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Abstract When people are biased to use one response more
often than an alternative response in a decision task, they
also make the preferred response more quickly. Sequential
sampling models can accommodate this difference in re-
sponse time (RT) by changing the relative amount of evi-
dence that must accumulate to decide in favor of one versus
the other response, but nondecision processes might also
play a role, such as the amount of time between selecting
and executing a response. We investigated the influence of
decision and nondecision processes in two experiments. In
Experiments 1a and 1b, arrows appeared on the screen, and
participants were asked to move a joystick in the direction
of the arrow or make a keypress as quickly as possible.
Results showed that motor execution times were faster for
expected directions than unexpected directions. In
Experiments 2a and 2b, participants decided whether a high
or low number of asterisks was displayed on the screen.
Decision times were faster for the stimulus class that wasmore
likely to appear, and this effect was larger when participants
could anticipate both the likely stimulus class and the motor
response needed to identify it than when they knew the likely
stimulus class but the associated motor response changed
probabilistically from trial to trial. These results show that

both decision and nondecision factors contribute to bias ef-
fects on RT.

Keywords Response biases . Response time . Sequential
samplingmodels . Nondecision time

Imagine that you are at a social gathering, and you see
someone quickly approaching for a conversation. In sec-
onds, you must decide whether or not you have met this
person before. Your decision will obviously be informed
by the characteristics of the person, but you might also
consider contextual information, such as whether the
guests are mostly people that you have met before (e.g.,
it is your high-school reunion) or mostly people that you
have not met before (e.g., it is your partner’s high-school
reunion). The influence of this contextual information is
often referred to as Bbias^ because it affects decisions
independently of the characteristics of a target stimulus.
For example, you might decide that an approaching person
who is moderately familiar is someone that you met before if
you are at your own reunion, but make the opposite decision if
you are at your partner’s reunion.

Psychologists have extensively investigated the cognitive
processes involved inmaking simple decisions such as the one
described above. The most successful models have been se-
quential sampling models (e.g., Ratcliff & Smith, 2004),
which assume that decisions are made by accumulating infor-
mation from a stimulus over time. The information available
in any small time window (a Bsample^) is assumed to be very
noisy due to external variation in the stimulus and/or intrinsic
variation in the processing system (e.g., neural noise). To deal
with this uncertainty, the models collect new samples until the
amount of evidence in favor of one decision meets a criterion.
Decision biases can be introduced in the models by changing
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the amount of information needed to make one response ver-
sus the alternative response.1 Other crucial processing com-
ponents of these models are the quality of evidence, the cau-
tion of the decision maker, and the time required for
Bnondecision^ processes such as hitting a response key after
the decision is made.

Sequential sampling models have been very successful in
accommodating the effects of response bias on both response
proportions and response time (RT) distributions (e.g., Criss,
2010; Ratcliff &McKoon, 2008; Starns, Ratcliff, &McKoon,
2012; Starns, Ratcliff, & White, 2012; Voss, Rothermund, &
Voss, 2004). When participants are biased to use a response
more frequently than an alternative response, they are also
quicker to make the preferred response for both correct and
error responses. This speedup is a natural product of the way
that bias is represented in the models: If less information must
accumulate to trigger a biased response, then the accumulation
process leading to a biased response should be faster.

Although bias effects on RT can be successfully modeled
by changing only bias parameters, nondecision time might
also contribute to faster RTs for biased responses (Voss,
Voss, & Klauer, 2010). That is, people might be faster when
executing expected movements than unexpected movements,
so the motor execution time following a decision could be
faster for the response that is consistent with the prevailing
bias. Using parameter recovery simulations, Voss et al. (2010)
showed that introducing differences in nondecision time
across responses can lead to severe distortions in parameter
estimates in the diffusion model, one of the most popular
sequential sampling models. These problems with parameter
estimation mean that researchers are at risk of making incorrect
conclusions about the underlying cognitive processes involved
in biased decision making. Thus, empirically determining
whether or not bias affects nondecision processes is an impor-
tant goal for the community of researchers who use sequential
sampling models.

We explored the extent to which bias effects on RT are
produced by changes in decision time versus nondecision time
by attempting to selectively influence these components. Our
first experiment was designed to explore the motor require-
ments of biased responding, and we were especially interested
in whether RTs were faster for expected than for unexpected
movements. The task itself was quite simple: An arrow ap-
peared on the screen, indicating the direction to move the
joystick (or which key to press in Experiment 1b), and partic-
ipants were asked to complete the movement as quickly as
possible when they saw the arrow. The arrows were offset

from the center of the screen in the same direction that they
pointed, so it was very easy to discriminate the different arrow
stimuli. We did this to minimize the need to accumulate evi-
dence for an uncertain decision outcome, allowing us to focus
on the motor execution process.

To explore the effects of anticipating a movement on re-
sponse time, we compared a range of conditions from blocks
with only one possible movement to blocks with four possible
movements. If response preparation has an effect, then partic-
ipants should make movements more slowly when multiple
directions are possible. We also explored anticipation effects
with a standard bias manipulation. That is, some multiple-
direction blocks introduced biases in the frequency with
which each direction appeared to determine if motor execution
times were faster for the more frequent direction. If bias ma-
nipulations affect motor execution times, then we should see a
bias effect on RT in the arrow task even though it essentially
eliminates the need to accumulate evidence for an uncertain
stimulus classification. Finally, we directly compared the joy-
stick response modality with more typical keypress responding
for the two-direction conditions.

Although the arrow task should have minimal decision
requirements, we cannot completely rule out the possibility
that decision processes produced any potential bias effects in
this task. To address this limitation, Experiment 2 explored the
effect of response bias on a standard decision-making task.We
used a numerosity task in which a variable number of asterisks
appeared on the screen and participants had to quickly decide
if a high or low number was presented (Ratcliff, Thapar, &
McKoon, 2001). High and low stimuli were equally likely to
appear in neutral blocks, and in biased blocks each trial was
preceded by a hint about which stimulus class was likely to
appear on the trial.

We explored the relative contributions of decision and non-
decision time by comparing different Bmapping^ conditions
within Experiment 2. In the constant-mapping condition, the
same movement was used to respond Bhigh^ or Blow^ on
every trial. Thus, biased blocks allowed participants to antic-
ipate both the likely stimulus class and the likely response, and
both decision and motor preparation factors could contribute
to the bias effect on RT. In the variable-mapping condition,
trials switched unpredictably between a horizontal or vertical
response orientation such that there were two responses for
Bhigh^ (e.g., up or to the left) and two responses for Blow^
(e.g., down or to the right). Whether the participant should
respond with the horizontal or vertical orientation was cued
on each trial immediately after the asterisk stimulus was pre-
sented. Thus, participants could anticipate the likely stimulus
class for biased blocks but could not anticipate the movement
required for the response, preserving the role of decision fac-
tors but minimizing the effects of motor preparation. A size-
able effect in the variable-mapping condition would provide
evidence for the role of decision processes because nondecision

1 Sequential sampling models incorporate two mechanisms for introducing
response biases: changing the amount of information that must accumulate
for a response and changing the standards for which response is supported
by a given evidence sample (e.g., Starns, Ratcliff, & White, 2012). We focus
on the first because it is the type of bias primarily affected by stimulus pro-
portion manipulations.
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factors should be minimized. By the same logic, a larger effect
in the constant-mapping condition than in the variable-
mapping condition would provide evidence for the role of
nondecision processes.

Our predictions for the mapping manipulation rest on the
assumption that knowing which one of two responses to an-
ticipate speeds motor execution times in the constant-mapping
condition, but knowing which two of four responses to antic-
ipate has little or no effect in the variable-mapping condition.
Another goal of Experiment 1 was to test this assumption
directly by comparing two types of blocks in the arrow task:
(1) blocks in which one direction had a 75% chance of
appearing and a second direction had a 25% chance, and (2)
blocks in which two directions each had a 37.5% chance of
appearing and another two directions each had a 12.5%
chance of appearing. The first type of block was analogous
to the constant-mapping condition (two possible responses),
and the second type was analogous to the variable-mapping
condition (four possible responses). If the logic underlying our
predictions holds, then the RT difference between probable
and improbable directions should be larger on the two-
direction blocks than on the four-direction blocks.

Experiments 1a and 1b

Method

Participants University of Massachusetts Amherst under-
graduates participated to earn extra credit in their psychology
courses. We ran 47 participants for Experiment 1a and 22 for
Experiment 1b.

Procedure

Each trial began with either one, two, or four thin (1 pixel
wide) arrows on the screen. At some point, a thick (4 pixels
wide) arrow appeared covering (one of) the thin arrow(s).
Each arrow began at the center of the screen and extended left,
right, up, or down. The participant was instructed to respond
with the direction of the thick arrow as quickly as possible
when it appeared. The thick arrow appeared after a delay of
300 ms plus a value sampled from an exponential distribution
with a mean of 400 ms. Delays were truncated at 3 s.

In Experiment 1a people responded with a joystick, and
there were five block types differing in the number of possible
arrow stimuli and whether the presentation frequencies were
biased (B) or unbiased (U). For single-arrow (simple-reaction
time) blocks, the arrow pointed the same direction on every
trial, and both the thin and thick arrows were displayed with
white lines on a black screen. For two-arrow unbiased (2U)
blocks, the trial began with thin white arrows pointing both
left and right, and the thick arrow appeared in one of these

directions with equal probability. For two-arrow biased (2B)
blocks, the thick arrow appeared in one direction 75% of the
time and in the other only 25% of the time. The more likely
direction was left for half of these blocks and right for half.
The arrows pointing in the likely and unlikely directions were
displayed in green and red, respectively, and participants were
informed of this. For four-arrow unbiased (4U) blocks, four
thin white arrows appeared at the beginning of the trial
pointing left, right, up, and down, and the thick arrow ap-
peared in one of these four directions with equal probability.
For four-arrow biased (4B) blocks, one vertical and one hor-
izontal direction each had a 37.5% chance of displaying the
thick arrow (e.g., left and up), and the other two each had a
12.5% chance (e.g., right and down). Arrows for the two
more-likely directions were displayed in green and the others
were red. Participants completed five practice blocks (one for
each block type) followed by 14 critical blocks of 64 trials
each in a random order (two one-arrow, two 2U, two 4U, four
2B, and four 4B blocks).

Experiment 1b had only two-arrow biased blocks, and par-
ticipants responded with either the joystick or by pressing Bz^
or B/^ for Bleft^ and Bright.^ Participants completed two prac-
tice blocks followed by 12 critical blocks with 64 trials each.
Half of the blocks were randomly assigned to each response
modality.

Results and discussion

Raw data for all experiments are available on the Open
Science Framework (https://osf.io/ws3cj/). We analyzed
results using Bayesian t tests with a standard or folded unit-
normal prior on effect size for nondirectional and directional
tests, respectively. Bayes factors were often very small, so we
report results in terms of the posterior probability of either the
alternative (alt.) or null hypothesis (whichever was favored)
assuming equal prior probabilities.

As in previous research (e.g., Fay, 1936), simple reaction
times to a single stimulus were quite fast: a typical participant
had a median of 279 ms for the one-arrow condition. RTs
slowed when there were more possible responses (351 and
388ms for two and four arrows unbiased, respectively), which
is consistent with the idea that motor execution times are
slower when it is more difficult to anticipate the required re-
sponse. However, a typical RT median was below 400 ms
even in the four-arrow blocks, and the low RTs across all
conditions suggest that the arrow task is very easy and has
minimal decision requirements, as intended. Further
supporting this claim, errors occurred on less than 2% of trials
for all blocks types.

Figure 1b shows the effect of response bias on RT medians
for correct responses. The two-arrow-biased blocks are la-
beled as constant mapping and the four-arrow-biased blocks
are labeled as variable-mapping because these conditions have
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similar response requirements to the corresponding conditions
in Experiment 2. For Experiment 1a, participants responded
more quickly when the arrow pointed in the expected direc-
tion than in the unexpected direction, t(46) = 7.29, p(alt.) >
.99. The bias effect was larger with constant mapping (30 ms)
than with variable mapping (8 ms), t(46) = 5.85, p(alt.) > .99.
There was clear evidence for an effect even with variable
mapping, t(46) = 3.36, p(alt.) = .96. For Experiment 1b (which
only used constant mapping), people were again faster for
expected than unexpected responses both when they
responded with the joystick (297 vs. 324 ms), t(21) = 5.28,
p(alt.) > .99, and when they responded with the keyboard (286
vs. 308 ms), t(21) = 5.81, p(alt.) > .99. RTs were very similar
across the two response modalities, and a test comparing the
size of the bias effect across modalities found suggestive ev-
idence for the null hypothesis, t(21) = 1.24, p(null) = .70.

The most important implication of these results is that peo-
ple make expected responses more quickly than unexpected
responses even in a task with minimal decision requirements.
Experiment 1b showed that this pattern was not unique to the
joystick response modality. In subsequent experiments we use
the joystick to facilitate four-option responding in the
variable-mapping conditions, but Experiment 1b suggests that
the conclusions can be generalized to keypress responding.

Experiments 2a and 2b

Method

ParticipantsUniversity of Massachusetts Amherst undergrad-
uates participated to earn extra credit in their psychology

0 20 40 60 80 100

Number of Asterisks

A

300

350

400

450

500

B

R
T 

M
ed

ia
n 

(m
s)

Cons. Map. Var. Map.

Expected

Unexpected

500

600

700

800

900

1000

1100

1200

C

R
T 

M
ed

ia
n 

(m
s)

Cons. Map. Var. Map.

Expected

Unexpected

500

600

700

800

900

1000

1100

1200

D

R
T 

M
ed

ia
n 

(m
s)

Cons. Map. Var. Map.

Expected

Unexpected

Fig. 1 a Distributions for the number of asterisks displayed for Blow^
(gray) and Bhigh^ (black) stimuli in Experiment 2. b Average correct RT
medians for the expected and unexpected stimulus in the constant-

mapping (Cons. Map.) and variable-mapping (Var. Map.) conditions of
Experiment 1a. c Same for Experiment 2a. d Same for Experiment 2b.
Error bars on all plots are 95% confidence intervals
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courses. For Experiment 2a, we ran 62 participants with con-
stant mapping and 57 with variable mapping. Participants with
accuracy below .55 in the unbiased condition were excluded
from analyses, resulting in the loss of one constant-mapping
participant and two variable-mapping participants. For
Experiment 2b, we ran 33 participants and excluded one from
analyses for near-chance accuracy.

Procedure We used a numerosity task in which a variable
number of asterisks appeared on the screen and participants
were instructed to quickly decide whether the stimulus came
from a high set or a low set. To construct the stimulus display
for each trial, each position on a 10 × 10 grid was randomly
assigned to display either an asterisk or a space with a proba-
bility parameter p, with p > .5 for high stimuli and p < .5 for
low. To introduce additional variability beyond the binomial
distributions produced by this process, the probability of
displaying an asterisk in each position switched between .36
or .45 for low stimuli and .55 and .64 for high stimuli, pro-
ducing the distributions seen in Fig. 1a. As in previous appli-
cations of this task (e.g., Ratcliff et al., 2001), the distributions
overlapped such that some errors were unavoidable.

For Experiment 2a, each participant completed two prac-
tice blocks of 70 trials each and six critical blocks of 96 trials
each. Half of the blocks were Bhint^ blocks and half were Bno
hint^ blocks. On hint blocks, trials began with a message
reading BProbably H^ or BProbably L^ to indicate that the
display for that trial had a 75% chance of coming from the
high or the low set, respectively. Trials with the two cues were
randomly intermixed and occurred with equal probability.
Trials in no hint blocks began with a message reading BNo
Hint,^ and participants were informed that there was an equal
chance of high and low. Participants pressed the right
Bbumper^ on the game controller to initiate the stimulus dis-
play. The asterisk display remained on the screen for 250 ms
and was immediately followed by a screen showing the re-
sponse mapping (the short duration of the stimulus display
ensured that participants would not have to delay responding
to wait for the response mapping). For constant-mapping par-
ticipants, the response display showed an BH^ and BL^ side-
by-side in the center of the screen. When they were ready to
respond, theymoved the joystick in the direction of the BH^ or
BL^ to respond Bhigh^ or Blow.^ The mapping of responses to
directions was selected randomly for each participant but was
constant across the session within a participant. Variable-
mapping participants saw the horizontal response mapping
described above on 50% on the trials and a vertical mapping
on the other 50%. The vertical mapping showed an BH^ and
BL^ one on top of the other, and participants had to move the
joystick up or down to select a response. Trials with a vertical
and horizontal response mapping were randomly intermixed.

Experiment 2b used only the hint condition and alternated
between blocks of constant and variable mapping. The

mapping condition was signaled to participants before each
block with the messages Bleft-right only^ (constant mapping)
or Bdirection will switch^ (variable mapping). Participants
completed one 45-item practice block with variable mapping
followed by twelve 96-item critical blocks. Sessions ended
either when all blocks were complete or after 42 min. The
critical blocks were evenly divided between constant and var-
iable mapping with a new random order for each participant.

Results

Participants used the correct response orientation on variable
mapping trials an average of 97% of the time for Experiment
2a and 95% for Experiment 2b. We included trials with orien-
tation errors in all analyses and coded them as correct if par-
ticipants indicated the correct stimulus class even though they
used the wrong orientation. The reported results do not change
in anymeaningful way if these trials are excluded. Participants
responded correctly on 80% of the trials on unbiased blocks in
Experiment 2a. With the distributions that were used (see
Fig. 1a) the maximum possible accuracy is 92%. The fact that
participants were well below this value means that many er-
rors were driven by imprecise perception of the number of
asterisks displayed. On the hint blocks, accuracy was 87%
for the expected stimulus category and 66% for the unexpect-
ed category in Experiment 2a, with corresponding values of
86% and 67% for Experiment 2b. This pattern demonstrates
that participants used the hint information to inform their
choices. Accuracy levels were very similar with constant and
variable mapping across all trial types in both Experiment 2a
(.80 and .79 for no hint; .87 and .87 for expected stimuli; .67
and .64 for unexpected stimuli) and 2b (.85 and .86 for expected
stimuli; .67 and .67 for unexpected stimuli).

Figure 1c shows correct RT medians for Experiment 2a.
RTs were longer with variable than with constant mapping,
t(114) = 11.87, p(alt.) > .99. As in the arrow task, RTs were
shorter for the expected direction than the unexpected direc-
tion for both the constant-mapping condition, t(60) = 10.95,
p(alt.) > .99, and the variable-mapping condition, t(54) = 8.36,
p(alt.) > .99. The bias effect was larger with constant mapping
(103 ms) than with variable mapping (59 ms), t(114) = 3.67,
p(alt.) > .99. Figure 1c shows data for Experiment 2b. Bias
effects were smaller overall than in Experiment 2a, but the
difference between experiments is unlikely to be systematic
given that they used identical bias manipulations. Experiment
2b replicated Experiment 2a by showing faster RTs for expect-
ed responses in both the constant-mapping condition, t(31) =
8.39, p(alt.) > .99, and the variable-mapping condition, t(31) =
8.80, p(alt.) > .99, with a larger bias effect for constant map-
ping (66 ms) than for variable mapping (37 ms), t(31) = 4.20,
p(alt.) > .99.

If the mapping manipulation affects nondecision times,
then it should affect not just the median of the RT distribution
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but also the Bleading edge.^ We evaluated this by replicating
the analyses above on the .1 quantile of the RT distribution
(the time at which 10% of responses have already been made).
All of the patterns reported for median RTs were also observed
for the .1 quantiles.Most critically, the leading edge was lower
for expected than for unexpected responses in both the
constant-mapping condition [81 ms bias effect for
Experiment 2a, t(60) = 10.65, p(alt.) > .99; 59 ms bias effect
for Experiment 2b, t(31) = 6.26, p(alt.) > .99] and the variable-
mapping condition [59 ms bias effect for Experiment 2a, t(54)
= 9.87, p(alt.) > .99; 33ms bias effect for Experiment 2b, t(31)
= 4.79, p(alt.) > .99]. The bias effect on leading edge was
larger with constant than with variable mapping, with sugges-
tive support for a mapping effect in Experiment 2a, t(114) =
2.21, p(alt.) = .65, and strong support in Experiment 2b, t(31)
= 3.12, p(alt.) = .96.

We claim that the bias effect on RT is larger with constant
mapping because variable mapping attenuates nondecision
time differences for expected versus unexpected movements.
An alternative explanation is that our variable-mapping con-
dition simply disrupted the bias manipulation. We tested this
possibility by evaluating whether the bias effect on accuracy
was also larger with constant than with variable mapping. If
variable mapping simply disrupts the bias effect, then it should
attenuate the effect in accuracy as well as RT. In contrast,
nondecision time uniquely affects RT. The accuracy bias ef-
fect in Experiment 2a was very similar in size for the constant-
mapping (.21) and variable-mapping (.23) conditions, and a
directional t test supported the null, t(114) = −0.79, p(null) =
.90. The same held for Experiment 2b, which had a .18 bias
effect in accuracy for both mapping conditions, t(31) = −0.13,
p(null) = .86. Thus, our results support the claim that nonde-
cision time plays a role in bias effects by showing that the
mapping effect is unique to RT, with no effect on accuracy.

Diffusion modeling

In this section, wemore carefully consider the mechanism that
produces our mapping effect from the standpoint of a partic-
ular sequential sampling model, the diffusion model (Ratcliff
& McKoon, 2008). The diffusion model assumes that evi-
dence accumulation proceeds toward an upper or lower
boundary, with an average drift rate representing the strength
of evidence gleaned from the stimulus. Accumulation con-
tinues until one of the boundaries is reached, and then the
response associated with that boundary is made. Biases can
be introduced by moving the starting point of evidence accu-
mulation closer to one boundary than the other or by shifting
drift rates up or down across all conditions (i.e., changing the
Bdrift criterion^; Starns, Ratcliff, & White, 2012). Our goals
for this section are (1) to make sure that parameters with our
joystick responding are similar to previous fits of the asterisk

task and (2) to compare the empirical results with predictions
produced by changing different model parameters. We do not
use the model to try to estimate different nondecision times
across responses or compare models with and without differ-
ent nondecision times, because the model is not able to do this
effectively with a typical number of observations (Voss et al.,
2010). The full modeling details are described in the Diffusion
Modeling section available in the Supplementary Material and
the Open Science Framework (https://osf.io/q486r/).

To compare with previous fits, we fit the constant-mapping
data using standard modeling procedures. The results were
well in line with previous asterisk-task fits, as detailed in the
Diffusion Modeling supplement. This suggests that our joy-
stick response procedure produces results comparable to a
keypress procedure. To explore the mechanisms driving our
mapping effects, we took the best fitting parameters for each
participant, adjusted one parameter to match the mapping ef-
fect in median correct RT, and compared the mapping effect
on accuracy with these parameters to the observed accuracy
effect.2 We considered scenarios in which the mapping effect
was produced because the variable-mapping procedure dis-
rupts the bias manipulation (in terms of either stating point
or drift-rate biases) or because it attenuates the nondecision
time advantage for expected responses. Accommodating the
mapping effect on RT in terms of starting-point bias produces
a .07 mapping effect on accuracy, and drift-rate bias has a .25
mapping effect. The observed mapping effect on accuracy was
−0.003 (95% CI [−0.041, 0.036]), much more in line with the
null effect predicted by the nondecision time mechanism than
the effects predicted by a starting-point or drift-biasmechanism.

General discussion

Our results support the claim that both motor and decision
factors contribute to RT bias effects in simple decision tasks.
Supporting a role for decision factors, we found a clear effect
of bias on RT even in the variable-mapping conditions of
Experiment 2—conditions that should minimize nondecision
factors like motor preparation. The relative size of the bias
effects in Experiment 1 versus Experiment 2 also support a
role for decision processes. Across both mapping conditions,
bias effects were larger in the task that involved making deci-
sions from uncertain evidence (Experiment 2) than the task
that used easily discriminable arrow stimuli (Experiment 1).
Supporting a role for nondecision factors, participants in
Experiment 1a responded more quickly when they knew
which movement would be required (one-arrow blocks) than
when they could not anticipate the movement (two- and four-
arrow blocks). For two-arrow blocks with unequal stimulus

2 We used data from Experiment 2b because the within-subject design allowed
us to define a mapping effect for each participant.
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frequencies, participants were faster to make the expected
movement than the unexpected movement in Experiments
1a and 1b. These effects provide evidence that motor execu-
tion times are faster when the required response can be antic-
ipated. Alternative explanations are possible, however, as we
cannot be sure that the task completely eliminates the need to
accumulate evidence. Stronger support for nondecision fac-
tors is provided by the fact that bias effects in the asterisk task
were larger with constant mapping than with variable map-
ping. Moreover, the fact that the mapping effect was observed
in RT but not accuracy shows that it is best explained by
nondecision time as opposed to bias parameters.

Researchers usually ignore potential nondecision effects
when modeling bias manipulations (e.g., Criss, 2010;
Ratcliff & McKoon, 2008; Starns, Ratcliff, & McKoon,
2012; Voss et al., 2004), and Voss et al. (2010) demonstrated
that this practice distorts parameter estimates if nondecision
times truly differ across responses. Our results show that a
standard bias manipulation does affect nondecision (motor
execution) time, so theorists will need to explicitly model
nondecision effects to make accurate conclusions about the
cognitive processes that produce response biases. Voss et al.
proposed a model with free nondecision time parameters for
each response instead of a single parameter across all re-
sponses (the standard practice). This solution could be bene-
ficial for experiments with a very large number of conditions
and many observations, but introducing free nondecision pa-
rameters greatly increases model flexibility and results in poor
parameter recovery in typical research scenarios (Voss et al.,
2010). Verdonck and Tuerlinckx (2016) developed a method
for estimating diffusion model parameters without specifying
the distribution of nondecision times, and this technique might
provide a more accurate characterization of bias effects on
decision processes than fitting the standard diffusion model.
Both of these techniques rely on the assumption that the dif-
fusion process accurately characterizes the decision times in
order to estimate nondecision time.

Cognitive psychologists are faced with the difficult task of
identifying and measuring underlying processes from observ-
able behavior. Decision theorists have progressed admirably in
terms of identifying processing components from fits to accu-
racy and RT data, with many reported successes in detecting

changes in components such as response caution and informa-
tion quality (e.g., Ratcliff & McKoon, 2008; Voss et al., 2004).
Despite many successes, the models still handle nondecision
processes in a rudimentary fashion. Our results show that think-
ing more carefully about the interplay of decision and nonde-
cision processes will be an important advance.

Author note Preparation of this article was supported by Grant No.
1454868 from the National Science Foundation.
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