probabilities
closest to each of five frequencies of occurrence: 1, 25, 50, 75,
and 99%. The range of probabilities within each category
was determined by the available exemplars (Fig. 1).

Procedure

Recruitment was necessarily time-limited and completed
during the two weeks prior to the public release of the
NIJ estimates. The task itself was straightforward: on every
trial participants were presented a feature and asked “what
percentage of the US population of adult writers have this
feature in their handwriting?” using a number from 0 (never
present) to 100 (present for all). On each trial, participants
were shown images of handwritten letters and directed to
the feature by text descriptions below (see Fig. 2). After
completing all 60 trials, participants provided demographic
and professional information.

Results

The midpoint of the NIJ estimate range was subtracted from
participant estimates to calculate absolute error for each
trial. The results, averaged within-participant, are shown
in Fig. 3. To illustrate how these results depend on the
handwriting feature itself, Fig. 1 depicts the average error
for the experts and novices, broken down by country of
origin (US and non-US) and by rarity of feature (averaged
within category).

Overall accuracy

From an applied perspective, the critical question to ask is
whether the expert judges are more accurate than novices,
and our initial (planned) analyses consider this issue first.
To that end, we adopted a Bayesian linear mixed model
approach, using the BayesFactor package in R (Morey &
Rouder, 2015), with the absolute magnitude of the error on
every trial used as the dependent variable, and incorporating
a random effect term to capture variability across the 95
participants and another to capture variability across the 60
features.

When analyzed in this fashion, there is strong evidence
(Bayes factor 39:1 against the baseline model including
only the random effects) that the expert judges were
more accurate—average error 21% on any given trial—
than the novices, who produced errors of 26% on average.

https://osf.io/n2g4v/
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Printed lower case ‘z’ is two strokes

What percentage of the US adult population of adult writers have this feature in their handwriting?

Please type a number between 0 and 100 in the box below.

0% 100%50%

Feature is never 
present among 

US adult writers 

Feature is present 

for half of

US adult writers 

Feature is present 

for all of

US adult writers 

Fig. 2 Screenshot illustrating the task presented to participants

However, the best performing model was the ‘full’ model
that considered all four groups (US experts, US novices,
non-US experts, non-US novices) separately, with a Bayes
factor of 300:1 against the baseline and 3.7:1 against a
model that includes both main effects and no interaction.
Consistent with this, the data show a clear ordering: the most
accurate group were the US experts (20% error), followed
by the non-US experts (22% error). The novices were
both somewhat worse, but curiously the non-US novices
performed better (24% error) than theUS novices (28% error).

15 20 25 30 35 40 45 50
Average Absolute Error

US Expert
Non−US Expert
US Novice
Non−US Novice

Fig. 3 Histogram showing the overall accuracy of every participant,
defined as the average absolute error across the 60 features. Each
marker represents a single participant, with the color indicating
expertise level (black = expert, white = novice) and shape indicating
country (circle = US, triangle = non-US)

Estimating individual expert knowledge

While it is reassuring that handwriting experts perform
better on the judgment task than novices, the specific pattern
of results—in which an interaction between expertise and
country is observed—requires some deeper explanation.
How does it transpire that experts from the US outperformed
experts from outside the US, whereas US novices appeared
to perform worse than non-US novices? Do forensic
handwriting examiners possess superior knowledge of the
underlying probabilities, are they more precise in how they
report their knowledge, or both?

To investigate these questions, we adopt a hierarchical
Bayesian approach (e.g., Merkle, 2010; Lee & Danileiko,
2014) that seeks to distinguish between different kinds of
errors in individual responses. As is often noted in statistics
(e.g., Pearson, 1902; Cochran, 1968), the error associated
with any measurement can be decomposed into different
sources. For instance, researchers interested in probability
judgment often estimate a “calibration curve” (e.g., Budescu
& Johnson, 2011) that captures the tendency for judgments
to reflect systematic bias, as opposed to the idiosyncratic
variance associated with imprecise judgments. Inspired by
recent work on expert aggregation models (e.g., Merkle,
2010; Lee & Danileiko, 2014), we explore these questions
with the help of a hierarchical Bayesian analysis. If xk

denotes the true probability of handwriting feature k, we
adopt a two-parameter version of the calibration function
used by Lee and Danileiko (2014),

ψik = δi log
xk

1 − xk

+ log
ci

1 − ci

μik = exp(ψik)

1 + exp(ψik)
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Fig. 4 Illustration of how responses vary across individuals. Each
panel represents data from a single person, with their overall error
rate listed in the top left. Dots depict the response given by each per-
son (y-axis) as a function of the ground truth probability for each
item (x-axis). Solid lines depict the estimated calibration function
that relates true probability to subjective probability for each person
(dashed lines show perfect calibration), and the shaded areas depict
75% prediction intervals for each person. Some participants display

good calibration (#21, #3), illustrated by the fact that the solid line lies
close to the dashed line, while others do not (#2, #67, #13, #81). Some
participants are relatively precise (#2, #21, #67) and have narrower
prediction intervals than their less precise counterparts (#3, #13, #81).
Finally, miscalibration can take different forms, with some participants
responding in a way that is consistently too high (#2, #13) or too low
(#81), and others responding in the middle for almost all items (#67)

In this expression, μik denotes the subjective probability
that person i assigns to feature k, and it depends on two
parameters: the calibration δi describes the extent to which
all subjective probabilities for the i-th person are biased
towards some criterion value, specified by the parameter
ci . This calibration curve describes the systematic error
associated with the i-th participant. However, to capture
the idea that responses yik also reflect unsystematic noise,
we assume that these responses are drawn from normal
distribution with mean μik , a standard deviation σi that
is inversely related to the precision 1/

√
τi of the i-th

participant, truncated to lie in the range [0,1]:

yik ∼ TruncNorm(μik, σ
2
i , 0, 1)

For any given participant, the key quantities are therefore the
parameters that describe their calibration function (δi , ci)
and the precision parameter τi that characterizes the amount
of noise in their responses. The model was implemented in

JAGS (Plummer, 2003) and incorporated hierarchical priors
over δ, c and τ : see Appendix for detail.

The critical characteristic of this model is that it allows
us to distinguish systematic miscalibration from imprecise
responding. To illustrate the importance of this distinction
empirically, Fig. 4 displays the raw responses, average
absolute error, estimated calibration curves and degree of
response precision for six participants. As is clear from
inspection, both sources of error matter: participants #3
and #21 are both extremely well calibrated, but they differ
considerably in their precision. Participant #3 does not
make fine-grained distinctions in their responding, and as a
consequence they sometimes make very large errors (e.g.,
rating a feature that has probability .01 as having probability
1), whereas the responses from participant #21 tend to
cluster much more tightly around the true value. Similarly,
while the responses of participants #2 and #67 are almost
as precise as those given by participant #21, neither one
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Fig. 5 Estimated calibration curves for all 94 participants, plotted separately by expertise status and geographical location. The shading of each
curve represents the estimated precision, with darker curves corresponding to more precise responders

is particularly well calibrated and their responses are not
strongly related to the true probabilities.

Moreover, these plots highlight the manner in which
the overall error rate is not always the best guide as to
expertise. On the one hand, participant #21 has the lowest
error rate due to the fact that they have good calibration
and high precision; and conversely, participant #81 has very
high error due to their poor calibration and low precision.
On the other hand, the imprecise responding of participant
#3 leads to a very high error rate despite being very well
calibrated. Arguably the responses of participant #3 reflect
the ground truth better than participant #67—who always
provides responses in the middle of the range—even though
the latter has a much lower error.

To illustrate this point more generally, Fig. 5 plots the
estimated calibration curve for all 94 participants, grouped
by expertise and geographical location, with the shading
of each curve representing the estimated precision of that
participant.1 Overall, it is clear that the expert respondents

1In this figure, the values on x-axis are the ground truth values taken
from Johnson et al. (2016). Later in the paper we introduce a version of
the model that treats the feature probabilities as unknown parameters:
the calibration curves produced by that model are qualitatively the
same as the curves plotted here.

are better calibrated than novices, with the curves on the left
of the figure tending to sit closer to the dotted line than those
on the right. Formally, we assign each person a calibration
score corresponding to the sum squared deviation (across all
60 items) between the estimated subjective probability μik

and the true value xk , and construct 95% credible intervals
for the average difference in calibration scores between the
members of different groups.2 The expert respondents were
indeed better calibrated than novices, for both the US-based
participants (CI95 = [-5.4,-3.8]) and non-US participants
(CI95 = [-1.5, -.007], though for the non-US participants
the effect is modest. Similarly, we observe an difference
in precision between experts and novices. Using a similar
precision score that computes the sum squared deviation
between the estimated subjective probability μik and the

2As a subtle point, note that these intervals are constructed by treating
the set of participants in each group as a fixed effect rather than a
random effect, and as such we report the credible interval for the
mean calibration difference for these specific participants, rather than
attempting to draw inferences about a larger hypothetical population.
This is a deliberate choice insofar as we are uncertain what larger
population one ought to generalize to in this instance—it should be
noted however that the credible intervals reported here necessarily
correspond to a modest claim about these specific people rather than a
more general claim about experts and novices.
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Fig. 6 Performance of the aggregation model (far right), when com-
pared to simpler aggregation approaches that averages responses
(middle) or takes the median response (near right). For compari-
son purposes, both are plotted against the performance of the best
individual participant (near left), and the median performance of all

respondents (far left). Within each panel, three versions are plot-
ted: one where we included all 94 participants, one where we used
responses from the 17 experts, and a third where we used only the 8
US-based experts

response yik we find between experts and novices for
both the US-based (CI95 = [-2.3, -1.2]) and non-US-based
respondents (CI95 = [-2.0, -1.0]).3

Extracting wisdom from the forensic crowd

A natural question to ask of our data is whether there is a
“wisdom of the crowd” effect (Surowiecki, 2005), in which
it might be possible to aggregate the predictions of multiple
participants to produce better judgments on the whole. Our
sample includes a small number of real-world experts and
a much larger number of novices, and as Fig. 5 illustrates,
they differ dramatically in calibration and precision. Is it
possible to aggregate the responses of these participants
in a way that produces more accurate predictions than
any individual expert? Does the inclusion of many poorly
calibrated and imprecise novices hurt the performance of an
expert aggregation model? We turn now to these questions.

Figure 6 plots the performance of two different methods
of aggregating participant responses, applied to three
different versions of the data: one where we included all
94 participants, one where we used responses from the 17
experts, and a third where we used only the 8 US-based
experts. Using the averaging method (near right), the crowd
prediction is the average of each individual prediction. As
the figure illustrates, this method does not yield a wisdom

3The differences between the US experts and non-US experts are more
difficult to characterize: different modeling assumptions produced
slightly different answers for this question, beyond the original finding
that US experts performed somewhat better overall.

of crowds effect when the novices are included in the data.
Using the average response of all 94 participants yields an
average prediction error of 18.6%, slightly worse than the
best individual participant in Fig. 3 whose error was 18.5%.
Once the novices are removed, the prediction error falls to
16.8% (all experts) or 16.6% (US experts only). As the left
panels of Fig. 6 illustrate, a decrease of 2% is about the same
size as the difference between the best expert (18.5% error)
and the median expert (20.4%).

One potentially problematic issue with the averaging
approach is that it only works when the very poorly per-
forming novices are removed from the data set—in many
real-world situations it is not known a priori who is truly
expert and who is not. We consider two methods for
addressing this: the first is to rely on a robust estima-
tor of central tendency such as the median, instead of
using the arithmetic mean. As shown in Fig. 6, aggrega-
tion via the median produces better performance regardless
of whether US experts (16.4%), all experts (16.1%) or all
participants (15.7%) are included. The second method is to
adopt a hierarchical Bayesian approach based on Lee and
Danileiko (2014), using the more general calibration func-
tions discussed in the previous section. The advantage of
this approach is that it automatically estimates the response
precision for each person, and learns in an unsupervised
way which participants to weight most highly. As illustrated
in the far right of Fig. 6, this model makes better predic-
tions than the averaging method or the median response
method: using only the US experts the prediction error
is 15.1%, which falls slightly to 14.9% when all experts
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Fig. 7 Aggregating expert predictions. Pairwise comparisons between the ground truth estimated from the NIJ data, the average response of
human participants, and the estimates extracted via the hierarchical Bayesian model

are used, and improves slightly further to 14.7% when the
novices are included. In other words, not only is the hier-
archical Bayes method robust to the presence of novices,
it is able to use their predictions to perform better than
it does if only the experts are considered and yields better esti-
mates than simple robust methods such as median response.

Finally, to understand why the Bayesian aggregation
model performs better than the simpler averaging method,
Fig. 7 plots the model-based estimates against the average
human response (left) and compares both of these prediction
methods to the ground truth estimated from the NIJ data
(middle and right panels). As shown in the left panel,
the main thing that the model has learned is to transform
the average estimates via a non-linear calibration function
that closely resembles curves used in standard theoretical
models (Prelec, 1998), though as illustrated in Fig. 4
individual subject calibration curves often depart quite
substantially from this shape. This has differential effects
depending on the true frequency of the handwriting feature
in question: for very rare and very common features, the
model reverses the regression to the mean effect, and so the
Bayesian model produces much better estimates for these
items (see also Satopää et al., 2014). The overall result is
that the model estimates produce a much better prediction
about the ground truth (middle panel) than the averaging
method (right panel).

Conclusions

The assessment of expert performance is a problem of
considerable importance. Besides the obvious theoretical
questions pertaining to the nature of expertise (e.g., Weiss
& Shanteau, 2003; Ericsson & Lehmann, 1996), a variety

of legal, professional and industrial fields are substantially
reliant on human expert judgment. For the specific domain
of forensic handwriting examination, the legal implications
are the most pressing. In this respect, our findings are mixed.

On the one hand, there is some evidence that handwriting
experts will be able to estimate the frequency of occurrence
for handwriting features better than novices. However, even
the single best performing participant produced an average
deviation of 18.5% from the true value. On the other hand,
this number is considerably lower than would be expected
by chance (25%) if people possessed no relevant knowledge
and simply responded with .5 on every trial, and using
modern Bayesian methods to aggregate the predictions of
the experts this can be reduced further to 14.7% error.

In short, these results provide some of the first evidence
of naturalistic visual statistical learning in the context of
forensic feature comparison. However, we suggest that a
cautious approach should be taken before endorsing the use
of experience-based likelihood ratios for forensic purposes
in the future.

Appendix

The hierarchical Bayesian calibration model used in the
main text is specified as follows. Let xk ∈ [0, 1] denote
the true frequency of the k-th feature, and let yik ∈ [0, 1]
denote the judged frequency of feature k produced by i-
th participant. The main text describes a two-parameter
calibration function,

ψik = δi log
xk

1 − xk

+ log
ci

1 − ci

μik = exp(ψik)

1 + exp(ψik)
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and we assume that the response is sampled from a truncated
normal distribution

yik ∼ TruncNorm(μik, σ
2
i , 0, 1)

where the standard deviation σik is related to the precision
via τik = 1/σ 2

ik , and notation above indicates that the
distribution is truncated below at 0 and above at 1.

To accommodate individual and group differences we
assume that the precision τi , calibration δi and criterion
ci parameters are sampled from a population distribution
that may have slightly parameters as a function of the
group gi (e.g., US expert) to which the expert belongs.
For each group, g the calibration parameter δ is sampled
from a Gaussian distribution with unknown mean μδ,g

and precision τδ,g , truncated to lie between 0 and 1. A
similar approach is applied to the precision and criterion
parameters, yielding the following model at the group level:

δi |gi = g ∼ TruncNorm(μδ,g, 1/τδ,g, 0, 1)

ci |gi = g ∼ TruncNorm(μc,g, 1/τc,g, 0, 1)

τi |gi = g ∼ TruncNorm(μτ,g, 1/ττ,g, 0, ∞)

To capture the intuition that the various groups may be
somewhat similar to one another, the group level parameters
are assumed to be drawn from a higher level population
distribution, again assumed to be a truncated normal
distribution

μδ,g ∼ TruncNorm(μ′
1, 1/τ

′
1, 0, 1)

μc,g ∼ TruncNorm(μ′
2, 1/τ

′
2, 0, 1)

μτ,g ∼ TruncNorm(μ′
3, 1/τ

′
3, 0, ∞)

τδ,g ∼ TruncNorm(μ′
4, 1/τ

′
4, 0, ∞)

τc,g ∼ TruncNorm(μ′
5, 1/τ

′
5, 0, ∞)

ττ,g ∼ TruncNorm(μ′
6, 1/τ

′
6, 0, ∞)

Finally, non-informative hyperpriors were adopted to
describe the prior over the population level parameters μ′
and τ ′: Gamma(.01,.01) distributions for parameters lower
bounded at zero, and uniform priors for parameters that lie
between 0 and 1.
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