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Abstract The relationship between visual attentional selec-
tion of items in particular spatial locations and selection by
nonspatial criteria was investigated in a partial report experi-
ment with report of letters (as many as possible) from brief
postmasked exposures of circular arrays of letters and digits.
The data were fitted by mathematical models based on
Bundesen’s (Psychological Review, 97, 523-547, 1990) theory
of visual attention (TVA). Both attentional weights of targets
(letters) and attentional weights of distractors (digits) showed
strong variations across the eight possible target locations, but
for each of the ten participants, the ratio of the weight of a
distractor at a given location to the weight of a target at the
same location was approximately constant. The results were
accommodated by revising the weight equation of TVA such
that the attentional weight of an object equals a product of a
spatial weight component (weight due to being at a particular
location) and a nonspatial weight component (weight due to
having particular features other than locations), the two com-
ponents scaling the effects of each other multiplicatively.

Keywords Visual selective attention . Computational
modeling . Object-based and location-based attention . TVA

The relationship between visual attentional selection based on
spatial location and selection by nonspatial criteria such as
color and shape has long been debated (see, e.g., Bundesen,
1993; Logan, 1996; Maunsell & Treue, 2006; Scholl, 2001;
van der Velde & van der Heijden, 1993). One issue is whether
selection by location is special (Bundesen, 1991; Nissen,
1985; Pilz, Roggeveen, Creighton, Bennett, & Sekuler,
2012; van der Heijden, 2004). While some studies suggest
that location is special (e.g., Moore & Egeth, 1998; Posner,
Snyder, & Davidson, 1980), others have indicated that selec-
tion by spatial and nonspatial criteria have similar effects on
performance (e.g., Maunsell & Treue, 2006), although the
effects occur with different delays after stimulus presentation
(Liu, Stevens, & Carrasco, 2007) and are likely mediated by
different mechanisms (Ling, Lui, & Carrasco, 2009; White,
Rolfs, & Carrasco, 2015). A related issue is the way in which
selection based on spatial location interacts with selection
based on nonspatial criteria. Here too, there is no clear agree-
ment. Andersen and colleagues (2011), for example, found
that selection by spatial and nonspatial criteria influenced the
amplitude of visually evoked potentials, as measured by EEG,
in an additive manner, with virtually no interaction between
the two factors. Other studies, however, have found
superadditive relations between spatial and nonspatial selec-
tion (e.g., Bengson, Lopez-Calderon, & Mangun, 2012;
Kingstone, 1992), and White and colleagues (2015) found
different results depending on timescale and stimulus compe-
tition. In this article, we treat these issues by experimental
investigation and computational modeling based on the theory
of visual attention (TVA; Bundesen, 1990; also see Bundesen
& Habekost, 2008; Bundesen, Habekost, & Kyllingsbæk,
2005, 2011; Bundesen, Vangkilde, & Habekost, 2015).

In TVA, visual objects compete to become encoded into a
visual short-termmemory (VSTM)with limited storage capacity
(about three to four independent objects) before the sensory
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representations of the stimulus objects have disappeared or
VSTM capacity has been filled (cf. Luck & Vogel, 1997;
Shibuya & Bundesen, 1988; Sperling, 1960; see also Bays &
Husain 2008). The rate of processing (processing speed), v(x, i),
at which the visual categorization that object x has feature i races
towards encoding into VSTM, is given by the rate equation:

v x; ið Þ ¼ η x; ið Þ βi
wxX
z
wz

; ð1Þ

where η x; ið Þ is the strength of the sensory evidence that ob-
ject x has feature i, βi is the perceptual bias in favor of cate-
gorizing objects as having feature i, and
wxX
z
wz

is the relative attentional weight of object x.
Every visual feature is supposed to be associated with a

template. The template associated with feature i, template i,
is a memory representation of sensory characteristics of fea-
ture i, and η x; ið Þ is regarded as a measure of a density of
neural firing or a level of activation representing the instanta-
neous degree of match between object x and template i with a
time lag due to the limited speed of neural conduction and
computation (see, e.g., Li, Bundesen, & Ditlevsen, 2016; Li,
Kozyrev, Kyllingsbæk, Treue, Ditlevsen, & Bundesen, 2016).
However, TVA is neutral with respect to the exact representa-
tional format (as defined by Kosslyn, 1980) of the templates.

Visual search for an object with feature i may proceed by
comparing stimulus objects with a template for feature i—a
target template—and compute the degree of match. However,
as recently argued by Töllner, Conci, and Müller (2015; see
also Töllner, Müller, & Zehetleitner, 2011), not only target
templates but also templates for different types of distractors
may be used in search. In terms of TVA, η values may be
computed by comparing stimuli with both target and distractor
templates and possibly with templates containing both target
and distractor information (Töllner et al., 2015).

The (absolute) attentional weight of object x, wx, is given
by the weight equation of TVA. In the original form, the
weight equation was that

wx ¼
X
j

η x; jð Þ π j; ð2Þ

where η x; jð Þ is the strength of the sensory evidence that ob-
ject x has feature j, and π j is the pertinence of feature j. In this
version of the weight equation, the attentional weight of an
object is a sum of the η*π products for all features—both
spatial and nonspatial. However, recent results (Nordfang,
Dyrholm, & Bundesen, 2013) suggest that a revision of the
weight equation is needed.

In partial report experiments, Nordfang and colleagues
(2013) investigated the way the attentional weight of a visual

object depends on both the contrast of the features of the
object to its local surroundings (feature contrast) and the rel-
evance of the features to our goals (feature relevance). The
task was to report the letters from a mixture of letters
(targets) and digits (distractors). Partial report by the shape-
feature alphanumeric class had previously been thoroughly
investigated with results that were qualitatively similar to
those obtained with selection based on differences in color
(see Bundesen, Pedersen, & Larsen, 1984; Bundesen,
Shibuya, & Larsen, 1985; Shibuya & Bundesen, 1988). In
the task used by Nordfang and colleagues, the letters were
briefly presented but responses were not speeded. Color was
irrelevant to the task, but many stimulus displays contained an
item (target or distractor) in a deviant color (a color singleton).
Location too was irrelevant to the task, nevertheless the par-
ticipants revealed large variations in attentional weights across
location. Furthermore, the results showed concurrent effects
of feature contrast (color singleton vs. nonsingleton) and rel-
evance (target vs. distractor). A singleton target had a higher
probability of being reported than a nonsingleton target, and a
singleton distractor interfered more strongly with report of
targets than did a nonsingleton distractor, despite the fact that
the singleton color was entirely irrelevant to the task at hand.
Measured by use of TVA, the attentional weight of a singleton
object was nearly proportional to the weight of an otherwise
similar nonsingleton object, with a factor of proportionality
that increased with the strength of the feature contrast of the
singleton. This result was explained by generalizing the
weight equation of TVA such that the attentional weight of
an object became a product of a bottom-up (feature contrast)
and a top-down (feature relevance) component.

Method

The relationship between visual attentional selection based on
spatial location and selection by alphanumeric class was in-
vestigated in a partial report experiment with report of letters
from briefly exposed, postmasked displays of circular arrays
of letters and digits (see Fig. 1). We have previously found
large variations in the attentional weight of the same item at
different locations (e.g., Nordfang et al., 2013). In the present
experiment, we therefore chose to manipulate only nonspatial
selection and let this interact with participants’ own, individ-
ually set spatial weights. We fitted the data from each partic-
ipant individually, thereby preserving the individual variation
in spatial weights in our analysis.

Task

Participants were instructed to report as many letters as possi-
ble of those they had seen in the stimulus display but refrain

1044 Psychon Bull Rev (2018) 25:1043–1051



from pure guessing. Each participant served individually in
1,920 trials.

Stimuli

On each trial, the participant was presented with a briefly
exposed circular array of eight alphanumeric characters—let-
ters to be reported (targets, T) and digits to be ignored
(distractors, D). The array was centered on fixation at a view-
ing distance of approximately 70 cm. The diameter of the
imaginary circle composed of the array subtended approxi-
mately 12° of visual angle measured from the center of the
array characters. Individual stimulus characters subtended ap-
proximately 2.5° (width) by 3° (height) of visual angle. The
target-distractor configuration (TD-configuration) varied from
trial to trial between 8T0D (i.e., eight targets and zero
distractors), 6T2D, 4T4D, and 2T6D. All characters were blue
(RGB 43, 53, 255) on a black background. The exposure
duration varied at random from trial to trial. It was either 10
ms, 20 ms, 30 ms, 70 ms, 100 ms, or 180 ms. Stimulus dis-
plays were postmasked with a pattern mask that had previous-
ly been demonstrated to efficiently mask the stimuli
(Gillebert, Dyrholm, Vangkilde, Kyllingsbæk, Peeters, &
Vandenberghe, 2012; Vangkilde, Bundesen, & Coull, 2011).
Combining four TD-configurations with six exposure

durations yielded 24 experimental conditions, each of which
was represented by 80 trials per participant.

Participants

Ten paid volunteers took part in the study (three men and
seven women). Their mean age was 24.6 years. All reported
normal or corrected-to-normal vision, and no history of color
blindness.

Results and discussion

The proportion of correctly reported targets, averaged across the
ten participants, is plotted in Fig. 2 as a function of exposure
duration with TD-configuration as the parameter. As expected
from previous TVA-based studies of partial and whole report
(e.g., Shibuya & Bundesen, 1988), the proportion of correctly
reported targets increased with the exposure duration. At an ex-
posure duration of 10 ms, the proportion of correctly reported
targets was nearly zero. As the exposure duration increased, the
proportion of correctly reported targets first showed a strong
increase and then leveled off at a value that decreased as the
number of items to be reported (targets) increased (see Fig. 2).

Fig. 1 Flow chart of the trial sequence in the experiment
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Modeling

The individual data from each participant were fitted by a
mathematical model based on TVA (Bundesen, 1990). For
each participant, we computed maximum likelihood esti-
mates for the minimum effective exposure duration t0 (see,
e.g., Shibuya & Bundesen, 1988), a six-parameter integer-
valued distribution of VSTM-capacity K (see Dyrholm
et al., 2011), processing speed C (e.g., Shibuya &
Bundesen, 1988), the attentional weight of a target at each
of the eight stimulus locations (wT[l], l = 1, …, 8), and the
attentional weight of a distractor at each of the eight loca-
tions (wD[l], l = 1, …, 8; see Nordfang, Dyrholm, &
Bundesen, 2013; see Dyrholm et al., 2011, for a compre-
hensive methodological account of TVA-based fitting of
data from partial and whole report). Figure 3 shows a plot

of the model fit compared with the data observed for a
representative participant. Results from all participants
are available in the appendix (Fig. 6). Pearson’s product
moment coefficient for the correlation between observed
and predicted mean scores was greater than .95 and highly
significant, p < .001, for all participants.

Estimated weights

Without loss of generality, for each participant the eight atten-
tional weights for targets were constrained to sum-up to a value
of 1. Otherwise, instead of trying to account for the data with as
few parameters as possible, we let the data speak for themselves
through the estimated weight parameters. Separate attentional
weights were estimated for items at different locations, thereby
revealing the variation in the weights participants allocated to
different locations, and separate weights were estimated for tar-
gets and distractors, respectively. Figure 4 shows attentional
weights recorded from two participants. The individual data for
all participants are shown in Fig. 7. As can be seen, the weights
varied strongly across the eight stimulus locations. For all partic-
ipants, attentional weights of targets were higher than weights of
distractors, and for typical participants, the distribution of atten-
tional weights of targets across locations looked like a scaled-up
version of the distribution of attentional weights of distractors
across locations.

For each participant, the relationship between target and
distractor weights at the eight stimulus locations was fitted
by three competing linear models: a one-parameter additive
model,

wD lð Þ ¼ wT lð Þ þ k;

a one-parameter multiplicative model,

wD lð Þ ¼αwT lð Þ;
and a two-parameter linear model,

wD lð Þ ¼αwT lð Þþ k:

The three fits are shown for Participants 7 and 8 in Fig. 5.
The individual data for all participants are shown in Fig. 7, and
details of the fits are listed in Table 1. The two nested one-
parameter models were compared with the two-parameter
model by likelihood ratio tests. The tests supported the one-
parameter multiplicative model: First, across all participants,
the two-parameter linear model (black lines) did not explain
significantly more of the variation as compared with the one-
parameter multiplicative model (green lines), χ2(10) = 5.52, p
= .854. Second, the two-parameter model fitted the data sig-
nificantly better than the one-parameter additive model (blue
lines), χ2(10) = 97.86, p < .001.

Fig. 2 The proportion of the presented targets that was correctly
reported, for each combination of exposure duration and TD-
configuration, averaged across all participants

Fig. 3 Typical individual results obtained with Participant 4. For each
combination of exposure duration and TD-configuration, the observed
mean score is indicated by a triangle (TD-configuration 8T0D), a
diamond (6T2D), a square (4T4D), or a circle (2T6D). Predicted mean
scores are indicated by unmarked points connected with straight lines
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Towards a new weight equation

The results of the experiment go against expectations from the
original version of the weight equation (Eq. 2) and also against
the notion that spatial location is a feature like any other one
(e.g., Maunsell & Treue, 2006). By Eq. 2, effects of location
and type of objects (target vs. distractor) on attentional
weights should be additive and not multiplicative, the total
weight of an item being a sum across all categories, both
spatial and nonspatial. Thus, by Eq. 2, the difference in atten-
tional weight between a distractor at location l and an other-
wise similar target at location l should be a constant, k, inde-
pendent of the spatial weight component associated with lo-
cation l. This means that the one-parameter additive model,

wD lð Þ ¼ wT lð Þ þ k;

follows from Eq. 2. However, the results supported the multi-
plicative one-parameter model for the relationship between
target and distractor weights at the eight stimulus locations:
For each observer, the ratio of the weight of a distractor to the
weight of an otherwise similar target at the same location,

wD lð Þ
.
wT lð Þ;

appeared to be the same across locations l = 1, …, 8.
The finding that the ratio wD(l)/wT(l) was approximately

constant may be explained in terms of TVA by assuming that

the attentional weight of an object is a product of a spatial
weight component,

X
spatial locations l

η x; lð Þπl

and a nonspatial weight component,

X
nonspatial features j

η x; jð Þπ j

such that the effects of the two components scale each other
multiplicatively.

The new weight equation may be elaborated as fol-
lows:

wx ¼
X

spatial locations l

η x; lð Þπl

X
nonspatial features j

η x; jð Þπ j

≈η x; location xð Þ½ � πlocation xð Þ
X

nonspatial features j

η x; jð Þπ j;

where η[x, location(x)]

& = the strength of the sensory evidence that object x is
located where it is

& ≈ the extent to which x stands out from the background
& ≈ the local feature contrast of object x, κx (see Nordfang

et al., 2013; Wolfe, 1994).

Fig. 4 Typical distributions of estimated attentional weights for
individual participants, obtained with Participants 7 and 8. Separate
weights were estimated for each stimulus type (target, distractor) at

each of the eight stimulus locations. In terms of compass directions,
Locations 1–8 are NE, E, SE, S, SW, W, NW, and N, respectively
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Impact of local contrast

The new weight equation can explain the main findings of
Nordfang et al. (2013). Nordfang et al. provided evidence
that—provided the pertinence of feature contrast per se,

πcontrast, is small enough to be neglected—attentional weights
of color singletons and otherwise similar nonsingletons vary
in direct proportion to each other,

wsingleton ¼ cwnonsingleton;

Table 1 Best fits for each of the three linear models relating distractor weights to target weights

Two-parameter linear fit One-parameter multiplicative fit One-parameter additive fit

Participant Slope Intercept RSE Slope RSE LRT: x2 LRT: p Intercept RSE LRT: x2 LRT: p

1 0.242 0.018 0.039 0.335 0.033 0.40 .529 -0.077 0.064 8.29 .004**
2 0.601 -0.021 0.033 0.479 0.036 1.18 .277 -0.070 0.047 6.87 .009**
3 0.213 0.015 0.035 0.290 0.039 0.64 .422 -0.083 0.086 15.13 <.001***
4 0.330 0.017 0.037 0.428 0.055 0.59 .444 -0.067 0.067 10.03 .002**
5 0.159 0.038 0.055 0.397 0.064 0.97 .324 -0.068 0.078 6.61 .010
6 0.623 -0.001 0.059 0.617 0.032 0.00 .970 -0.048 0.071 2.99 .084
7 0.650 -0.009 0.031 0.592 0.018 0.17 .676 -0.037 0.038 3.99 .046*
8 0.301 0.002 0.017 0.309 0.020 0.04 .835 -0.086 0.084 25.14 <.001***
9 0.348 -0.009 0.019 0.299 0.033 0.75 .388 -0.091 0.065 20.23 <.001***
10 0.601 -0.021 0.033 0.487 0.033 1.18 .277 -0.070 0.047 6.87 .009**

RSE residual standard error, LRT likelihood ratio test

* p < .05, **p < .01, *** p < .001

Fig. 5 Relationship between attentional weights of targets and
distractors. Typical individual results, obtained with Participants 7 and
8. Estimated weights of distractors at the eight stimulus locations are
plotted against estimated weights of targets at the same locations, and
the relationship is fitted by three competing linear models. Black line:

best fit by a standard two-parameter linear model with slope and intercept
as free parameters; green line: best fit by a one-parameter multiplicative
model; blue line: best fit by a one-parameter additive model. Note that for
Participant 8 the black line is virtually masked by the green line
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where the constant c > 1 increases with the strength of the feature
contrast of the singleton. By the newweight equation, introducing
a color singleton x into a display without singletons by changing
the color of x should change the spatial component of the atten-
tional weight of x by multiplication with the new value of

X
spatial locations l

η x; lð Þπl

divided by the old value. Furthermore, by the new, multipli-
cative weight equation, any factor that changes the spatial
component of the attentional weight of object x by multiplica-
tion with a factor c, indirectly changes the total attentional
weight of x by multiplication with the same factor c. Hence,
consistent with the findings of Nordfang et al., and provided
that other things are equal, the change in the color of x should
multiply the attentional weight of x by the same factor c,
regardless of whether x is a target or a distractor.

Themultiplicative weight equation proposed in this article be-
comes highly similar to the weight equation suggested by
Nordfang et al. (2013) if the spatial weight component is set equal
to κx (i.e., the local feature contrast of object x) multiplied by π

location(x) (i.e., thepertinenceofbeingat the locationofx).Note that,
inmost applications of TVA, stimuli in the same display have had
approximately the same local feature contrast (the same spatial
weightcomponent). Inall suchcases, theactualvalueof thespatial
weightcomponentshouldbeimmaterial,becausetherateequation
implies that the probability that a stimulus becomes encoded into
VSTM depends on the relative attentional weight of the stimulus
rather than the absolute attentional weight.

Concluding remarks

Location seems to be Bspecial^ in many ways (see Nissen,
1985). Most striking, perhaps, is the finding that visual
search for conjunctions of features other than location
(e.g., conjunctions of color and shape) tends to be diffi-
cult (see, e.g., Treisman, 1988), but search for a nonspa-
tial feature conjoined with a spatial location (i.e., search
for the feature at a particular location) is easy and barely
regarded as Bsearch^ (see, e.g., Harms & Bundesen,
1983). The present experimental and theoretical analysis
of the role of spatial location extended findings on visual
search by showing strong variations in the attentional
weights of the items to be reported depending on their
spatial locations, although formally location was irrele-
vant to the task. The results could be explained by revis-
ing the weight equation of TVA such that the attentional
weight of an object becomes a product of a spatial and a
nonspatial weight component, the two components scaling
the effects of each other multiplicatively.

Our conjecture that the attentional weight of an object is a
product of a spatial and a nonspatial weight component is
highly general. It provides a nice explanation for the results
we obtained in the current experiment on the role of spatial
location in partial report based on alphanumeric class. In fu-
ture experiments, however, one would like to see the general-
ity of the conjecture tested in other paradigms, including some
in which the roles of location and nonspatial features are more
nearly symmetrical.

Appendix
Results for each individual participant

Fig. 6 Mean number of correctly reported targets as a function of
exposure duration with the number of targets (T) in the stimulus display
as the parameter. Twas 2, 4, 6, or 8, and the number of distractors (D) in
the display equaled 8 – T.Observedmean scores are indicated by triangles

(T = 8), diamonds (T = 6), squares (T = 4), and circles (T = 2). Predicted
mean scores are indicated by unmarked points connected with straight
lines
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