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Abstract We review recent empirical findings and arguments
proffered as evidence that educated adults solve elementary
addition problems (3 + 2, 4 + 1) using so-called compacted
procedures (e.g., unconscious, automatic counting); a conclu-
sion that could have significant pedagogical implications. We
begin with the large-sample experiment reported by
Uittenhove, Thevenot and Barrouillet (2016, Cognition, 146,
289–303), which tested 90 adults on the 81 single-digit addi-
tion problems from 1 + 1 to 9 + 9. They identified the 12 very-
small addition problems with different operands both ≤ 4 (e.g.,
4 + 3) as a distinct subgroup of problems solved by uncon-
scious, automatic counting: These items yielded a near-
perfectly linear increase in answer response time (RT) yoked
to the sum of the operands. Using the data reported in the
article, however, we show that there are clear violations of
the sum-counting model’s predictions among the very-small
addition problems, and that there is no real RT boundary as-
sociated with addends ≤4. Furthermore, we show that a well-
known associative retrieval model of addition facts—the net-
work interference theory (Campbell, 1995)—predicts the re-
sults observed for these problems with high precision.We also
review the other types of evidence adduced for the compacted
procedure theory of simple addition and conclude that these
findings are unconvincing in their own right and only distantly
consistent with automatic counting. We conclude that the cu-
mulative evidence for fast compacted procedures for adults’

simple addition does not justify revision of the long-standing
assumption that direct memory retrieval is ultimately the most
efficient process of simple addition for nonzero problems,
let alone sufficient to recommend significant changes to basic
addition pedagogy.

Keywords Addition . Procedures . Counting . Retrieval
interference

A recent series of prominent articles (Barrouillet & Thevenot,
2013; Fayol & Thevenot, 2012; Mathieu, Gourjon, Couderc,
Thevenot, & Prado, 2016; Thevenot, Barrouillet, Castel &
Uittenhove, 2016; Uittenhove, Thevenot, & Barrouillet,
2016) have presented experimental evidence and arguments
that educated adults perform simple addition (e.g., 4 + 3 = ?)
using fast procedural algorithms (e.g., automatic counting).
This conclusion stands in contrast to the long-held view that
adults’ solving of simple addition problems normally evolves
from relatively slow procedural strategies in childhood, such
as deliberate counting, to fast direct retrieval of answers from
an associative network of memorized addition facts, especial-
ly for addition problems with a sum ≤10 (e.g., Ashcraft &
Guillaume, 2009; Barrouillet & Fayol, 1998; Campbell,
1995; Siegler & Shrager, 1984). If, in fact, the development
of fast, compacted counting procedures for simple arithmetic
is pervasive, it would not only overturn long-standing cogni-
tive theory about simple addition but also related pedagogical
practices. Fayol and Thevenot (2012) concluded that this new
view would have a Bmassive impact in the domain of numer-
ical cognition,^ including potential effects on national stan-
dards for mathematics education (p. 401; see also Thevenot
et al., 2016, p. 55). In this review, however, we critique the
evidence proffered for a compacted counting theory of adults’
single-digit addition, showing that there are clear violations of
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the counting model’s predictions in the presented data. We
also show that the critical data are also predicted by a well-
knownmodel of direct memory retrieval for addition facts, the
network interference model (Campbell, 1995). We conclude
that the evidence for a compacted procedure theory of fast
addition performance does not constitute a coherent body of
convincing evidence and is far from sufficient to recommend
significant revision to modern theory or educational practices
for elementary addition.

Compacted counting for simple addition by skilled
adults

We begin with what might be perceived as the most direct
evidence for fast addition procedures. Barrouillet and
Thevenot (2013) conducted new analyses of previously pub-
lished data (Barrouillet, Lépine, & Camos, 2008) that included
adults’ response times (RTs) for very-small additions involv-
ing the numbers 1 through 4. These were the only addition
problems tested, but there were other cognitive tests, including
a working memory measure. The large number of observa-
tions (92 participants × 6 repetitions) collected for each of the
16 small addition problems afforded precise estimates of mean
RTs across problems. Barrouillet and Thevenot (2013) found
that RT for correct answers to these very-small addition prob-
lems increased linearly and monotonically with the sum of the
operands. Furthermore, the slope for problems composed of
two different addends (i.e., the nonties such as 1 + 2 and 3 + 4)
was 20 ms, about twice the 11 ms slope observed for the tie
problems with a repeated operand (i.e., 1 + 1, 2 + 2, 3 + 3, 4 +
4). Participants with a high working memory span were faster
and also presented a shallower RT problem-size slope with the
sum of nontie operands (8 ms) compared to low span individ-
uals (26 ms).

Barrouillet and Thevenot (2013) proposed that the very-
small addition nonties activated a compacted counting proce-
dure that gives rise to a relatively steep linear problem size
effect, whereas the ties were solved by direct fact retrieval
from memory, which they assumed is relatively insensitive
to problem size. With respect to the differences between indi-
viduals with low and high working memory spans, Barrouillet
and Thevenot suggested this could reflect differences in the
efficiency of a Bbasic general-purpose resource that affects
each atomic step of cognition,^ such that the Bfaster responses
and flatter slopes observed with higher working memory ca-
pacities could result from a capacity to perform more quickly
each step of the procedure^ (p. 43).

Uittenhove et al. (2016) undertook to replicate the findings
of Barrouillet and Thevenot (2013), but tested all 81 addition
problems between 1 + 1 and 9 + 9 and collected strategy self-
reports for each problem (e.g., just remembered the answer,
counted up). The purpose of the strategy reports was to

identify specific problems for which reconstructive procedure
use was consciously experienced and reported. The conscious
procedural strategy trials were expected to be relatively slow
(e.g., Campbell & Xue, 2001; LeFevre, Sadesky, & Bisanz,
1996), whereas the compacted counting procedure proposed
by Barrouillet and Thevenot was assumed to be very fast and
not accessible to conscious experience and therefore likely to
be reported as direct memory retrieval (Uittenhove et al.,
2016, p. 299). It was important to exclude problems solved
by slow, conscious procedures, such as intentional counting or
reconstructive strategies, because these could contribute to a
problem-size effect for the very-small problems and thereby
contaminate measurement of a problem-size effect owed to an
automated counting procedure.1

The theoretically critical analyses of the Uittenhove et al.
(2016) experiment were those based on the subset of 51 par-
ticipants among the 90 tested who were identified as frequent
retrievers for small problems. These participants reported no
less than 97% retrieval for problems with a sum ≤10 and
reported 100% retrieval for the very-small nontie additions
with both operands ≤4. The size of the sumwas used to predict
participants’ mean problem RT for four types of problems.
Very-small nontie problems (both operands ≤4) had a mean
slope of 46 ms (SD = 37) per increment in the sum (p < .0001
against the null hypothesis of 0 ms slope), for tie problems the
slope was 8 ms (SD = 7, p < .001), n + 1 with n > 4 problems
had a slope of 7 ms (SD = 22, p < .05), but there was no
problem-size effect (-5 ms, SD = 44, p > .20) for medium-
small nontie problems with sums from 7 to 10 and at least one
operand >4. The positive RT slopes for very-small nonties,
ties, and n + 1 problems cannot be attributed to differences
in sum articulation time because participants’ mean RT for
each problem was corrected for differences in time to verbally
produce the sum (Uittenhove et al., 2016, p. 293).

The key result for Uittenhove et al. (2016), however, was
the substantial problem-size effect for the 12 very-small addi-
tion problems with both operands ≤4, which replicated
Barrouillet and Thevenot’s (2013) results for the same prob-
lems. A very similar pattern of mean RTs for these problems
was also observed in a group of 10-year-old children
(Thevenot et al., 2016), although of course the children were
substantially slower, with a steeper problem-size slope than
the adults. The relatively small, albeit statistically significant,
problem-size effect for ties and n + 1 problems found were
assumed to be negligible and their sources unclear (Thevenot
et al., 2016, p. 295). The absence of a problem-size effect for
the 18 medium-small problems, however, suggested a

1 Thevenot et al. (2016, p. 55) expressed doubt about whether Bthe term
‘counting’ used to qualify those automated procedures [for addition] is the
most appropriate^ and that Ba more general term such as ‘reconstructive’
procedures might be more suitable.^ Uittenhove et al. (2016), however, used
the term reconstructive strategies to refer to conscious addition procedures that
were measured through participants’ verbal self-reports.
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boundary condition when small addition problems had at least
one operand greater than 4. Moreover, for the 51 frequent
retrievers in the Uittenhove et al. study, the RT slope associ-
ated with the sum for very small problems was negatively
related to working memory capacity (r = -.36, p < .01) so that
lower capacities were associated with a steeper slope, again
replicating Barrouillet and Thevenot; but this association be-
tween RT slope and working memory span was not observed
for ties, n + 1, or medium-small problems.

Following Barrouillet and Thevenot (2013), Uittenhove et al.
(2016) speculated about the cognitive implementation of an au-
tomated counting procedure for very-small addition problems
and illustrated the model applied to solving 3 + 2 in their
Fig. 9 (p. 299). According to the model, the two operands are
sequentially encoded in working memory in an analogical form.
In their Fig. 9, the encoding of the operand 3 inworkingmemory
is depicted by a horizontal string of three dots or tokens. This
representation triggers a recursive algorithm that successively
maps each working memory token to the sequential values of a
number list in long-term memory, which is represented in Fig. 9
as a list of successive Arabic numbers starting with 1. This next-
token-next-value production cycle continues until the third token
is mapped to the value 3. Then, the second operand (2) is
encoded in working memory, triggering the algorithm to succes-
sively map the two tokens generated to the two values
succeeding 3 in the number list (i.e., 4 and 5). The counting
algorithm terminates, and the final value reached in the number
list is expressed by the participant as the spoken word five.
Variation across problems in time to complete the procedure is
determined by the number of production cycles, which corre-
sponds to the sum of the two operands. The time for each cycle
is assumed to be a few 10s of milliseconds. The applicability of
the procedure Bis limited to small quantities that can be repre-
sented analogically in a single focus of attention (i.e., no more
than four elements)^ and the procedure Bis so fast that a subject is
only aware of its product, hence the subjective experience of a
direct retrieval from memory^ (Uittenhove et al., 2016, p. 299).
Despite these elaborate theoretical and empirical arguments, we
argue here that the automatic counting theory, some of its basic
assumptions, and the supporting evidence are all questionable. It
is important to raise these counterarguments against automatic
counting theory because unchallenged acceptance of the theory
and evidence, even in this relatively limited application, would
establish a prima facie case for working-memory-mediated se-
quential cognition that can be automatized and operate outside
awareness.

Challenges for the automatic counting theory and its
evidential basis

The counting model outlined by Uittenhove et al. (2016) cor-
responds to an automated version of the sum strategy for

simple addition that is initially used by children when they
count out one by one the cumulative values of both addends,
perhaps on their fingers. As Geary, Hoard, Byrd-Craven, and
Desoto (2004) observed, however, Bimprovements in chil-
dren’s conceptual understanding of counting . . . is reflected
in a gradual shift from frequent use of the sum procedure to the
min procedure^ (p. 122; see also, e.g., Geary, Bow-Thomas &
Yao, 1992; Jones & VanLehn, 1994; Siegler, 1987; Siegler &
Jenkins, 1989; Svenson, 1985). The min strategy, which starts
from the value of the larger operand (the max) and proceeds
by counting up a number of times equal to the min, saves
counting steps and is generally more efficient than the sum
strategy. The transition toward the min strategy is not mono-
lithic, and children continue to use multiple strategies even for
the same problem as skill develops (Siegler & Jenkins, 1989;
Siegler & Shipley, 1995), but the min strategy eventually be-
comes the dominant counting procedure used by children for
single-digit addition (e.g., Shrager & Siegler, 1998, Fig. 1).2

Given this common progression in children’s counting strate-
gies, it is surprising that the addition procedure assumed to
become automated by Uittenhove et al. is the more-primitive
sum strategy rather than the min strategy that commonly re-
places it. Even if we admitted the sum strategy model as plau-
sible, however, the Uittenhove et al. results do not fit it neatly,
as we explain next.

Violations of the sum-counting model’s RT predictions
for the very-small problems

The major conclusions of Uittenhove et al. (2016) rest on the
assumption that Bthere is a size effect intrinsically related with
the [nontie] problems involving operands that do not exceed 4
(i.e., the very small problems) that is significantly stronger
than the size effect that can affect any other type of small
problems^ (pp. 295–296); that is, it rests on the assumption
that this category of very-small addition problems exists as a
statistically and functionally distinct subset of problems. This
conclusion is supported statistically in their paper by an anal-
ysis showing that the RT slope of the six n + 1 problems (e.g.,
3 + 1 or 1 + 3), with n between 2 and 4, was steeper than when
nwas greater than 4 (28 ms vs. 7 ms; p. 295). Thus, within the
n + 1 problems, there appears to be a statistical boundary in the
problem-size effect at n ≤ 4. When the n + 1 very-small prob-
lems were excluded and only the other six very-small prob-
lems were included for analysis (i.e., 2 + 3, 3 + 2, 2 + 4, 4 + 2,
3 + 4, 4 + 3), there remained a statistically robust RT slope
related to the sum (34 ms; p. 295). Additionally, the RT for
medium-small problems (sums from 7 to 10, with both ad-
dends greater than 1 and at least one operand greater than 4)

2 It is important to emphasize that all of these researchers proposed that direct
memory retrieval ultimately becomes the dominant strategy over any proce-
dural strategy for small simple addition problems.
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did not correlate significantly with the sum (p. 295). Thus,
again, there appeared to be a boundary at a maximum operand
of 4 in the problem-size effect for small problems. Taken
together, these results seem to identify the set of very-small
nontie problems with operands ≤4 as a statistically distinct
category of problems with a robust problem-size effect linked
to the sum of the operands.

In our view, however, the analyses reported neglect impor-
tant features of the data and also neglect known RT phenom-
ena of simple addition that would contribute to their result.
First, there is very clear statistical evidence in the results re-
ported that there is an RT boundary within the 12 very-small
problems between the six problems involving 1 and the other
six very-small problems. Figure 1 depicts the mean RT for the
12 very-small problems averaged across operand order from
the Uittenhove et al. (2016) frequent-retriever analysis derived
from their Fig. 6 (which is also depicted in the right panel of
our Fig. 3). According to the automatic counting model pro-
posed by Uittenhove et al., the pattern of means in our Fig. 1 is
determined by a sum-counting algorithm that applies uniform-
ly across this special group of problems. We conducted a
regression analysis of the 12 RT means with two predictors:
the problem’s sum andwhether or not the problem contained 1
as an operand (the six n + 1 problems were coded with a one,
and the other six very-small problems were coded as zero).
The resultant regression model had an adjusted R2 of .948,

F(2, 9) = 100.7, p < .0001. The sum had a slope of 31.9 ms
(β = .639, t = 5.86, p < .001), and the problem-type factor (i.e.,
n + 1 vs. others) entered the model with a slope of -51.1 ms
(β = .396, t = -3.64, p = .005). In other words, once variation
inmeanRTassociatedwith the sumwas accounted for, the n+ 1
problems were 51 ms faster than the remaining very-small
problems. This indicates that there was a statistically robust
RT discontinuity between these two subsets of the very-small
problems and raises doubts that the very-small problem set, as
defined, is a valid category.

Furthermore, 1 + 4 and 4 + 1 were faster than 2 + 3 and 3 +
2, although both operand pairs (i.e., 1, 4 and 2, 3) have sums of
5 and should have the same RTaccording to the sum-counting
model. We used the values presented in Uittenhove et al.
(2016) Table 1 (p. 294) for all 90 participants to compare the
averaged mean RT (817 ms) and standard deviation (125.5)
for 1 + 4 and 4 + 1 to the averaged mean RT (885.51) and
standard deviation (177) for 2 + 3 and 3 + 2, treating operand
pair (1, 4 vs. 2, 3) as an independent groups factor. The
68.5 ms RT advantage for adding 1 and 4 relative to adding
2 and 3 was significant, t(178) = 2.995, p = .003, SE = 22.871,
ηp2 =.05. This analysis, however, includes the 15% of trials
for which participants reported reconstructive strategies for
these items (Uittenhove et al., 2016, Fig. 3, p. 295).
Reconstructive strategy trials might have contributed to this
difference. Nonetheless, the frequent retrievers (n = 51)
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Fig. 1 Mean RT (ms) for the 12 very small problems averaged over operand order from the Uittenhove et al. (2016) frequent-retriever analysis (derived
from their Fig. 6, n = 51)
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presented a 48-ms RT advantage for adding 1 and 4 (795 ms)
relative to adding 2 and 3 (843 ms) that was statistically sig-
nificant, t(50) = 2.099, p = .04, SE = 22.871, ηp2 =.08, using
the standard error from the preceding analysis. Thus, the
unpredicted RT advantage to add 1 and 4 compared to adding
2 and 3 was also observed in the frequent-retriever data.

The very-small addition category

There are other challenges for the validity of the very-small
problem category identified byUittenhove et al. (2016). These
are apparent in our Fig. 2, derived from Figs. 5 and 6 in the
Uittenhove et al. paper. This figure presents mean RT for the
very-small problems, the medium-small problems, and the n +
1 problems as a function of the problem sum averaged over
operand order. In Fig. 2, the average RT for the n + 1 operand
pairs 4 + 1 = 5 and 1 + 4 = 5 is plotted among the n + 1
problems rather than counted among the very-small problems
as assumed by Uittenhove et al. In the very-small problem
plot, the sum of 5 is represented by the average of the other
sum-to-five pair 3 + 2 and 2 + 3; as we have already shown,
and in contradiction to the Uittenhove et al. model, adding the
operands 2 and 3 was slower than adding 1 and 4 in this data
set.

With respect to our Fig. 2, we draw attention to two
features of the pattern of means derived from the data
presented by Uittenhove et al. (2016). First, for the n +
1 problems, the correlation between the sum and mean RT
in Fig. 2 is .966 (slope = 20 ms) for n from 2 to 7, but
there is a marked drop in RT for the sum of 9 (i.e., 8 + 1).
The very strong RT linearity for the n + 1 problems up to

a sum of 8 indicates there is no reason to believe that
there is an important RT boundary at n = 4 for the n +
1 problems. Similarly, for the very-small problems (ex-
cluding n + 1) and medium-small problems, there is little
reason to believe that there is an important RT boundary
at n = 4 because the RT function is almost perfectly linear
for sums 5 through 8 with no evidence of a boundary at
n = 4; specifically, r = .995 (slope = 45 ms) between mean
RT in Fig. 2 and the sum of the operands. Thus, the
Uittenhove et al. analyses defining the boundary for
very-small and medium-small problems between the sums
7 and 8 is not justified by the data, because the RT func-
tion is perfectly linear across the 7–8 sum boundary and
includes problems with n > 4 (e.g., 2 + 5, 2 + 6, 3 + 5).
As with the n + 1 problems, again there is a marked RT
drop at a sum of 9 for the other small problems.

The results in our Fig. 2 can thus be summarized as
follows: In the Uittenhove et al. (2016) data, there is a
very strong linear relationship between RT and the sum of
the operands up to a sum of 8, with n + 1 problems
presenting a shallower slope than the others (20 ms vs.
45 ms). The mean RT for the problems with sums of 9 or
10 are lower than their sum would predict based on the
linear RT pattern up to a sum of 8. With respect to the
sum-to-10 problems, it has been observed for decades that
the simple addition combinations that sum to 10 are fast
and accurate relative to their magnitude (Aiken &
Williams, 1973; Campbell, 1995). LeFevre et al. (1996;
see also Geary, Bow-Thomas, Liu, & Siegler, 1996) noted
that the majority of self-reported transformation strategies
for simple addition involved the use of facts that summed
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to 10 (e.g., 4 + 7 transformed to 7 + 3 + 1), suggesting
that the sum-to-10 facts are salient and highly accessible,
often serving as anchors in people’s addition strategy rep-
ertoire. The sum-to-nine problems could benefit from
proximity to the very high memory strength sum-to-10
problems. Indeed, Fig. 3 in Uittenhove et al. (2016, p.
295) shows that sum-to-10 problems had the highest rate
of self-reported memory retrieval among the nontie prob-
lems in their experiment. None of the analyses or conclu-
sions presented by Uittenhove et al., however, take into
account their own or previous evidence that sum-to-10
problems have special memory status in simple addition
skills.

Our Fig. 2 shows that an RT boundary associated with the
addend 4 in the Uittenhove et al. (2016) data was more appar-
ent than real. Uittenhove et al. carefully selected their analyses
to create the appearance of a RT boundary at 4. Thus, it is a
theoretical boundary and not an unambiguous empirical
boundary. Neither Barrouillet and Thevenot (2013) nor
Thevenot et al. (2016) provided direct evidence for an RT
boundary at 4 because they tested only problems with both
addends ≤4. Furthermore, the theoretical argument supporting
the proposed boundary is weak. There is substantial evidence
that the span of visual spatial attention is about four items
(e.g., Cowan, 2001) and that encoding the numerosities of
up to three or four visual objects can be accomplished by an
automatic subitizing process (e.g., Mandler & Shebo, 1982).
There is, however, no evidence that we are aware of that the
Arabic digits up to four (i.e., 1, 2, 3, 4) automatically activate a
corresponding number of tokens in spatial working memory,
but the Arabic digits for five or higher do not, as the
Uittenhove et al. model assumes. Thus, there is no evidence
for this central and crucial assumption of the automatic
counting theory.

Measurement of reconstructive strategy trials

Another reason to doubt that the results of Uittenhove et al.
(2016) support an automatic counting theory is the likely con-
tamination of the frequent-retriever analysis by inclusion of
reconstructive strategy trials. Successful excision of recon-
structive strategies based on participants’ strategy self-
reports was critical for the following reasons. As their own
data indicate (see also Campbell & Xue, 2001; LeFevre et al.
1996), the rate of self-reported use of reconstructive strategies
increases linearly with problem size even for small problems
with sums ≤10 (see Fig. 3, Uittenhove et al., 2016, p. 295).
Furthermore, their Fig. 2 (Uittenhove et al., 2016, p. 294)
shows that the increasing proportion of reconstructive strate-
gies as problem size increases inflates the problem-size effect
on RT for these problems. This occurs because reconstructive
strategies require more, or more difficult, intermediate steps as
problem size increases (Campbell & Xue, 2001; LeFevre

et al., 1996). Consequently, even low rates of contamination
by reconstructive strategies would generate the problem-size
effect observed for the frequent retrievers on very small prob-
lems. The extent of such contamination to produce a small-
problem-size effect correlated with the sum for the very-small
problems (about 50 ms per increment in Uittenhove et al.,
2016; about 20 ms in Barrouillet & Thevenot, 2013) would
be modest because a small proportion of slow procedure-
based trials mixed with faster retrieval trials can substantially
inflate the problem-size effect (Campbell & Xue, 2001,
p. 311). For example, Fig. 3 in Uittenhove et al. shows a rate
of about 22% reconstructive strategies for nontie problems
with a sum of 7, and their Fig. 2 shows that this translated into
a RT cost of approximately 250 ms.

Such contamination of the retrieval analysis by recon-
structive strategy trials is highly probable because
Uittenhove et al. (2016) did not measure strategies during
the trials actually used for their RT analysis. The addition
task data used for the main analyses were collected in
Session 1, in which participants completed six blocks of
the 81 addition problems without strategy reports. In
Session 2, participants received a final addition block of
the 81 problems and provided a strategy self-report for
each problem (p. 292). The strategies reported in this final
block in Session 2 were assumed to represent the strate-
gies used in the first six blocks in Session 1 and used as
the basis to exclude participants who reported reconstruc-
tive strategies in the final block. The flaw with this design
is that the six blocks of Session 1 provided multiple prac-
tice trials with each problem and self-reported retrieval for
simple arithmetic increases across blocks in which the
problems are repeated (Campbell & Timm, 2000; Imbo
& Vandierindonck, 2008). Consequently, participants
who used reconstructive strategies for various problems
early in Session 1 had multiple opportunities to strengthen
associative memory for those problems and increase the
probability of using direct memory retrieval before strat-
egy use was measured. If retrieval was reported in the
final addition block, however, then all the trials from the
addition task in Session 1 were included in the RT analy-
sis, although the strategies used on these trials were not
measured. Given the relatively high rate of reconstructive
strategies reported in Session 2, even after six recent prac-
tice trials with each problem (Fig. 3, Uittenhove et al.,
2016, p. 295), there can be little doubt that the analysis
of the frequent retrievers based on the Session 1 data was
contaminated by reconstructive strategies.

Although the precise extent of this contamination can
only be guessed, contamination of the frequent-retriever
RT analysis by reconstructive strategies would explain the
surprisingly long mean RTs reported. For purposes of
comparison, we combined data from two recent publica-
tions that reported simple addition experiments using
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similar methodologies. Campbell and Beech (2014) re-
cruited 64 student volunteers from the University of
Saskatchewan Psychology participant pool, and Chen
and Campbell (2014) tested 36 Canadian and 36
Chinese adults recruited through the participant pool or
by online advertisements. We excluded the Chinese sam-
ple from this analysis because of their known superior
simple arithmetic skills (e.g., Campbell & Xue, 2001).
The problem sets tested included single-digit plus single-
digit addition problems including 0 + N, 1 + N, N + N
(ties), other small nonties with sums ≤10, and large
nonties. Each experiment consisted of two blocks of 48
trials, and each problem was tested in each block. Half of
the 100 participants received nonties in min-left order
(e.g., 1 + 2), and the other half received nonties in max-
left order (2 + 1). As is discussed later, the purpose of
these experiments was to investigate transfer of practice,
but here we use the results for the very-small addition
problems to illustrate the relative slowness of the partici-
pants in Uittenhove et al. (2016). Considering only the 12
very-small problems, the average RT for frequent re-
trievers (derived from Fig. 6) in Uittenhove et al. was
substantially slower (821 ms, SD = 67.4) than the
Canadian participants for these items (729 ms, SD =
42.7), t(11) = 7.61, p < .001, SE = 12.1, even though
we did not collect strategy reports and therefore had no
means to excise relatively slow reconstructive strategies,
if they occurred. The Uittenhove et al. results were based
on six repetitions of each problem compared to only two
repetitions per problem in our sample. We would normal-
ly expect faster, not slower, RTs with more repetitions.
Similarly, the Uittenhove et al. participants were signifi-
cantly slower to answer very small additions compared to
the participants tested by Barrouillet and Thevenot (2013;
716 ms, SD = 30.6), t(11) = 8.20, p < .001, SE = 12.8, and
again, the latter authors did not collect strategy reports and
therefore had no means to exclude reconstructive strategies.3

The unusually long mean RTs reported for the frequent-
retriever analysis would result from contamination by inad-
vertent inclusion of reconstructive strategies.

Such contamination, even if the extent of it was relatively
small, would generate or inflate a problem-size effect on RT
observed in the frequent retriever analysis because the rate of
contamination would be roughly proportional to the rate of use
of the relatively slow reconstructive strategies, which generally
increases with problem size (Uittenhove et al., 2016, Fig. 3, p.

295). Indeed, for nontie problems, the correlation was .95 be-
tween the percentage of reconstructive strategies reported as a
function of the sum (Uittenhove et al., 2016, Fig. 3) and mean
RT for direct retrieval as a function of the sum (Uittenhove
et al., 2016, Fig. 2). In other words, after ostensible exclusion
of reconstructive strategies, mean RT as a function of the sum
for the remaining trials (ostensibly direct retrieval) was still
very well predicted by the percentage of reconstructive strate-
gies reported. This is exactly as would be expected if the re-
trieval analysis was contaminated by inclusion of reconstruc-
tive strategies. Furthermore, use of reconstructive strategies
requires storage and processing of intermediate results that
tap working memory resources. Consequently, contamination
of the frequent-retriever analysis by reconstructive strategies
would also explain the observation that the slope of the
problem-size effect for very-small problems was steeper for
frequent retrievers with low working memory span compared
to participants with a higher working memory span. The ab-
sence of a significant correlation between sum-related RTslope
and working memory span for ties, n + 1, and medium-small
problems may simply reflect a smaller effect size and conse-
quent low power to detect this relation.

A retrieval-based problem-size effect for very-small
addition problems

Regardless of contamination of the frequent-retriever analysis
by inclusion of reconstructive strategies, the Uittenhove et al.
(2016) claim that the sum-related increase in RT for very-small
addition problems is difficult to reconcile with a retrieval model
(pp. 297–298) is not correct. To the contrary, the network in-
terference model and computer simulation proposed by
Campbell (1995; see also Campbell & Oliphant, 1992;
Whalen, 1997) predict precisely this finding. This is a widely
cited theory of arithmetic fact retrieval (although it was not
specifically referenced by Uittenhove et al., 2016, or
Barrouillet & Thevenot, 2013) and its core assumption of
similarity-based interproblem interference has substantial con-
verging evidence (e.g., Campbell, 1987; Campbell &
Thompson, 2012; Galfano, Rusconi, & Umiltà, 2003;
Griffiths & Kalish, 2002; Phenix & Campbell, 2004; Whalen,
1997). According to this view, a problem-size effect on RT
arises in both simple addition and multiplication fact retrieval
because interference from competing arithmetic facts increases
with problem size (see also Whalen, 1997). When a problem is
presented, all problem nodes in an associative network of ar-
ithmetic facts receive similarity-based excitatory input and
compete by way of mutual inhibition until one node reaches
the activation threshold for retrieval. Similarity between the
target fact and other arithmetic facts is based on feature overlap
(e.g., common operands) and themagnitude similarity of stored
answers. In the model, magnitude similarity is calculated using
Welford’s (1960) function LOG[L/(L-S)], where S stands for

3 Neither Uittenhove et al. (2016) nor Barrouillet and Thevenot (2013) pro-
vided information about their participants’ training or background in math or
science, but we are doubtful in any case that differences in this regard between
their samples could account for the relatively slow addition performance of the
Uittenhove et al. participants. Chen and Campbell (2016) found that a sample
of 36 engineering and computer science students did not demonstrate superior
performance on a standardized test of basic arithmetic fluency.
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the smaller and L for the larger of the magnitudes. This imple-
ments the long-held and widely held view that the scale of
number similarity is compressed as number magnitude in-
creases (e.g., Dehaene, 1989; Dehaene, Dupous, & Mehler,
1990; Moyer & Landauer, 1967). One consequence of this
magnitude-related compression in the model is that, as answer
size increases (i.e., the sum for addition), the strength of inhib-
itory retrieval competition increases and slows the rate of acti-
vation of the target fact toward retrieval criterion. RT in the
model corresponds to the number of excitation-inhibition re-
trieval cycles required to reach criterion. These basic assump-
tions of themodel (Campbell, 1995) account for a large number
of salient and subtle features of RT and error characteristics in
both simple addition and multiplication. Furthermore, recent
findings in both normal and impaired arithmetic development
have identified susceptibility to memory interference as an im-
portant factor in individual differences in arithmetic
learning.(De Visscher & Noël, 2013, 2014a, 2014b; De
Visscher, Noël, & De Smedt, 2016).

The original network interference model for addition was
implemented for the so-called standard set of problems com-
posed of the operands from 2 to 9 (i.e., 2 + 2 to 9 + 9). The n +
1 problems were not implemented at that time because we had
no normative data for them, but it was a simple matter to
modify the model to include these items and obtain RT pre-
dictions for the very-small addition problems identified by
Uittenhove et al. (2016). The implementation tested was es-
sentially the same as the original model (Campbell, 1995), and
there was no kind of special treatment in connection with the
very-small addition problems. Figure 3 presents the number of
model retrieval cycles to criterion for the very-small problems

(the correct sum was produced in every case) and a reproduc-
tion of the corresponding Fig. 6 from Uittenhove et al. (2016).
Obviously, the network interference retrieval model captures
major features of the RT pattern across the very-small addition
problems in the Uittenhove et al. data. The correlation be-
tween problem RT and the problem’s sum in their experimen-
tal data was .945, and in the model it was .967. The correlation
between the experimental and modelled data across the 12
very-small additions was .964 (adjusted r2 = .921), with a
regression slope of 28 ms per retrieval cycle in the model.4

The correlation between the model answer times and the mean
RTs for the 12 very-small problems by the low span individ-
uals in Barrouillet and Thevenot (2013) was .881. Thus, the
network interference model of addition fact retrieval provides
a very good fit to their experimental data for these items.5

Furthermore, because retrieval of simple addition problems

4 Despite the very high correlation between the data and model, the model did
not produce the overall RT advantage for n + 1 problems relative to other very
small additions that was observed in the data. The Campbell (1995) network
interference model produces faster RTs for ties and sum-to-10 problems by
treating these as distinctive subcategories of problems that activate within-
category items more than extracategory items. This reduces retrieval interfer-
ence and speeds RTand yields a shallower problem-size effect for these items.
A similar mechanism could apply to the n + 1 problems.
5 Barrouillet and Thevenot (2013) used a retrieval interference index that they
called overlap (the number of different problems sharing the same sum), but
this index did not correlate significantly with RT across the 12 very-small
nontie additions. This is not surprising from the standpoint of the network
interference model. In the model, the strongest retrieval competitors are
neighbouring problems that share a common operand (e.g., 3 + 4, 3 + 5, 4 +
5). Addition problems with a common sum necessarily involve different op-
erand pairs (e.g., 1 + 4 = 5, 2 + 3 = 5).
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loads on the central executive of working memory (Hubber,
Gilmore, & Cragg, 2014; Imbo & Vandierendonck, 2007; see
also Barrouillet, Benardin, & Camos, 2004; Barrouillet et al.,
2008; Uittenhove et al., 2016, pp. 292, 299), the observed
relation between performance of the very-small problems
and working-memory capacity is consistent with a fact-
retrieval process. Indeed, Uittenhove et al. (2016, p. 296) re-
ported a correlation of -.44 (p < .01) between their working-
memory-span measure and mean RT for small-tie-addition
problems (i.e., higher span, faster tie RTs), which they as-
sumed are solved by direct memory retrieval.

Proponents of the automatic counting theory might point
out that the network interference model (or any retrieval mod-
el) fails to predict the null problem-size effect Uittenhove et al.
(2016) observed for the medium-small problems and that it is
precisely this null effect that rules out a retrieval model of their
results. We have shown, however, that the dichotomy of very-
small versus medium-small problems is not supported by an
empirical RT boundary related to the sum in the Uittenhove
et al. data (see our Fig. 2). For reported retrieval trials, Fig. 2 in
Uittenhove et al. (2016, p. 294) showed a very strong linear
relationship (r2 = .93, slope = 40 ms) between mean RT and
the sum for nontie problems across the full range of sums from
3 to 17 as predicted by the network interference model (see
our Fig. 4). The greater variability in RT as problem size
increases (e.g., the RT means and SD values in Uittenhove

et al. Table 1, were correlated .97) is also predicted by the
network interference model (Campbell, 1995, p. 143).6

Thus, the model provides very good prediction of the
Uittenhove et al. self-reported retrieval RT data. There are
deviations from linearity in their Fig. 2 (we have already noted
that problems summing to 9 and 10 were faster than predicted
by the sum), but there could be idiosyncratic features of this
population’s learning history for addition that contributes to
these (e.g., using sum-to-10 facts as the basis to construct
solutions to other addition problems). Given this, we should
be careful not to reify the Uittenhove et al. data or assume that
their results necessarily generalize widely. For example, for
the 100 (mostly Canadian) participants in the reanalysis of the
generalization studies described previously, the sum predicted
only 70% of the RT variability across the 12 very-small prob-
lems compared to greater than 90% in the Uittenhove et al.
data. Also, our participants did not show a mean RTadvantage
for sum-to-nine problems (784 ms) compared to sum-to-eight
problems (775 ms) as observed by Uittenhove et al., but sum-
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Fig. 4 Mean RT (ms) for retrieval trials as a function of the addition sum (after Uittenhove et al., 2016, Fig. 2)

6 Table 1 included all 90 participants. Uittenhove et al. (2016) did not provide
a comparable table of means and standard deviations for the 51 frequent
retrievers, but we would expect the correlation across problems between RT
mean and standard deviation to be high here as well. Avery strong correlation
between mean RT and standard deviation across problems is also observed in
adults’ simple multiplication, r(62) = .96, in Campbell (1995), which is widely
believed to primarily involve direct memory retrieval.
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to-10 problems were faster (765 ms) as expected. Although
Uittenhove et al. tested 90 participants on each problem six
times, the standard deviations for many of the larger nontie
problems were very large relative to the means (for example,
for 8 + 6 the mean was 1,698 ms with an SD of 732 ms in their
Table 1). Given such variability, it would be difficult for any
model to account precisely for the pattern of problem means
across the full range of simple addition problems.

It is important to clarify, though, that we are not trying to reify
the Campbell (1995) network interference model or suggest that
interference is the only factor that contributes to problem-size
effects in simple addition. Although the network interference
model’s basic assumptions remain plausible, a large amount of
relevant empirical and theoretical work has occurred since its
publication that would inform an updated version of the theory.
Instead, our point was to demonstrate that a linear problem-size
effect related to the sum in simple additions RT, even for the
very-small problems, does not necessarily imply a counting pro-
cess and is compatible with a retrieval-based account.

No generalization of addition practice

The validity of fast procedures for adults’ simple addition is also
challenged by several failures to observe generalization of prac-
tice for nonzero simple addition. Repeatedly practicing a proce-
dure results in its speeding up (Singley &Anderson, 1989). As a
result, speed-up with practice should transfer or generalize to
different, unpracticed problems that use that procedure. To inves-
tigate the possibility of fast procedures in adults’ simple addition,
Campbell and Beech (2014) examined generalization of practice
in students at the University of Saskatchewan, Canada. They
argued that if simple addition problems were based on a fast
procedure, then practicing a subset of problems (e.g., 4 + 3)
should produce speed-up in subsequent performance of similar,
unpracticed problems (e.g., 3 + 2). The results showed that there
was no generalization of practice for nonzero simple addition
problems, but the procedure-based n + 0 = n problems presented
clear evidence of generalization (i.e., practicing a subset of n + 0
problems facilitated a different subset of n + 0 problems). If
automatic counting for simple addition existed, it might be most
likely for the n + 1 problems because these require only a single
counting increment; but generalization was not observed for n +
1 problems. Generalization for n + 0 problems, but no generali-
zation for nonzero simple addition problems, has been repeatedly
replicated (Campbell & Beech, 2014; Campbell, Dufour, &
Chen, 2015; Campbell & Therriault, 2013; Chen & Campbell,
2014, 2016, 2017). Campbell, Chen, Allen, and Beech (2016)
demonstrated robust generalization of practice in a counting-
based alphabet addition task (e.g., B + 5 = G), thereby
confirming generalization of counting-based procedures.
Furthermore, one cannot argue that simple addition skills for
small problems are so overlearned that they would not benefit
from generalization or practice. Even n + 1 problems present

robust speed-up when tested a second time (Campbell &
Beech, 2014; Campbell et al. 2015), indicating that there is ample
potential for these problems to show effects of learning and
transfer.7

The null generalization results of Campbell and Beech
(2014) and subsequent studies listed in the previous paragraph
cast doubt on the general applicability of the theory of fast
procedures for simple addition. Uittenhove et al. (2016) did
not cite Campbell and Beech or any of the other articles that
demonstrated no generalization for nonzero simple addition.
Thevenot et al. (2016), however, mentioned the finding of no
generalization for n + 1 problems in a footnote, dismissing it
by noting that BCampbell and Beech’s conclusions have in
turn been challenged by Baroody, Eiland, Purpura, and Reid
(2014) who noted that generalization effects should have also
been observed for addition problems involving 1, which are
known to be solved by procedural rules^ (p. 49). Baroody
et al. (2014) did not actually refer to the Campbell and
Beech experiment, but they did discuss young children’s use
of what they call the Bnumber-after rule, which specifies that
the sum of 1 and a number n is the number after n in the
counting sequence^ (p. 160). Baroody et al. (2014) did not
provide evidence of rule-based performance of n + 1 prob-
lems, but Baroody, Purpura, Eiland, and Reid (2015) found
that training of n + 1 problems transferred to novel n + 1 items
in young children not initially fluent with the n + 1 = successor
of n relation. Whether educated adults rely on knowledge of
the relation between counting and addition to answer n + 1
problems when n is a small number (≤9), which are the n + 1
items potentially relevant to the fast procedure theory, or al-
ternatively have memorized this set of common addition facts,
is precisely the issue in question and not to be taken for
granted. The generalization results indicate they are solved,
at least in the adult samples we have tested, by using an item-
specific mechanism that does not generalize to unpracticed n +
1 problems with small values of n.8 Fact retrieval from

7 In the generalization studies, transfer of practice has never been observed for
large (sum > 10) simple addition problems, although Canadian samples report
some procedure use for these items; typically 25% to 50% of trials (see Campbell
& Xue, 2001). Generalization would be difficult to measure for these items,
however, because there is large RT variability for reconstructive strategies, and
there are a variety of idiosyncratic procedures used for large additions (e.g., 6 + 8=
6 + 6 + 2 = 12 + 2 = 14; 6 + 9 = 6 + 10 - 1 = 16 - 1 = 15; see Appendix A in
LeFevre et al., 1996) rather than a common omnibus procedure.
8 There is further converging evidence the n + 1 problems are solved by an item-
specific process. Practicing small multiplications (3 × 4) or additions (3 + 4)
interferes with (i.e., slows performance of) the cross-operation counterparts (3 +
4 or 3 × 4), a form of retrieval-induced forgetting (RIF; Campbell, Dufour &
Chen, 2015). Practicing rule-based problems (i.e., n + 0 = n, n × 0 = 0, and n × 1 =
n), however, does not induce this RIF effect on their cross-operation counterparts,
presumably because these problems are solved by retrieving a rule (rather than
separately represented in memory as individual facts) and this does not interfere
with individual cross-operation counterparts. In contrast, practicing n + 1 = ?
problems does produce item-specific interference with corresponding n × 1 = n
items (Campbell et al., 2015). This is additional strong evidence thatn+1= ? (n≤ 9)
problems are represented and solved as individual facts.
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associative memory is a plausible candidate for this mecha-
nism. Indeed, the substantial problem-size effect for n + 1
problems (see Fig. 2; see also Butterworth, Zorzi, Girelli, &
Jonckheere, 2001), a result predicted by the network interfer-
ence model, is difficult to reconcile with a rule-based account
(Butterworth et al., 2001).

Other potential evidence for compacted procedures
for simple addition

Operator priming effects

Fayol and Thevenot (2012) initiated the recent interest in the
possibility of fast procedures for simple addition. They report-
ed two experiments using an operator-priming paradigm (see
also Roussel, Fayol, & Barrouillet, 2002; Sohn & Carlson,
1998). Experiment 1 tested Swiss engineering students in
blocks of mixed simple addition, multiplication, and subtrac-
tion problems. When the operation sign (+, −, or ×) appeared
150 ms before the problem operands, mean response time
(RT) for addition and subtraction problems was 40–60 ms
faster relative to simultaneous presentation; but there was no
operator preview effect for multiplication. Experiment 2 used
the same operator priming paradigm but tested the 100 simple
addition and multiplication combinations. Only participants
who scored above a minimum criterion on a standardized test
of arithmetic fluency were included for the reported analyses
(the effect of interest was not observed in the complete
sample; Fayol & Thevenot, 2012, p. 397). For addition, sig-
nificant operator priming was observed for special problems
that involved a zero or one (24 ms), small nontie problems
with a sum ≤10 (31 ms), and large nonties with a sum >10
(32 ms), but the 29-ms difference observed for the addition
ties (3 + 3, 8 + 8, etc.), was not significant. For multiplication,
no problem type showed significant operator priming. Fayol
and Thevenot concluded that, in highly skilled performers,
nontie addition problems were solved using a fast compacted
procedure that could be primed by a preview of the plus sign,
whereas multiplication involved direct retrieval of individual
facts and was not subject to operator priming. The absence of
significant operator priming for the addition ties (although the
observed effect size of 29 ms for ties was equal to the average
of 29 ms observed for the other three problem types) was
taken as evidence that addition ties, like single-digit multipli-
cations, were solved by direct memory retrieval.

To link the operator priming results to their automatic
counting theory, Barrouillet and Thevenot (2013) noted that
Bsuch a compacted procedure could correspond to the recon-
structive strategy primed by the anticipated presentation of the
additive sign in Fayol and Thevenot’s (2012) study^ (p. 43),
although Barrouillet and Thevenot only examined the very-
small nontie and tie problems with n ≤ 4, whereas Fayol and

Thevenot also observed operator-preview facilitation for the
larger nontie addition problems (sum > 10). Furthermore,
Fayol and Thevenot emphasized the importance of high levels
of arithmetic skill for operator priming, whereas Barrouillet
and Thevenot (see also Uittenhove et al., 2016) argued that
their effect of interest (i.e., the sum-related RT slope for very-
small nontie additions) was stronger in the less skilled (i.e.,
slower) performers. Thus, the two phenomena do not con-
verge neatly and there is little reason to believe they reflect a
common underlying mechanism.

Additionally, Chen and Campbell (2015) found results
using the operator priming paradigm that question the gener-
ality of the Fayol and Thevenot (2012) findings and conclu-
sions. Chen and Campbell tested Chinese and Canadian adults
(n = 144) in the operator priming paradigm used by Fayol and
Thevenot (2012, Experiment 2), testing ties and small and
large nontie addition and multiplication problems. In contrast
to Fayol and Thevenot, Chen and Campbell observed robust
operator priming for both addition and multiplication for both
the Canadian and Chinese samples. They also observed a ro-
bust 26 ms (SE = 9) operator preview facilitation effect for
addition ties (p < .005), which was equivalent to the effect
observed for large nonties (24 ms, SE = 11) but smaller than
that observed for the small non-ties (46 ms, SE = 8). The
24 ms operator priming observed for addition ties by Chen
and Campbell was statistically robust whereas the nominally
larger 29-ms effect for ties in Fayol and Thevenot was not
significant, indicating relatively low power to detect an effect
of this magnitude. As the addition ties are widely assumed to
be solved by direct retrieval (e.g., Barrouillet & Thevenot,
2013; Fayol & Thevenot , 2012; Uittenhove et al., 2016),
the finding of operator priming for addition ties by Chen and
Campbell strongly suggests that operator priming is not nec-
essarily a signature of procedure use in simple addition.

Furthermore, given that operator priming did not differ
between addition and multiplication or between highly
skilled Chinese and less skilled Canadians in the Chen and
Campbell (2015) study, there was no evidence that operator
priming discriminated between operations or depended on
arithmetic skill level. Thus, these results, based on a large
sample size, did not reinforce the major assumptions, findings,
or conclusions of Fayol and Thevenot (2012). Specifically, if
we assume, as did Fayol and Thevenot, that most single-digit
additions are solved by procedures but that their multiplication
counterparts are solved by fact retrieval, then the results of
Chen and Campbell imply that operator priming does not
reliably discriminate procedure use from fact retrieval.

This conclusionwas reinforced by the findings of Chen and
Campbell (2016), who applied the operator-priming paradigm
to addition and multiplication identity-rule problems (n + 0 =
n, n × 1 = n, n × 0 = 0) and n + 1 problems with n ranging from
zero to 9. Chen and Campbell found that all three identity-
rules demonstrated both operator-preview facilitation and
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generalization of practice (e.g., practicing 0 + 3 sped up
unpracticed 0 + 8), the latter being a signature of procedure
use as explained previously. Chen and Campbell, however,
also found operator-preview facilitation for n + 1 problems
in the absence of generalization, which implies that the n + 1
problems were solved by an item-specific process (e.g., fact
retrieval) but nonetheless were facilitated by an operator pre-
view. Thus, the operator-priming paradigm is not reliably di-
agnostic of use of procedures versus use of direct memory
retrieval as assumed by Fayol and Thevenot (2012).

RIF of small nontie additions for Canadian but not
Chinese adults

Campbell, Chen, and Maslany (2013) provided another type
of potential evidence that small addition problems may be
solved by fast procedures, at least in highly skilled individ-
uals. They examined Canadian and Chinese adults’ perfor-
mance in an arithmetic retrieval-induced forgetting (RIF) par-
adigm. Practicing small multiplication problems (e.g., 2 × 3)
slowed RT to answer addition counterparts (2 + 3) for the
Canadian group but not for the Chinese group. As this
retrieval-induced forgetting effect in addition had previously
been shown to be induced by number-fact retrieval practice
but not by practice of arithmetic procedures (Campbell &
Therriault, 2013), Campbell et al. proposed that the arithmet-
ically superior Chinese participants might solve small addition
problems by fast procedures whereas the Canadians used
number-fact retrieval. Chen and Campbell (in press) replicated
the finding of RIF for addition ties and not for small nonties in
a study of 48 Chinese adults. Therefore, we believe this is a
genuine effect, at least in the local Chinese population avail-
able to our research in Saskatchewan, Canada. Nonetheless,
the absence of RIF for small nonties is not a definitive signa-
ture of procedure use. Indeed, Campbell et al. explicitly ac-
knowledged that their RIF group differences did not provide
direct evidence of automatic procedures for addition, given
that RIF is subject to several boundary conditions (e.g.,
Storm & Levy, 2012). For example, RIF is competition de-
pendent, occurring only when the target memory has strong
competitors that require inhibition. Unlike North American
children, Chinese children often learn their nontie multiplica-
tion facts in a preferred operand order (smaller × larger), but
this practice is not applied to the learning of addition facts
(LeFevre & Liu, 1997). As a consequence of this, both prob-
lem encoding processes and the organization of the memory
networks in Chinese adults might evolve quite differently for
multiplication and addition. As a result, retrieving a nontie
multiplication problem may not strongly activate the addition
counterpart, which consequently does not attract inhibition
and RIF because it is not a strong retrieval competitor. For
the tie problems, however, order is irrelevant (e.g., 3 × 3,
4 × 4), so the encoding process for multiplication and addition

ties would be the same resulting in strong activation of addition
counterparts (e.g., 3 + 3, 4 + 4) and RIF for these items.

Rightward spatial shifts of attention with single-digit
addition

Finally, Mathieu et al. (2016) tested adult participants on
single-digit addition, subtraction, and multiplication problems
with the first operand, operator (+, −, or ×), and second oper-
and displayed visually in sequence. The second operand was
displaced to the left or right of the central screen location
where the first operand and operator appeared. Addition prob-
lems were solved faster when the second operand appeared to
the right side compared to the left side, whereas subtraction
problems were answered faster with the second operand
displayed to the left compared to right side. There was no
effect of second operand position for multiplication. Mathieu
et al. concluded that simple addition and subtraction, respec-
tively, entail rightward and leftward horizontal shifts of atten-
tion (see also Masson & Pesenti, 2014), but multiplication
does not induce such a spatial bias.

To link these findings to the compacted counting theory,
Mathieu et al. (2016) proposed that Bit is plausible that some
algorithmic procedures (e.g., step-by-step internal counting)
explicitly used by children when learning arithmetic are pro-
gressively internalized into rapid left–right attentional move-
ment of the [mental number line] MNL^; but these authors
also acknowledge that their Bdata do not directly speak to the
question of whether single-digit addition and subtraction
problems are solved by means of procedural or retrieval
strategies^ (p. 237). Indeed, Masson and Pesenti (2014) con-
cluded that it is Bunclear whether attentional shifts are neces-
sary, or even useful, in arithmetic processes^ (p. 1524), al-
though theymay have a functional role when addition requires
a carry operation (Masson, Pesenti, & Dormal, 2016). The
link between compacted counting theory and the spatial bias
phenomena is tenuous also because the current versions of the
counting model is assumed to apply only to addition problems
with both operands ≤4 (Barrouillet & Thevenot, 2013;
Uittenhove et al., 2016), whereas the spatial bias effects re-
ported by Mathieu et al. were observed for both small and
large simple addition problems. This discontinuity questions
the theoretical coherence of directly linking the two
phenomena.

Efficient strategies in adults’ elementary arithmetic

While we are doubtful about the automatic counting theory of
small addition problems, there are other phenomena that do
indicate an important role for relational knowledge in adults’
arithmetic strategy repertoire. For example, there is evidence
that adults can solve subtraction problems presented in an
addition format (8 = 2 + ?) just as quickly or faster than when
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presented in standard subtraction format (8 - 2 = ?). Similarly,
simple divisions (8 ÷ 2 = ?) can be solved as quickly or faster
when presented in a multiplication format (8 = 2 × ?)
(Campbell & Alberts, 2010; Mauro, LeFevre, & Morris,
2003). Adults can also very efficiently generate the factors
associated with multiplication products (e.g., given 30, gener-
ate 5 and 6) despite relatively little factoring experience
(Campbell & Robert, 2008; Rickard, 2005). These findings
and others (e.g., Campbell, 1999, 2008; Campbell &
Agnew, 2009) suggest that adults often solve simple subtrac-
tion and division problems by reference to their addition and
multiplication counterparts. The efficiency of these operations
implies flexible memory representations for addition and mul-
tiplication facts that afford fast procedures to extract different
elements from the retrieval structure depending on the re-
quired operation. There is no evidence that we are aware of,
however, that these are compacted procedures (i.e., automatic
and unconscious); in fact, their use often appears in partici-
pants’ self-reported strategies for subtraction and division
(Campbell & Agnew, 2009; Campbell & Alberts, 2009).

Another case in which relational knowledge is exploited
concerns the commutativity property of addition (a + b =
b + a) and multiplication (a × b = b × a). The commutativity
property is incorporated in adults’ basic addition and multipli-
cation fact retrieval, in as much as both orders are not repre-
sented redundantly in long-termmemory. Operand order (e.g.,
3 × 2 vs. 2 × 3) has little or no systematic effect on adults’ RT
to answer simple addition or multiplication problems (but see
LeFevre& Liu, 1997), and positive transfer from practice (i.e.,
RT gains) between identical pairs (e.g., practice 2 × 3 and test
2 × 3) is practically equivalent to that between commuted pairs
(e.g., practice 3 × 2 and test 2 × 3; Campbell, Fuchs-Lacelle, &
Phenix, 2006; Rickard & Bourne, 1996). This is evidence that
the two orders of commuted pairs are efficiently referred to a
common long-term memory representation, probably because
commuted problems are composed of identical elements
(Rickard, 2005; Rickard & Bourne, 1996; but see Campbell,
1995; Campbell & Agnew, 2009); however, the specific per-
ceptual or cognitive process by which North American adults
rapidly map visually presented commuted pairs to a common
memory representation remains unknown (Robert &
Campbell, 2008).

Conclusions

When Fayol and Thevenot (2012) rekindled the debate about
fast procedures for adults’ simple addition, they believed this
new view would have a Bmassive impact in the domain of
numerical cognition^ (p. 401), including possible revision of
educational practices for elementary addition (see also
Thevenot et al., 2016). The subsequent series of studies pub-
lished over several years attempting to develop this potentially

important view, however, has not yielded a coherent or con-
vincing set of findings or theory. In this review, with respect to
the compacted counting theory, we have shown that there are
clear violations of the predictions of the Uittenhove et al.
(2016) sum-strategy counting model in their own data for
the very-small addition problems. The network interference
model of addition fact retrieval (Campbell, 1995) predicts
the RT results observed for these problems at least as well as
the counting theory. Our alternative graphic depiction of the
means for small problems (see Fig. 2) shows that, in fact, there
is not an unambiguous RT boundary for problems with both
operands ≤4; so the proposed category (see also Barrouillet &
Thevenot, 2013) of very-small addition problems is a statisti-
cal artefact of the particular analyses focussed on by
Uittenhove et al. and has no other supporting evidence.
Furthermore, the deferred strategy measurement procedure
used by Uittenhove et al. to identify and excise reconstructive
strategy trials from the data was seriously flawed and the in-
advertent inclusion of reconstructive strategies would contrib-
ute to the RT problem-size effects and unusually long mean
RTs reported for putative retrieval performance.

Finally, we reviewed the other types of evidence adduced
for the compacted procedure theory of addition and concluded
that these findings are unconvincing in their own right and, at
best, only distantly consistent with the fast counting theory.
Given also that there appears to be little other evidence to
support the idea that mediational strategies become
proceduralized with practice (see Bajic & Rickard, 2009;
Kole & Healy, 2013; Rickard, Lau, & Pashler, 2008), we
conclude that the cumulative evidence for fast compacted pro-
cedures for simple addition in the articles reviewed is not
convincing and does not justify significant revision of the
long-standing assumption in cognitive science that direct
memory retrieval is ultimately the most efficient process of
simple addition for nonzero problems, let alone sufficient to
recommend significant changes to basic addition pedagogy.
Operator priming, generalization effects, and attentional shifts
induced while performing arithmetic are important but still
poorly understood phenomena. Integrating them within the
wider arithmetic literature remains an important theoretical
objective.
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