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Abstract

Formal modeling approaches to cognition provide a principled characterization of observed responses in terms of a set of
postulated processes, specifically in terms of parameters that modulate the latter. These model-based characterizations are
useful to the extent that there is a clear, one-to-one mapping between parameters and model expectations (identifiability)
and that parameters can be recovered from reasonably sized data using a typical experimental design (recoverability).
These properties are sometimes not met for certain combinations of model classes and data. One suggestion to improve
parameter identifiability and recoverability involves the use of “empirical priors”, which constrain parameters according
to a previously observed distribution of values. We assessed the efficacy of this proposal using a combination of real and
artificial data. Our results showed that a point-estimate variant of the empirical-prior method could not improve parameter
recovery systematically. We identified the source of poor parameter recovery in the low information content of the data. As
a follow-up step, we developed a fully Bayesian variant of the empirical-prior method and assessed its performance. We
find that even such a method that takes the covariance structure of the parameter distributions into account cannot reliably
improve parameter recovery. We conclude that researchers should invest additional efforts in improving the informativeness
of their experimental designs, as many of the problems associated to impoverished designs cannot be alleviated by modern
statistical methods alone.

Keywords Identifiability - Empirical priors - Reinforcement learning - Prospect theory

A key aspect in the development and testing of psychological
theories of cognition is the increasing reliance on formal
modeling approaches (for an introduction, see Lewandowsky
& Farrell, 2010). Through formal models, researchers can
characterize the observed data in terms of latent cognitive
processes such as attention, memory retrieval, or response
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biases. Associated to each of these different processes are
parameters that determine their expression and role: For
example, consider Schweickert’s (1993) model of short-
term memory retrieval illustrated in Fig. 1. This model
postulates a parameter I quantifying the probability that the
representation of a studied word in short-term memory is intact
and a parameter R quantifying the probability that in the
absence of an intact representation the word can be successfully
redintegrated. According to this model, the probability
of an item being correctly recalled is / + (1 — I) x R (item
is intact or can be successfully redintegrated), whereas the
probability of an incorrect recall is (1 — I) x (1 — R) (item
is not intact and redintegration is not successful).

When specifying the multiple components within a given
model, researchers face several challenges. Among them is
the need to ensure that model parameters are identifiable
(Bamber & van Santen 1985; Moran, 2016). Broadly
speaking, identifiability concerns the notion that each
combination of parameter values (e.g., / and R) in a model
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Fig. 1 Schweickert’s (1993) redintegration model

yields a unique set of expectations. When the parameters of
a model are identifiable, the modeler can be sure that there is
a unique set of parameters providing the best match between
the model’s expectations and the data. The only limitation
then is the informativeness of the data. Unfortunately, this
is not the case in Schweickert’s model, as its parameters
are not identifiable: The same recall probabilities can be
obtained by trading off / and R. For example, a correct-
recall probability of .90 can be obtained with an infinite
range of {I, R} pairs. From {I = .90, R = .00}, which states
that items are very likely to have an intact representation
but no hope for redintegration, to {I/ = .00, R = .90},
which states that there are no intact memory representations
but redintegration is nevertheless highly likely. In order
to address the non-identifiability of these parameters,
researchers have relied on complex experimental designs
through which principled constraints can be imposed
(Hulme, Roodenrys, Schweickert, Brown, et al. 1997,
Buchner & Erdfelder, 2005; Schweickert, 1993). In general,
the identifiability of parameters will be a function of several
factors, such as the model class, number of parameters
to be estimated, parametric assumptions made, the data
to which the models are fit, and the method used to fit
the models (Bamber & van Santen, 1985; Batchelder &
Riefer, 1990; Moran, 2016; Ahn, Krawitz, Kim, Busemeyer,
& Brown, 2011; Wetzels, Vandekerckhove, Tuerlinckx, &
Wagenmakers, 2010).

The importance of parameter identifiability can hardly
be overstated, given that it ensures that the theoretically
motivated characterization of the data yielded by a model
is unique. In lay terms, we want to make sure that the
model tells us a unique story for a given set of data, not
a multitude of distinct stories. After all, the parameters of
cognitive models are supposed to reflect psychologically
meaningful processes. In light of the importance of param-
eter identifiability, many approaches have been developed
for overcoming difficulties with it. The present work is
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concerned with one specific approach for overcoming such
issues: The use of parametric approximations to the distri-
butions of parameter values obtained from a separate dataset
as informative priors, and incorporating them in subsequent
modeling efforts.

In what follows, we will first provide an overview
of the different kinds of identifiability and the notion
of sloppiness. We will then discuss general approaches
of alleviating the problems associated with sloppiness
and non-identifiability and focus on one specific method,
the empirical-prior approach (Gershman, 2016). We
evaluate the point-estimate variant of the empirical-prior
approach as proposed by Gershman (2016) in a well-
known class of reinforcement-learning models. We assess
the improvements brought about by this approach in
comparison to the improvements coming from simple
extensions of the experimental design. Finally, we develop
a Bayesian variant of the empirical-prior approach and
apply it to another well-known class of models, this time
concerned with decision-making under risk.

Foreshadowing our results, we found that the empirical-
prior approach cannot recover the true parameter population
distributions, does not improve parameter recovery, and
is fragile to mismatches between the true parameter
population distributions and the prior used. Similar results
were obtained with a Bayesian variant of the empirical-prior
approach. In contrast with these rather disappointing results,
small changes in the experimental design showed clear
improvements in parameter recovery. We conclude that for
researchers interested in inferring the ground truth from
empirical observations, the shortcomings of impoverished
experimental designs that fail to constrain parameter
estimates cannot be compensated for through the use of
statistical methods such as the empirical-prior approach. We
highlight the differences between this so-called “question of
inversion” and the “question of inference” that is concerned
with coherent interpretation of the data irrespective of the
ground truth that generated them.

Overcoming varieties of non-identifiability
and sloppiness

A more nuanced view of identifiability is given by the
distinction between global identifiability, which concerns
the identifiability of the parameters irrespective of any
particular data within a given experimental design, and local
identifiability, which is only concerned with identifiability
of a model for a particular set of data (for a detailed
discussion and examples, see Schmittmann et al., 2010).
A model can be globally identifiable but locally non-
identifiable due to sparse data (e.g., several empty cells
in a multinomial distribution) and/or extreme performance
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(e.g., ceiling or floor effects). For example, a model that
is constrained to predict either the sequence a-a-a-a or
b-b-b-b under different parameter values will be locally
non-identifiable when observing the sequence a-b-a-b,
as both sequences the model is able to produce account for
the data equally well/badly.

A concept closely related to identifiability is “sloppi-
ness” (Brown & Sethna, 2003). Although identifiable, the
parameters of a “sloppy” model can be adjusted to partially
compensate any change in the expectations produced by the
variation of another parameter. One consequence of sloppi-
ness is that it becomes difficult to determine the parameter
values of the underlying data-generating process. These
difficulties can be demonstrated in parameter-recovery sim-
ulations, in which artificial data are generated with known
parameter values. The very same model is then used to
fit the data, so that the original and estimated parame-
ter values can be compared. Note that non-identifiability
corresponds to the worst-case scenario in terms of sloppi-
ness, with parameters being able to perfectly compensate for
the changes in other parameters.

Given the importance of parameter estimates in a model-
based characterization of behavioral phenomena, it follows
that parameter identifiability is only a minimal and insuffi-
cient requirement. After all, a model can have identifiable
parameters but nevertheless manifest poor parameter recov-
ery under a more realistic setting. In line with this notion,
considerable efforts have been made to identify and ame-
liorate difficulties with parameter recovery. For example,
White, Servant, and Logan (2017) showed that some of
the parameters in drift-diffusion models for conflict tasks,
although identifiable, have poor recoverability. In order
to mitigate these issues, White et al. (2017) suggested
the use of derived measures that try to make up for the
parameter trade-offs they observed. In other domains (e.g.,
decision-making under risk), alternative solutions such
as parameter restrictions have been proposed: Nilsson,
Rieskamp, and Wagenmakers (2011) evaluated the value
function v(-) of prospect theory (Kahneman & Tversky,
1979), which assumes that the subjective representation of
monetary gains x > 0 follows v(x) = x% , whereas
for losses x < O it follows v(x) = —A|x|% . Nilsson
et al. showed that the loss-aversion parameter A and the
diminishing-sensitivity parameter for losses «~ are
extremely hard to recover as they tend to serve very similar
purposes and can therefore trade off with little to no cost.
Their solution to this parameter-recovery problem was to
simplify the model by setting o~ to be equal to its gain-
outcome counterpart aT. But as discussed later on, other
issues in parameter recovery remain to be addressed.

A more general modeling approach that can address
some of the difficulties in parameter recoverability consists
of relying on hierarchical or random-effect implementations

of models. A key aspect of these implementations is that
the estimations of individual parameters are informed by
the overall sample, capitalizing on the similarities across
individuals by shrinking individual estimates towards a
central tendency of the group level and thus preventing
extreme, noise-driven parameter estimates. This approach is
particularly helpful if the experimental design is informative
and the model identifiable, but there are not enough data
per individual to estimate their respective parameters with
high precision (Broomell & Bhatia, 2014). In the cognitive-
modeling literature, hierarchical models are typically fitted
using Bayesian parameter estimation (e.g., Katahira, 2016;
Steingroever, Wetzels, & Wagenmakers, 2014; Wetzels et
al., 2010; Ahn et al., 2011).

In contrast to the conventional maximum likelihood
estimation (MLE) methods often used in model fitting,
Bayesian approaches require the specification of prior dis-
tributions for each of the parameters, representing the
(prior) beliefs that parameters will take on certain values.
These priors are updated using the information provided
by the data, resulting in posterior distributions. MLE does
not require such a prior nor does it yield a distribution—
only the set of parameter values for which the likelihood
of the data is maximal. Whether a model is fitted using
MLE or Bayesian parameter estimation affects the assess-
ment of identifiability, sloppiness, and parameter recovery.
Non-identifiability and sloppiness will lead to regions of the
joint posterior distributions which have equal and near-equal
density, respectively. When using MLE, trade-offs between
sloppy models’ parameters can be observed in the covari-
ance matrix of parameter estimates (see Li, Lewandowsky,
& DeBrunner, 1996). When using a Bayesian parameter-
estimation framework, parameter trade-offs are reflected
in the covariances of posterior samples and the (mul-
tivariate) posterior distributions of parameters. Specifi-
cally, they often manifest themselves as ridges in the
joint posterior distributions (e.g., Scheibehenne & Pachur,
2015, Fig. 1).

A compromise between MLE and Bayesian estimation
is offered by the maximum a-posteriori (MAP) method
(Cousineau & Hélie, 2013). MAP introduces prior param-
eter distributions that are used to weight the model’s
likelihood function. This prior-weighted MLE yields the
modes of the posterior parameter distributions that would
be obtained with a fully Bayesian approach using the
same set of priors. Both the fully Bayesian approach and
MAP have been alluded to as ways to attenuate parameter-
identifiability problems (e.g., Moran, 2016) by using an
informative prior. An informative prior carries information
about the parameters that goes beyond the data at hand, such
as from previous empirical work or from theoretical consid-
erations (for an overview, see Lee & Vanpaemel, 2017). For
instance, if one has good reasons to believe that reasonable
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parameter values should most often lie within a certain
range, one can specify a prior that overweights that specific
range relative to the rest. This weighting would discourage
estimates to go outside this expected range unless the data
strongly support that. Hierarchical parameter estimation
poses a special case of the use of informative priors in
which the parameter estimates of individuals inform each
other.

Gershman’s (2016) empirical-prior approach

Gershman (2016) recently argued that one way to obtain an
informative prior is to use the distribution of MLE estimates
obtained from a separate dataset in an attempt to approx-
imate the population distribution of parameter values—an
empirical prior. In the context of reinforcement-learning
models (Sutton & Barto 1998), Gershman demonstrated
that the MAP method, together with empirical priors, could
improve model performance in several ways: more reliable
parameter estimates, improved characterization of individ-
ual differences, and increases in predictive accuracy.

The improvements reported by Gershman’s (2016)
empirical-prior approach in the context of reinforcement-
learning modeling are quite fortunate, as they directly
address some long-standing challenges in this domain.
Reinforcement-learning models are regularly adopted as
a way to analyze repeated trial-and-error decisions in
psychology and neuroscience (e.g., Yechiam & Busemeyer,
2005; Schulze, van Ravenzwaaij, & Newell, 2015; Erev
& Barron, 2005; Baron & Erev, 2003; Niv et al.,,
2015; Dayan & Daw, 2008; Chase, Kumar, Eickhoff, &
Dombrovski, 2015; Dayan & Balleine, 2002). Despite
their prominence, these models have well-documented
cases of parameter non-identifiability and sloppiness (e.g.,
Humphries, Bruno, Karpievitch, & Wotherspoon, 2015;
Wetzels et al., 2010; but see, e.g., Ahn et al., 2011, 2014;
Steingroever, Wetzels, & Wagenmakers, 2013, for examples
of satisfactory parameter identifiability). One illustrative
example was recently given by Humphries et al. (2015),
who fitted a popular reinforcement-learning model to choice
data obtained with the Iowa gambling task (Bechara,
Damasio, Damasio, and Anderson, 1994). Humphries et al.
showed that the best fits could often be achieved under
very different sets of parameter values that yielded quite
distinct accounts of the data. For example, one participant
had a set of best-fitting parameters indicating that s/he
had good memory and produced impulsive, consistent
choices. However, another equally good set parameter
estimates for that same participant suggested that s/he
could be characterized as an individual with inconsistent
choices and poor memory, and who focused more on
losses than wins (p. 24). Reducing the model complexity
by restricting the number of free parameters limited
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the degree to which parameters traded off, but also
limited the richness of the characterization provided by the
model.

Despite its purported advantages, some aspects of
Gershman’s (2016) empirical-prior approach require further
scrutiny. First, it is not clear ~ow this approach can mitigate
the problems of parameter identifiability and recoverability.
Since it relies on marginal prior parameter distributions that
are independent from each other, the constraints imposed
do not extend to the way parameters can jointly vary to
produce equivalent or very similar results. In somewhat
broad strokes, it can be said that Gershman’s empirical-prior
approach is attempting to tackle a problem of parameter
covariance by constraining variances. It could very well
be that the improvements reported by Gershman (2016)
result from shifting the parameter estimates towards values
that are more commonly observed in the population, thus
avoiding overfitting.

Second, Gershman (2016) approach assumes that the
empirical priors obtained are somewhat reasonable approx-
imations to the distributions of parameter values in the
population. Given that the reinforcement-learning models
considered in his application suffer from identifiability and
recoverability issues, it seems unlikely that such an approxi-
mation is achieved to any reasonable degree. If the empirical
priors are themselves based on unreliable parameter esti-
mates that do not match the actual data-generating parame-
ters, it is not clear how they could contribute to mitigating
any identifiability or recoverability problems. In short, the
approach seems to be stuck with a “chicken-or-the-egg”
type of problem.

Evaluating the empirical-prior approach

Given the standing questions regarding Gershman’s (2016)
empirical-prior approach, we conducted additional evalu-
ations. These evaluations required knowledge of the true
parameter values that generated any given dataset, some-
thing that is only possible when the data are artificially gen-
erated. Therefore, we implemented a series of simulation
studies, through which we tested whether that empirical-
prior approach improves the recovery of parameter esti-
mates in the reinforcement-learning models considered by
Gershman, and how these estimates are affected by the
(mis)match between the empirical priors and the actual dis-
tribution of parameters in the population. We will later
extend these simulation studies to the domain of decision-
making under risk.!

TAll our simulation results and analysis scripts are provided on the
Open Science Framework at https://osf.io/2ws78/.
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Fig.2 Example of a typical probability-learning task

Method
Data

We used the data from Gershman (2015) as the basis
for our simulations. These data came from a probability-
learning task in which participants were presented with two
options differing in terms of their probabilities of yielding
a reward (0 or 1; see Fig. 2 for an example of such a
probability-learning task). Participants were provided with
partial feedback such that they were only informed of the
outcome yielded by the chosen option. Each participant
engaged in four blocks of 25 trials each, for a total of 100
trials. Their responses came from four experiments, which
only differed in terms of the reward probabilities used, for a
total of 166 participants.”

Models

We focused our comparisons on the same four
reinforcement-learning models that Gershman (2016) con-
sidered, all of which conform to the basic structure of a
Q-learning model (Sutton & Barto, 1998). According to
this model, participants keep subjective expectations Q for
each of the options and update them based on the feedback
they receive from the choices. The updating mechanism
typically used is temporal-difference learning, in which
the expectation regarding an option X is updated based on
the difference between the observed reward R(X) and an
expected reward Q(X). This difference is conventionally
referred to as the reward prediction error. Formally, the

2One of the participants completed only three instead of four blocks.

subjective expectation Q;41(X) for option X on trial 7 + 1
is given by

Qr+1(X) = Q:(X) + 1 (R(X) — Q:(X)) ey

where R;(X) is the reward coming from option X at trial
t, and n is the learning rate. Note that the difference
in parentheses is the reward prediction error on trial .
Initial expectations Qq(-) are set to 0 and on every trial
the probabilities of the choices are governed by a logistic
function with scaling parameter 8.3 The simplest model in
our set, M, assumes a single learning rate n. Model M>
extends M by assuming different learning rates n for the
different reward prediction errors:

_{ nt il Ri(X) = 0i(X) 20 @
TTla i RGO - Qi) <0

The third model, M3, also builds on M by including a
stickiness mechanism that attempts to capture the notion that
individuals tend to repeat previous choices independently of
the outcome obtained in the previous trial (also referred to as
“perseveration” or ‘“‘choice inertia”; Yechiam & Ert, 2007,
Worthy, Pang, & Byrne, 2013). Formally, ¢;_1, the choice
made on trial # — 1, introduces an additive constant w to the
expectation of this option on trial #:

01 (X)=0—1(X)+n (Ri—1(X) = Qr—1(X)) 4w, if ¢;1=X.
3

Note that w < 0 penalizes repeated choices of the same
option, and w > 0 encourages repeated choices from the same
option, irrespective of the rewards it yields. The final model,
M4, combines both the two learning rates introduced in M»
with the stickiness parameter included in M3.

Altogether, the four models have the following parameters:

e Mi:npandp

o My nt,n",and B

e Mj:n, B,and w

e Muynt,n,B,andw
Priors

We obtained empirical priors for each of the models by
fitting them to the individual datasets using a differential-
evolution algorithm as implemented in DEopt im (Mullen,
Ardia, Gil,Windover, & Cline, 2011) for R (R Development
Core Team, 2008). Following Gershman’s (2016) proce-
dure, we restricted the unbounded parameters 8 and w to
very broad but not impossible ranges ([0, 50] and [— 5, 5],

3We explored the influence of using different Qg(-) values on
parameter recovery. We found slightly improved parameter recovery in
case of Qp(-) = 0.5, but only if the ground-truth Q¢(-) was also 0.5.
In case of a mismatch in either direction (i.e., data were generated with
Qo(-) = 0.5 but fit with Q¢(-) = 0 or vice versa), parameter recovery
dropped dramatically.
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respectively). We used the algorithm with mostly default
settings, but increased the number of population members to
50 and the maximum allowed population generations to 100.
The population members were initialized randomly within
the parameter boundaries.

To facilitate sampling from the empirical prior distribu-
tion without committing to too many auxiliary assumptions,
we fitted the observed parameter estimates with Gaussian
mixture models (GMMs).4 These mixtures were obtained by
first linearly transforming all parameters to the unit scale
[0,1] and then applying an inverse-probit transformation so
that they would be represented along the real line.> We then
fitted mixture models with up to ten component or base dis-
tributions and selected the best-performing mixture model
using the Bayesian information criterion (BIC; Schwarz,
1978). The BICs of the fitted GMM:s are reported in Table 4
in the Appendix.

In addition to the empirical priors, we also considered
uniform prior distributions that simply reflect the parameter
bounds used in the fitting procedure: [0, 1], [0, 50], and
[—5,5] for the learning rates, scaling parameter, and
stickiness, respectively. The results obtained with these
uniform priors provide us with the yardstick with which
we can evaluate the benefits associated with the use of
empirical priors.®

Simulation procedure

We began by generating 1,000 sets of 4 x 25 reward
sequences based on the reward probabilities associated to
the different choice options. Afterwards, we drew 1,000
independent parameter-set samples for each modelx prior
combination. These draws were used to create the so-called
empirical populations (as they were obtained from the
empirical priors) and uniform populations (obtained from
the uniform priors). The sampled parameters were then
used to simulate responses for all of the generated reward
sequences.

Parameter recovery

To assess parameter recovery, we fitted the simulated indi-
vidual responses twice, once using MLE and once again
using MAP in conjunction with the empirical priors. As

4The use of GMMs deviates from Gershman’s (2016) procedure. The
reason for this deviation is that the parametric distribution families
he adopted were not able to capture the multimodalities found in the
parameter estimates we obtained.

5To avoid non-finite values on the real scale, we truncated values on
the unit scale at 10710 and 1 — 10719,

%Note that the use of MAP in conjunction with uniform priors for
all parameters yields identical results to conventional MLE when
constrained by the same boundaries.
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before, we relied on a differential-evolution algorithm. To
facilitate model fitting, we initialized the population mem-
bers of the algorithm with samples from the ground-truth
population distributions. Parameter recovery was assessed
by regressing the estimated parameter values with the true
data-generating parameters. This was done separately for
each of the parameters, models, and population distribu-
tions. Within this context, we chose to use the explained
variance statistic 7> as a measure of parameter recovery.
The reason is that it quantifies the ability of one parame-
ter to capture the variability found in the estimates obtained
from the data.

Results
Empirical priors

As previously discussed, we obtained our empirical priors
by fitting GMMSs to the distributions of parameter esti-
mates. The best-fitting estimates are reported in Table 5 on a
probability scale. To obtain values on the real scale, transfor-
mations have to be applied: specifically, for the parameters
on the unit [0, 1] scale (learning rates 7, n™,and ™), values
have to be probit-transformed. For parameters on the [0, 50]
scale (sensitivity 8), values have to be probit-transformed
and then multiplied by 50. For the stickiness parameter
o, values have to be probit-transformed, multiplied by 10,
and then have 5 subtracted.

e M;j: For the n parameter, the best-fitting solution
consists of a mixture of four component distributions.
The resulting empirical prior is characterized by a
strong bimodality at the edges of the parameter space,
with relatively little density in between (see Fig. 3,
top row, first column). For the 8 parameter, the best-
fitting solution is also a mixture of four Gaussian
distributions. Most of the density is concentrated at the
region between 0 and 10 on the real scale, with another
peak at the upper boundary of the parameter space (50).
Almost no density is found between these peaks (see
Fig. 3, top row, third column).

e My For the n* and n~ parameters, the best-fitting
solution is a mixture of three Gaussian distributions.
In both cases, the priors are characterized by strong
bimodalities at the edges of the parameter spaces, with
comparatively little density in between (see Fig. 3, sec-
ond row, first and second columns). For the g parame-
ter, the best-fitting solution is a mixture of six Gaussian
distributions. Most of the density is concentrated at
the region between 0 and 10 on the real scale, with
another peak at the upper boundary of the parame-
ter space—again, with almost no density in between
(see Fig. 3, second row, third column).
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Fig. 3 Distribution of individual-level maximum likelihood parameter estimates and the fitted Gaussian mixture models for each of the four
reinforcement-learning models. Empty cells indicate parameters not present in the respective model. Each cell depicts the distributions of the
estimated parameters (shaded area) and the fitted mixture model (black line). See “Models” for model specifications

e M;j: For the n and B parameters, the best-fitting
solutions correspond to a mixture of three Gaussian
distributions. As with models M| and M>, they are
characterized by large peaks at the boundaries of
their respective parameter spaces and little density in
between (see Fig. 3, third row, first and third columns).
Parameter w, on the other hand, has a highly peaked
trimodal distribution (captured by a mixture of six
Gaussian distributions). The peaks are at the boundaries
(-5 and +5) and at O (see Fig. 3, third row, last column).

® My The parameter distributions are comparable to
the other models’ distributions. For the learning rates
nT and n~, the best-fitting solutions are mixtures
of four Gaussian distributions. The distribution of B
estimates is best captured by a mixture of two Gaussian
distributions, and the stickiness parameter  is best
described by a mixture of six Gaussian distributions. In
all cases, the distributions are multimodal with peaks at
the boundaries of the parameter spaces (and at 0 for w)
and very little density in between (see Fig. 3, bottom
row).

Simulation results

Recovery of population parameter distributions We
assessed whether the parameter estimates obtained from the
simulated data resembled the true population distribution.
To do so, we first created 100 equally spaced bins that cov-
ered the entire parameter range for each of the parameters.
Afterwards, we computed the proportion of the ground-
truth parameter values falling within each bin (expected
frequencies). We then computed a discrepancy statistic
using the sum of squares between the expected frequencies
and the binned frequencies of the fitted parameter estimates
(observed frequencies). For 10,000 samples of 1,000 param-
eters from each of the ground-truth parameter distributions,
we calculated their discrepancy statistics with respect to
the expected frequencies, thus obtaining a distribution of
discrepancies. Using the relative rank (RR) of observed
frequencies within the distribution of discrepancies, we can
calculate the probability Pg = .50 — |(RR — .50)| of such
a rank being observed when assuming that the recovered
parameters stem from the true population distributions.
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Recovery of the parameter distributions was found to
be somewhat poor across all models, population distribu-
tions, and estimation procedures. For M1, only one out of
eight parameter distribution could be recovered, namely the
distribution of B stemming from the empirical-prior popu-
lation when using MLE (Pr = .16, all other Pgrs < .04;
see Fig. 4 for an example illustrating the poor distribution
recovery). For My, the pattern looks worse than for M,
as none of the distributions could be successfully recov-
ered (all Prs < .01). For M3, the pattern changes slightly:
When using uniform priors, an empirical parameter popula-
tion distribution can successfully be recovered for the 8 and
o parameters (both Prs > .12). Otherwise, no parameter
distributions were recovered (all Pgs > .05). For My, no
parameter distributions were recovered (all Prs < .02).

Individual parameter recovery Parameter recovery of indi-
vidual parameters, quantified here in terms of r2, were
generally poor (see the “Overall” column in Table 1). The
only exception was the simplest model, M, which had the
best general parameter recovery. M> had the worst param-
eter recovery for all parameters. The most complex model,
M4, is the second-worst in terms of recoverability, followed
by Ms3.

Sensitivity to misspecification To assess the sensitivity to
prior misspecification in MAP, we compared the parameter
recoveries when the population distributions matched the
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empirical priors with the analogous recoveries when the two
distributions did not match (e.g., fitting data generated from
a uniform parameter population when using the empirical
priors). The r2 values for all models, estimation methods,
and priors are reported in Table 1.

For model M, matching the priors to the true underlying
population distribution played an important role. The
differences in r> between the matching and mismatching
priors could be as high as .10. For model M, failing
to match the prior used in MAP to the underlying data-
generating parameter distributions led to mixed results.
In four cases, recoverability became worse when the two
distributions mismatched, but it actually improved in two
other cases. Turning to model M3, we found a pattern
similar to the other models: Matching the parameter
distributions was important, yet a mismatch also led to
substantially improved parameter recovery in one case.
Finally, for model My, except for the learning rates
stemming from the empirical-prior distribution, MLE was
in all cases better in recovering the true individual-level
parameters.

Interim summary
We explored the merit of using MAP in conjunction with
empirical priors as a way to improve parameter recovery

in reinforcement-learning models. Using simulations, we
found that no method yielded satisfactory results for
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Fig. 4 Parameter and distribution recovery for model M (the best-faring case for both types of recoveries). The axes show the true parameters
of the model and the corresponding recovered parameters. The true parameters stem from the empirical-prior distribution, and recovered
parameters have been obtained using maximum a-posteriori estimation in conjunction with empirical priors
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Table 1 Parameter recoverability (in r2)

Uniform “Empirical”
population population
Model Parameter MLE MAP MLE MAP Overall

M, n 1 .68 .30 40 45
B .29 28 28 .38 .39
nt 23 A1 17 .29 18
M N 72 .66 28 24 39
B 17 15 23 21 .20
n 28 41 41 49 37
M; B 22 13 41 44 32
1) 72 .64 43 42 48
nt 28 21 28 .35 .26
M, n- .02 .01 .07 13 .05
B 17 13 42 32 33
w 73 43 44 22 45

See “Models” for model specifications. MLE = maximum likelihood
estimation, MAP = maximum a-posteriori estimation, Uniform popu-
lation = uniform group-level distribution, “Empirical” population =
group-level distribution stemming from the prior that is used for MAP

any of the criteria we used (i.e., distribution recovery
and individual-parameter recovery), with no method being
consistently superior to the other across all models.
Parameter recoverability was generally poor and alarmingly
s0 in some cases, raising serious questions on the ability to
draw conclusions about underlying psychological processes
under the experimental design considered by Gershman
(2015). In the hopes of following up this rather negative
state of affairs with a more positive message, we explored
different ways to improve the present experimental design.

Exploring ways to improve recoverability

In an attempt to improve recoverability, we considered
different ways in which the experimental design used by
Gershman (2015) could be improved. To keep things as
simple as possible, we restricted ourselves to model M.
Also, instead of using either MLE or MAP, we adopted a
fully Bayesian approach in which posterior distributions of
parameters are obtained. In contrast to the point estimates
yielded by MLE and MAP, these posterior distributions can
be conveniently used to assess the degree of uncertainty
surrounding each parameter estimate. Diffuse posteriors are
expected when parameters are not identifiable or sloppy.
Note that in some cases, non-identifiability can lead to
multimodalities in the marginal posterior distributions, and
ridges in the joint posterior distributions (with each ridge
reflecting a specific parameter trade-off).

Method and Results

We obtained the posterior distributions using a No-U-
turn sampler (Hoffman & Gelman, 2014) as implemented
in Stan (Carpenter et al., 2017) via the PyStan interface
(Stan Development Team, 2016a). We ran four randomly
initialized chains in parallel for 1,000 total iterations, out
of which 500 were used as a warm-up period to tune
the sampler’s parameters. These warm-up samples were
discarded afterwards. The remaining 500 iterations from
each chain were concatenated, resulting in a total of 2,000
samples. We restricted 8 to be between 0 and 50, just like
with the point-estimate fits beforehand. In these analyses,
we focused on the range of each parameter’s 95% central
posterior interval, divided by the range of its support. The
resulting coverage ratio yields values between 0 and 1, with
0 indicating that all posterior mass in a single point, and with
values approaching 1 indicating that any permissible value
is likely (i.e., the data are not informative for the estimation
of a given parameter).

Baseline

To ensure a more comprehensive assessment, we engaged
in a systematic exploration of the parameter space using a
grid search. As our baseline for quantitative comparisons,
we used a probability-learning task with 4 blocks of 25
trials each. Within the blocks, the virtual participants chose
between two options with reward probabilities (.1, .3),
(.2, 4), (.6, .8), and (.7, .9), respectively. We created a
linearly spaced 101 x 101 grid of sensitivities 8 and learning
rates 1 between 0 and 50 and O and 1, respectively. As
both 1 and B values of 0 lead to completely random
choices, we excluded these values from the simulations,
resulting in a final 100x 100 grid. For each of the parameter
combinations, we simulated the outcome sequences and
responses of ten virtual participants, for a total of 100,000
response vectors. Results for the baseline design and all
variants are reported in Table 2.

Compared to the previous simulation results reported
in the Individual parameter recovery section, the baseline
design showed a generally better parameter recoverability
due to the change from MLE to the means of the respective
posterior distributions (see Table 2). But as the coverage
ratios show, the uncertainty surrounding the estimates was
still unsatisfactory: In the case of 1, we can only hope
to reliably distinguish between extremely low and high
learning rates. Parameter 8 does not even lend itself to such
hopes. Note that one critical difference between the two
estimation procedures is that in the case of multiple maxima,
MLE will only yield one of them, whereas using the mean
of the posterior distribution effectively averages across these
multiple modes. What these results show is that, if anything,
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Table 2 Recoverability of baseline analysis and different manipula-
tions of experimental design (model M)

Recoverability Coverage ratio
Parameter Design r? Ar? M Md SD
Baseline .83 42 41 .16
PTrials 91 .08 30 .30 .14
" 1Options .88 05 34 32 .15
+Full feedback .90 .07 30 .28 17
Baseline 52 .67 .73 20
4 Trials .62 .10 58 .66 24
b 1+Options .61 .09 .60 .67 23
+Full feedback .64 12 58 .62 21

See “Models” for model specification. n =learning rate. § =sensitivity.
r? = shared variance of true parameters in the grid search and posterior
means of the corresponding parameter estimates. Ar> = difference
between the design change and the baseline (i.e., improvement
of parameter recoverability). Coverage ratio = range of the 95%
Bayesian central posterior interval divided by the range of the support
(50 and 1 for B and 7, respectively). Baseline = 4 blocks of 25 trials
each comprising 2 options to choose from. 1 trials = Variant 1 with
50 instead of 25 trials per block. 1Options = Variant 2 with 4 options
instead of 2 within each block. +Full feedback = Variant 3 where
forgone outcomes are presented in addition to obtained outcomes

one is better off by adopting a fully Bayesian approach with
non-informative priors than introducing empirical priors
over point estimates.

Variant 1: Increase number of trials

We explored how an increase of the number of trials
within blocks improves identifiability (Table 2, 1 Trials). We
increased the number from 25 (baseline) to 50, leading to
a total of 200 instead of 100 trials (baseline). As expected,
increasing the number of trials within each block improves
recoverability for both parameters, although the coverage
ratios still indicate a considerable degree of uncertainty.’

Variant 2: Increase number of options

As a second variant, we explored the possibility of increa-
sing the number of options for participants to choose
from (while keeping the number of blocks and trials per
block constant; Table 2, 1Options). We formed four blocks
of four options with reward probabilities (.1, .2, .3, 4),
(.6,.7,.8,.9), (.2, .3, .5, .6), and (.5, .6, .8, .9), respectively.
The most notable difference between this variant and the

7As a robustness check, we tried increasing the number of trials from
25 per block in the baseline to 500 trials per block. Despite this 20-
fold increase in number of trials (resulting in 2,000 trials in total),
the coverage ratios, especially for 8, did not reach a satisfactory level
(M = .33, Md = .37, SD = 23).
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first one is that comparable improvements in recoverability
are achieved without an increase of the total number of
trials.

Variant 3: Provide full feedback

As the last variant, we explored how providing participants
with full feedback (i.e., giving feedback about the forgone
outcomes) influenced parameter recovery (Table 2, +Full
feedback). We assumed that the learning rate is identical
for both the chosen and the non-chosen options. Similar to
Variant 2, this change of design does not lead to an increased
number of observations. Yet, it descriptively provides the
greatest improvement of parameter recovery, although the
recoverability of 8, in particular the coverage ratio, is still
somewhat disappointing, as it covers more than half the
parameter range on average.

Generalizing the evaluation
of the empirical-prior approach:
An application to risky-choice modeling

It is possible that our disappointing results with the
empirical-prior approach were due to the reliance on point
estimates, together with the specific reinforcement-learning
models and experimental designs considered by Gershman
(2016). In order to evaluate this possibility, we developed
a fully Bayesian implementation of the empirical-prior
approach, and applied it to a different model class and
experimental paradigm.

The basic idea of the fully Bayesian empirical-prior
approach is a straightforward extension of the previously
used point-estimate empirical-prior method: Instead of
fitting GMMs to the point estimates of an MLE-based
procedure, the GMMs are fitted to the pooled individual-
level posterior distributions. This extension offers two main
advantages: First, uncertainty about the parameter estimates
used to obtain the empirical priors is directly reflected in
the empirical priors obtained, and second, because there are
many more data points available per individual, it becomes
feasible to estimate the covariance matrices associated
with each of the multivariate component distributions in a
mixture.

The uncertainty associated with any parameter estimate
under a Bayesian framework is directly expressed in that
parameter’s posterior distribution. We can use this feature
to establish an alternative way of assessing parameter
recovery. In addition to computing 2 and coverage ratios,
we now also consider P(95%CI): The proportion of
times that the true parameter was included in the 95%
credible interval estimated from the generated data. These
intervals encompass the central 95% of their respective
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parameter’s posterior distribution. Ideally, one would expect  in the valuation of gains and losses:
these credible intervals include the true parameter values ot f R
ith probability .95. v o= x_,
™ v() = { —alxl, forx = x~, )
0, forx = 0.

Prospect theory and the risky-choice paradigm

One of the most widely used paradigms in the decision-
making literature is the risky-choice paradigm. In this
paradigm, an individual is requested to express her/his
preferences between different options that yield monetary
outcomes with known probabilities (decision-making under

. $100 —$20 .
risk), such as the lottery A = < 50 50 ) that yields
a $100 gain with probability .50, otherwise a $20 loss, and

. (%80 $0 . L
an option B = 50 50 that yields a $80 gain with

probability .50, otherwise nothing. Individuals’ preferences
regarding options of this kind are expected to capture
their subjective representations of monetary outcomes,
probabilities, as well as their integration.

The arguably most prominent theory to describe human
behavior in such situations is prospect theory (Kahneman
& Tversky, 1979; Tversky & Kahneman, 1992; see Wakker,
2010, for an overview). According to prospect theory,
individuals evaluate a decision between lotteries such as
A and B by calculating its utilities U (A) and U (B). The
core mechanisms that govern that calculation are (a) a
reference point relative to which outcomes are evaluated,
(b) diminishing sensitivity to larger deviances from the
reference point (i.e., the difference between $10 and $20 is
perceived as larger than the difference between $1,010 and
$1,020), (c) loss aversion (i.e., losses have a higher impact
on utilities relative to gains of the same magnitude), (d)
over-weighting of rare events, and (e) under-weighting of
probable events. Afterwards, the utilities of A and B are
compared with each other and the option with the higher
utility is chosen by applying some choice rule.

According to prospect theory, the utility U of a two-
;: ;_) with gain and
loss outcomes x and x ™, respectively, and their respective
probabilities p™ and p~ is given by:

outcome mixed lottery L = (

UL) = vxHw(p) + vxHw(p), )

where v(-) is the (already-mentioned) value function and
w(-) the probability-weighting function. The value function
is typically cast as a piecewise power function with param-
eters ot and o~ capturing the diminishing sensitivity in
the domains of monetary gains and losses, respectively, and
a loss-aversion parameter A that captures the asymmetries

Probabilities are assumed to be weighted by an inversely
S-shaped function that overweights small probabilities
and underweights large probabilities, such as the function
proposed by Kahneman and Tversky (1979):

py
1
(p7 + A = p)7)7
where y is the probability-sensitivity parameter. Different
parameters y can also be assigned to the probabilities
associated with gains and losses (i.e., y ™ and y 7).
Preferences such as A is preferred to B (A > B) are
translated into choice probabilities via a choice rule like the
logistic choice function:
1
|+ e 0(UA-U®B)’

w(p) = (6)

Pr(A) = (7
where the choice-sensitivity parameter & modulates how
differences in utilities affect choice probabilities. Responses
are random when 6 = 0, and become more deterministic as
it increases.

Prospect theory has often been used in the study of indi-
vidual differences and temporal stability, from risk attitudes
to the subjective representation of monetary outcomes and
probabilities (e.g., Booij, van Praag, & van de Kuilen, 2009;
Broomell & Bhatia, 2014; Kellen, Pachur, & Hertwig, 2016;
Scheibehenne & Pachur, 2015). But despite its many merits,
prospect theory is sloppy to some degree, and its param-
eters suffer from well-documented parameter trade-offs,
most notably between the outcome-sensitivity parameters o
and the choice-sensitivity parameter 6.

Constructing priors for prospect theory

To evaluate the Bayesian variant of the empirical-prior
approach in the risky-choice paradigm, we used the data
from Walasek and Stewart (2015, Experiment la and
1b). In these experiments, participants were faced with
a single-lottery accept-reject task, in which they were
offered a mixed lottery with two equiprobable outcomes

$20 —$12
( S50 .50
to decide whether to accept or reject such a lottery, a
decision that is assumed to imply a comparison between
the lottery and a status quo (with utility 0). This accept-
reject task is often used in neuroscientific investigations
(e.g., Tom, Fox, Trepel, & Poldrack, 2007; De Martino,
Camerer, & Adolphs, 2010; Canessa et al., 2013; Pighin,
Bonini, Savadori, Hadjichristidis, & Schena, 2014). Each

such as L = > Participants were asked
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participant completed all possible combinations of eight
different gains and eight different losses, resulting in a total
of 64 trials.

Walasek and Stewart’s (2015) study revolved around four
different between-subjects conditions that were designed to
specifically affect the loss-aversion parameter A. We will
focus on the two conditions that produced the most extreme
median A estimates. In the 40-20 condition (n = 191), gain
outcomes ranged from $12 up to $40 in steps of $4, whereas
losses ranged from $6 up to $20 in steps of $2. The 20-40
condition (n = 198) flipped the signs of these outcomes
(i.e., gain outcomes became losses and vice-versa). Walasek
and Stewart (2015) reported that the A estimates were
generally above 1 in the 40-20 Condition, indicating loss-
averse preferences, and below I in the 20-40 Condition,
indicating gain-seeking preferences.

We modeled the data with a streamlined version of
prospect theory, in which we assumed that w(p™) =
w(p~) = .50 (see Kellen, Mata, & Davis-Stober, 2017;
Levy & Levy, 2002; Quiggin, 1982):

1

P(AcceptL) = .
( p ) 1 + e—%(v(x*)—v(x*))

®)

Samples from the parameters’ posterior distributions
were obtained using a No-U-turn sampler (Hoffman &
Gelman, 2014) as implemented in Stan (Carpenter et al.,
2017) via the RStan interface (Stan Development Team,
2016b). We ran four randomly initialized chains in parallel
for initially 4,000 total iterations, out of which 2,000 were
used as a warm-up period to tune the sampler’s parameters.
These warm-up samples were discarded afterwards. The
remaining 2,000 iterations from each chain were thinned
and then concatenated, resulting in a total of 1,000 samples.
To assess convergence, we used the R statistic (Gelman
et al.,, 2013, p. 285) and assumed that convergence was
reached if all R < 1.01. If not, we repeated the sampling
procedure with twice as many iterations as before, until all
parameters converged or a maximum of 64,000 iterations
was reached. To avoid singularities in model expectations,
we set an upper limit of 2 for parameters o and 6, and
of 4 for parameter A. Also, to avoid numerical over- and
underflows, we restricted likelihoods to be between 1077
and 1 — 1077, Finally, we used uniform priors that spanned
the permitted range of each parameter.

The posterior samples from each individual were then
linearly transformed so they would all fall within the
[0, 1] range and then inverse-probit transformed into the
real space. We used multivariate GMMs (with estimation
of the full covariance matrix per multivariate kernel) to
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approximate the aggregated individual posterior distribution
of the parameters, separately for each of the two conditions.
To determine the best-performing GMMs (we considered
GMMs with up to ten component distributions), we used
leave-one-participant-out cross validation (see Vehtari &
Lampinen, 2002, for other variants of cross validation). The
parameters of the best-performing GMMs are reported in
Table 6 in the Appendix.

The simulation procedure was similar to the one used in
the first part of the paper, but extended by one additional
factor: For each of the two conditions, we generated data
from a uniform distribution within the restricted parameter
boundaries and from each of the two fitted prior distri-
butions. Afterwards, we obtained samples from the poste-
rior distributions using a uniform prior, the prior obtained
from fitting the 40-20 condition, or the prior obtained from
fitting the 20-40 condition. These samples were obtained
using a differential-evolution sampler (Ter Braak & Vrugt,
2008) as implemented in BayesianTools package (Har-
tig, Minunno, & Paul, 2017). Consequently, this resulted
in a 2 (condition) x 3 (ground-truth prior distribution)
X 3 (used prior) simulation design. Within each cell, we
obtained a total of 1,000 observations.

As dependent variables, we used the coverage ratio, the
r? across individuals of the true parameters and the mode
of the respective posterior distributions, and the proportion
of true parameters included in the 95% credible interval,
P(95%C1I). A low coverage ratio and a proportion close to
.95 of parameters included in the 95% credible interval hint
towards good parameter identifiability, and a high r2 reflects
a good recovery of the rank ordering of parameters across
individuals.

Results
Empirical prior in the 40-20 condition

The empirical distributions of parameters in the 40-20
condition mostly follow the expectations about prospect
theory parameter distributions reported in the literature
(Booij et al., 2009). We observed a slight tendency towards
risk aversion (i.e., the posterior distribution of « peaks
slightly below 1), a tendency towards loss aversion (i.e.,
most of the posterior mass of X is above 1), and choices that
are stochastic (i.e., the peak of the posterior distribution of
0 tends towards 0). It is noteworthy that the distribution of
A is multimodal. It looks like there are at least two peaks,
one around a value slightly below 2 and one at 1 (i.e.,
loss neutrality). See Fig. 5 (main diagonal, gray line) for
fine-grained histograms of the marginal distributions of the
parameters.
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Fig.5 Posterior distribution across individuals in the 40-20 condition of the risky choice paradigm and the Gaussian mixture model (GMM) that
was fitted to it. The main diagonal depicts the marginal distributions of the parameters of the posterior samples (gray line) and the fitted mixture
model (black line). Lower diagonal elements show the pair plots of the posterior samples, upper diagonal elements the pair plots of the fitted
mixture model. Parameters «, A, and 6 reflect risk aversion, loss aversion, and the scaling parameter of the logistic choice function, respectively

The inspection of joint parameter distributions (see
Fig. 5, lower diagonal elements) reveals strong dependen-
cies. The negative, curvilinear dependency between « and
0 resembles the dependency reported by Scheibehenne and
Pachur (2015). The multimodality of the A parameter makes
it difficult to interpret its interdependencies. Disregarding
the peak of A at 1, at which the parameter has no influ-
ence on decisions (and thus should not correlate with any
other parameter), A seems to be positively correlated with
o and negatively correlated with 6, a pattern that is not
very surprising: Larger values of A lead to a larger influence
of losses on the decision variable, which can be partially
compensated for by also increasing the symmetrical scal-
ing of both losses and gains («). These large values in the
decision variable, in turn, would lead to more determinis-
tic choices, which can be scaled down with lower values
of 6.

The best-fitting GMM in the 40-20 condition turned out
to be a mixture of three components (see Fig. 5, main

diagonal, black line for the marginal distributions of the
best-fitting GMM and Table 4 in the Appendix for the BICs
for all numbers of mixtures). Whereas the distributions of «
and 6 were approximated very closely, the multimodality of
A cannot be well accommodated with this solution.® Except
for the fan-like correlation of A with «, the GMM was able
to closely approximate the covariations found among other
parameter pairings.

Empirical prior in the 20-40 condition

The empirical distributions of parameters in the 20-40 con-
dition reflected the experimental manipulations reported by
Walasek and Stewart (2015). We observed risk neutrality
(i.e., the posterior distribution of o peaks at around 1), a

8 As a robustness check, we fit up to 30 mixture components to the data
of condition 40-20, but the fit of the mixture components got worse
with each added component.
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Fig.6 Posterior distribution across individuals in the 20-40 condition of the risky choice paradigm and the Gaussian mixture model that was fitted
to it. The main diagonal depicts the marginal distributions of the parameters of the posterior samples (gray line) and the fitted mixture model
(black line). Lower diagonal elements show the pair plots of the posterior samples, upper diagonal elements the pair plots of the fitted mixture
model. Parameters «, A, and 0 reflect risk aversion, loss aversion, and the scaling parameter of the logistic choice function, respectively

slight tendency towards gain seeking (i.e., the distribution of
A peaks slightly below 1), and stochasticity of choices. All
distributions were found to be unimodal, making it easier for
the GMMs to approximate them. See Fig. 6 (main diagonal,
gray line) for fine-grained histograms of the marginal dis-
tributions of the parameters. The inspection of the param-
eter distributions (see Fig. 6, lower diagonal elements)
only revealed a strong dependency between « and 6. This
ridge-like relationship is very similar to the one observed in
the distributions of the 40-20 conditions. Otherwise, there
were almost no dependencies observable. Note that this lack
of dependencies mainly results from the fact that neither
an « of 1 nor a A of 1 have any influence on the decision
variable. Therefore, distributions that are strongly peaked
around 1 cannot sensibly covary with other parameters.
The best-fitting GMM to the posterior distribution of
parameters in the 20-40 condition was a mixture of four
Gaussians (see Fig. 6, main diagonal, black line for the
marginal distributions of the best-fitting GMM and Table 4
for the BICs for all numbers of mixtures). Apart from
the height of the peak of A, all other aspects of the

@ Springer

empirical distributions, including the covariations, were
well approximated.

Simulation results

We simulated 1,000 virtual participants from each of 2
(experimental condition) x 3 (ground-truth prior) = 6 factor
combinations. We then refitted the data coming from each
of these virtual participants under three different conditions:
(a) using a uniform prior, (b) the empirical prior obtained
for the 40-20 condition, and (c) the empirical prior obtained
for the 20-40 condition. Just as in the first part of the paper,
we first report global results aggregated across all factors,
only then turning to the effects of matching conditions and
priors, and the influence of (mis)matches between them.
Results reported in Table 3 show that across all exper-
imental conditions, population distributions, and priors,
parameter A was recovered best, followed by « and 6. This
rank order holds for both the coverage ratio and r2. How-
ever, these results were far from satisfactory, as rz(k) = .30,
rz(a) = .11, and r2(9) = .02 across conditions. Also, the
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Table 3 Parameter recoverability of the fully Bayesian empirical-prior
method using streamlined prospect theory

Ground-truth  Used  Parameter P(95%CI) Coverage ratio r?

distribution  prior [M, Md, SD]
& condition

.59 [.20, .20, .04] .42

40-20 A .66 [.16,.15,.06] .74

0 57 [.50, .49, .07] .07

o 44 [.17,.16,.05] .33

40-20 20-40 A 31 [.10,.10,.02] .72

0 46 [.45, .44, .06] .02

o 78 [.49, .48, .22] .29

Uniform A 78 [.36, .36, .22] .52

0 .85 [.78, .95, .33] .06

o .57 [.23,.23,.02] 43

40-20 A .76 [.12,.09, .08] .69

0 52 [.52,.50,.07] .00

o 57 [.23,.24,.02] 43

20-40 20-40 A .68 [.07,.07,.02] .59

0 A48 [.48, .46, .06] .00

o .90 [.63, .61, .22] .19

Uniform A .87 [.32,.13, .31] .51

0 93 [.91, .98, .21] .01

P(95%C1) = Proportion of true parameters included in the 95%
credible interval. Coverage ratio = range of the 95% credible interval
divided by the parameter support (i.e., upper boundary — lower
boundary). r> = shared variance across individuals of the true
parameters and the mode of the respective posterior distributions.
o = curvature of the utility function. A = parameter governing the
importance of losses relative to gains. & = scaling parameter of the
logistic choice function

95% credible intervals included the true parameter values at
much lower rates than expected.

In cases where the prior used matched the data-
generating population and the condition, parameter recovery
was on average slightly better. In the case of the 40—
20 condition, this led to a significantly lower coverage
ratio for both A (M = .16, Md = .15, SD = .06)
and « M = 20, Md = .20, SD = .04).
While the coverage ratio for 6 decreased as well, it
remained somewhat unsatisfactory as it still spanned
roughly half of the range of possible values (M = .50,
Md = 49, SD = .07). The pattern of rank stability
shows a somewhat different picture though: Whereas
the correlation between the ground-truth values and
the posterior modes of A (r2 = 75 and o (r2 = 42)
improved dramatically (compared to the aggregated values),
it became worse for 6 (r> = .07). The proportion of

ground-truth parameters included in the 95% credible
interval barely changed (Mpin = .57, Mmax = .66). Very
similar results were found in the 20-40 condition.

The scenario in which the prior matched the data-
generating population as well as the condition is the most
optimistic one. This notion is important when considering
the rates at which the 95% credible intervals included
the true parameter values. With increasing sloppiness of a
model and fully Bayesian parameter estimation, one would
expect the credible intervals to widen without affecting
that rate. However, as shown in Fig. 7, the credible
intervals missed the true values much more often than
they should. This result shows that the challenges created
by parameter non-identifiability and sloppiness are not
automatically addressed by a fully Bayesian treatment.
Crucially, the posterior distributions appear well-behaved
and show no signs that anything might be wrong with the
model specification (see Fig. 7).

Let us now turn to the (perhaps more realistic) cases
in which there was a mismatch between the ground truth
and the modeling assumptions. Here, we report the results
from mixed mismatching between condition and prior used
(i.e., participants stem from the ground-truth prior from the
condition from which the priors were obtained, while the
prior that is used during re-fitting varies). Table 3 reports all
dependent variables for all the combinations analyzed here.
When using the empirical prior from 20-40 condition in the
fitting of data from the 20-40 condition, we observe lower
coverage ratios together with lower proportions of true
values included in the 95% credible interval. Both variables
improved when the uniform prior was used instead. Results
were somewhat similar when the mismatching data came
from the 40-20 condition.

General discussion

The present work evaluated the empirical-prior approach
for obtaining informative priors, which has been proposed
as a way to deal with problems concerning parameter
non-identifiability and model sloppiness (Gershman, 2016).
Using the reinforcement-learning data originally reported
by Gershman (2015), we first tested how the point-
estimate variant of the empirical-prior approach fared in
comparison with simple MLE. We found that neither
approach provided satisfactory results and that neither one
of them consistently outperformed the other. We then
considered potential variations of Gershman’s experimental
design as ways to improve recoverability. Modest but
encouraging improvements were observed when increasing
the number of trials per block or the number of options made
available to the participants. To assess whether the rather
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Fig. 7 Violin plots for 20 individual posterior distributions of random virtual participants in the risky choice paradigm. The ground-truth
parameters stemmed from the 40-20 prior in the 40-20 condition and were fitted using the 40-20 empirical prior. Thick bars represent the 95%
credible interval. Vertical red line represents the ground-truth parameter. Note that in expectation, the 95% credible interval should include the red
line in .95 of the cases (i.e., only one out of 20 red lines for each parameter should lie outside the credible interval). In that sample, eight, five, and
ten ground truths of «, A, and 0, respectively, lie outside the 95% credible interval. Parameters «, A, and 0 reflect risk aversion, loss aversion, and
the scaling parameter of the logistic choice function, respectively. The violin plots have been scaled vertically to fit their respective cells

poor performance of the point-estimate empirical-prior
method was specific to its application to reinforcement-
learning models (and the reliance on point estimates),
we developed a fully Bayesian extension to the method
and tested it in a streamlined variant of prospect theory
(Kahneman & Tversky, 1979). In line with the results
we obtained so far, we again did not observe a general
advantage of the empirical-prior method. Important, we
found that the true parameter values were often missed by
the estimates’ respective 95% credible intervals, even when
under a best-case scenario in which both the model and
priors are “true”. This result goes counter to the expectation
that parameter non-identifiability and sloppiness issues
are well captured by the posterior distributions such that
they should simply lead to wider posteriors. Instead, we

@ Springer

often find posterior distributions that are concentrated
in regions that do not include the true data-generating
values.

Fitting data from an experiment and plugging the
resulting parameter distributions as informative priors into a
separate model-fitting procedure is an elegant and easy-to-
implement procedure. Unfortunately, the informativeness of
these informative priors is limited, and the method does not
help solve the problem it was designed for. We showed that
even when the priors used for the model-fitting procedure
(be it using MAP or fully Bayesian estimation) are aligned
with the true underlying parameter distributions, there are
no systematic advantages of using informative over uniform
priors. In case of a mismatch, which in empirical settings
is likely to be the case, the ability to recover parameters
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can drop dramatically, even for rather simple models. Given
that the true underlying parameter distributions cannot be
recovered to a satisfactory degree, the ability to compare
group-level differences is also compromised.

In the case of Gershman’s (2015) baseline experiment,
we found that the main culprit for the poor recoverability
was the limited informativeness of the data. On average,
the parameters posterior distributions were well dispersed
across the ranges of possible values, making it practi-
cally impossible to reasonably interpret any point estimates
obtained through model fitting. Although some of these
problems could be ameliorated by extending the experimen-
tal design, such extensions can also introduce their own
set of practical problems. For instance, the increase of the
number of options implies an increase in terms of tasks
demands, which can in turn lead to individual preference
profiles that models have trouble accounting for (e.g., Ste-
ingroever et al., 2014, for a demonstration in the Towa gam-
bling task; Bechara et al., 1994). Similarly, full feedback can
lead to behavioral phenomena that are either unique to such
scenarios, like attention allocation to foregone outcomes
(e.g., Ashby & Rakow, 2016), or that at least differ consid-
erably from what is found in the case of partial feedback
(e.g., Plonsky, Teodorescu, & Erev, 2015, Plonsky & Erey,
2017; Yechiam, Stout, Busemeyer, Rock, & Finn, 2005).

Inversion versus inference

The concepts of parameter identifiability, recoverability,
and model sloppiness discussed here are instrumental when
attempting to infer the ground truth from data generated
by it. Within the context of this question of inversion,
identifiability and recoverability are of utmost importance,
as without them it is impossible to draw correct conclusion
about the underlying cognitive processes. For example,
the B and 6 parameters of the evaluated reinforcement-
learning models and prospect theory, respectively, had the
lowest recoverability of rank orders as reflected in 2 values
close to 0. In light of such poor parameter recovery, a
relatively high estimated parameter value was not predictive
of whether the “true” choice consistency of the respective
virtual participant was high or low.

However, such concerns do not carry over wholesale
when, for instance, one frames the problem of parameter
estimation as a question of inference. In this context,
the ability to recover the ground truth cedes the center
stage to the coherence of our relative support for the
different hypotheses. For example, consider a model-
selection scenario in which data are generated from a
complex model, but turn out to still be somewhat likely

under a much simpler candidate model. A greater support
for the simpler model is a sensible conclusion here as this is
the model that provides the best trade-off between goodness
of fit and parsimony, even if it did not generate the data
(Lee, forthcoming, pp. 60-61).° After all, models that are
“wrong” (e.g., simpler than the generative model) can still
be useful in predicting behavior (e.g., Lee & Webb, 2005).
Nevertheless, it would be unwise to assume that even under
such framing, we can completely divorce ourselves from
any concerns related with identifiability and sloppiness.
After all, it is still sensible to carefully evaluate the roles that
the different parameters in a model can play, and how these
can be ascertained under different experimental designs
(Broomell & Bhatia, 2014). And even if one is ultimately
not attempting to recover some ground truth, parameter-
recovery exercises in which a ground truth is known can
be seen as a sandbox that helps us to understand current
difficulties in disentangling the roles parameters play, and
develop ways to overcome them.

Conclusions

Computational models are popular tools to develop and test
psychological theories of cognition. For them to also be
useful tools, it is important to ensure that the parameters
obtained from fitting models to data provide an accurate
characterization of the underlying cognitive processes. If the
data are not suited to inform us about the model parameters,
as in the simple probability learning task used by Gershman
(2015), then this requirement is not fulfilled. Informative
priors used during the model fitting procedure can be
helpful for estimating parameters (see Lee & Vanpaemel,
2017), however, they do not constitute a panacea for the
identifiability or sloppiness problems that often arise when

9The concerns with model identifiability are also minor when framing
the problem of parameter estimation as a mechanism for obtaining
model expectations. For example, the very same reinforcement-
learning models discussed here are often applied to obtain model-
based estimates (e.g., reward expectations at the end of a learning
phase) that can be compared with different variables, such as
the blood-oxygenation-level dependent activity in the brain (e.g.,
Leong, Radulescu, Daniel, DeWoskin, & Niv, 2017; Jocham, Klein,
& Ullsperger, 2011; Frank et al.,, 2015; Niv, Edlund, Dayan, &
O’Doherty, 2012; see Lee, Seo, & Jung, 2012, for an overview). These
results are entirely unaffected by non-identifiability (and only weakly
affected by sloppiness), as all of the infinite parameter combinations
that result in equal likelihoods necessarily stem from identical reward
expectations (up to a scaling factor that is proportional to the scaling
parameter of the error model).
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using non-informative experimental designs. In contrast,
simple adjustments in the experimental design can often
improve parameter recoverability. Based on these results,
we conclude that researchers should invest more of their
efforts in assessing and improving the information content
of their experimental designs instead of relying on statistical
methods after the fact. In the end, whether empirical priors
help or not (and how much) is a shot in the dark, as they

Appendix

only seem to help in some of the rare cases in which there is
a match between the priors and population distribution.
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Table4 Bayesian information criteria of the Gaussian mixture models for each of the substantive models

Number of mixture kernels

Model Parameter/Condition 1 2 3 4 5 6 7 8 9 10

M n 907 876 871 731 739 746 754 762 770 781
1

B 880 689 607 591 600 608 602 611 623 633
nt 891 851 848 858 867 872 881 897 912 937
M, n- 900 849 694 713 695 714 725 735 747 752
B 932 808 706 709 720 698 699 704 717 722
n 861 805 800 801 813 817 826 828 838 851
M; B 729 536 534 542 547 560 569 581 594 602
w 804 364 265 222 200 197 206 215 226 232
nt 910 847 812 790 792 798 811 817 820 821
M, n~ 883 823 768 755 757 763 779 789 795 806
B 728 581 585 592 600 607 615 622 633 642

w 794 294 156 82 72 55 49 52 59 66
PT 40-20 130 120 119 120 120 122 123 124 125 127
20-40 127 113 114 110 113 112 114 115 116 117

See “Models” and “Constructing priors for prospect theory” for model specifications of the reinforcement-learning models and prospect theory
(PT), respectively. The Bayesian information criteria were obtained by fitting the Gaussian mixture models to the marginal distributions of each
of the parameters 500 times (reinforcement-learning models) or by using leave-one-participant-out cross validation (prospect theory). Highlighted
cells are the best-fitting solutions for the respective parameters. The reported values for prospect theory are scaled down and rounded to 10*
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Table 5 Mixture components of the empirical priors for each of the Table5 (continued)
reinforcement-learning models
Model Parameter Mixture " o w
Model Parameter Mixture “w o w component
component
1 —0.09 0.19 33
1 —013 076 .53 2 —002 003 20
0 2 622 047 22 3 000 000 .16
3 -253 040 .14 © 4 —096 252 .11
M 4 —562 040 .10 5 —632 008 .10
1 1 i 05 6 600 046 05
) 6.14 0.65 14 7 0.00 0.00 .04
B . . .
3 —6.10 0.31 13
4 0.60 0.49 03 See “Models” for model specifications. The mixtures are defined on
the real space; For the correct parameter space, the mixture draws have
1 0.83 4.79 44 . . e .
to be transformed according to the formulae provided in “Empirical
n* 2 —0.66 0.97 37 priors”. Note that mixture components 3 and 7 for the @ parameter of
3 —2.35 0.33 .19 model My are, in fact, not identical, but only differ after the second
M, decimal. w = mixture weight
1 —0.14 1.39 71
n 2 6.17 0.30 21 Table 6 Mixture components of the empirical priors for prospect
3 —-634 008 .08 theory
1 —~155 0.44 49 Condition Parameter(s) Mixture Mixture Mixture Mixture
2 6.00 051 .25 1 2 3 4
B 3 7396 02910 o -0.17 017  0.13
4 —235 02907 I A -0.19 015 -025
> 2.3 210 06 0 037 -0.82 0.05
6 2.95 0.17 .03
1 —0.46 1.11 .67 o 0.05 0.15 0.91
2
n 2 3.52 3.71 .30 40-20 oy A 0.14 0.49 1.12
3 —6.20 0.17 .04 0 0.61 0.39 1.20
1 —1.82 0.61 .81 a, A -0.01 -0.02 0.02
B 2 0.29 2.04 13 oxy o, 0 -0.09 -020 -0.28
3 5.95 0.45 .06 A0 -0.03 -0.07 0.01
M;j
1 —0.10 0.34 .36 w .39 31 .29
2 —0.02 0.04 24 o -0.01 -0.19 052 0.78
1) 3 0.00 0.00 .18 n A -080 -024 -0064 -0.70
4 —6.25 0.51 12 0 0.14 -0.03 -1.09 046
5 6.20 0.38 .06
6 _1.63 032 o4 . o 0.08 0.68 0.28 0.48
o e we oo
nt 2 5.69 0.80 24 ) ) ) )
3 =541 044 .07 a -0.02 018 -008 0.00
M 4 635 002 .05 oxy a6 013 -0.19 -020 -045
4
| 0.10 0.81 6 A0 0.01 0.18 0.01 0.03
N 2 —-504 L1215 w 49 19 18 15
3 6.20 0.23 .15
4 409 0.9 08 The mixtures are defined on the real space; For the correct parameter
| 192 0.54 7 space, the mixture draws have to be inverse-probit transformed and
B ’ ’ ’ then multiplied with the parameter boundaries of 2, 4, and 2 for «, A,
2 1.68 2.29 .29

and 0, respectively. w = mixture weight
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