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Abstract In psychology, the reporting of variance-
accounted-for effect size indices has been recommended and
widely accepted through the movement away from null hy-
pothesis significance testing. However, most researchers have
paid insufficient attention to the fact that effect sizes depend
on the choice of the number of levels and their ranges in
experiments. Moreover, the functional form of how and how
much this choice affects the resultant effect size has not thus
far been studied. We show that the relationship between the
population effect size and number and range of levels is given
as an explicit function under reasonable assumptions.
Counterintuitively, it is found that researchers may affect the
resultant effect size to be either double or half simply by suit-
ably choosing the number of levels and their ranges. Through
a simulation study, we confirm that this relation also applies to
sample effect size indices in much the same way. Therefore,
the variance-accounted-for effect size would be substantially
affected by the basic research design such as the number of
levels. Simple cross-study comparisons and a meta-analysis of
variance-accounted-for effect sizes would generally be irratio-
nal unless differences in research designs are explicitly
considered.

Keywords Effect size . Eta squared . Research design .

ANOVA

Let us begin with a hypothetical cover story. Psychology stu-
dents are preparing for a mental rotation experiment for their
laboratory course. The study objective is to evaluate the effect
of the rotation angle on the reaction time. Because a consid-
erable number of publications have criticized the paradigm of
null hypothesis significance testing, the instructor tells the
students that they should primarily resort to variance-
accounted-for effect sizes to evaluate the effect. In the com-
puter program used in this lab experiment, two rotation angles,
0° and 60°, are preset as the default experimental conditions.
The students would like to obtain the largest variance-
accounted-for effect size as possible in order to appeal to their
audience. For simplicity, assume that the relationship between
the rotation angle and reaction time is linear and that all the
levels are equispaced. Now, let us consider the following
questions.

Question 1: Consider the case when the students can add
additional levels, if they want to, only between 0° and
60°. Should they add additional levels and how much
would this affect the resultant effect size?
Question 2: Consider the case where they are allowed to
expand (or shrink) the default range of levels as well as
add additional levels. In this case, should they expand (or
shrink) the range of levels? Furthermore, should they add
additional levels? How much would these actions affect
the resultant effect size?

Calculating, reporting, and interpreting effect size indices
have become more important than ever in the current move-
ment away from the routine use of null hypothesis
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significance testing in psychology (Francis, 2012; Guan &
Vandekerckhove, 2016; Kline, 2013; Lakens, 2013; Peng,
Chen, Chiang, & Chiang, 2013; Vacha-Haase & Thompson,
2004; Wetzels et al., 2011) as well as other fields (Nakagawa
& Cuthill, 2007; Park et al., 2010; Richardson, 2011). In this
paper, our interest is on the variance-accounted-for effect size.
This class of effect size represents the proportion of variance
explained by a factor of interest. This idea has a high affinity
with the analysis of variance (ANOVA), which has been one
of the most popular statistical analyses in psychological sci-
ence. Empirical evidence also reveals that when ANOVA re-
sults are presented, the variance-accounted-for effect sizes are
most often reported together in contrast to other indices
(Alhija & Levy, 2009; Fritz, Morris, & Richler, 2012).

However, despite their popularity, the statistical properties
of variance-accounted-for effect sizes may not be well under-
stood by psychological researchers. The fact that many
readers might not instantly come up with the answers to the
questions that arose from our cover story would be collateral
evidence.

In a typical psychological experiment, researchers have a
choice of two main research design components: the number
and range of levels. For example, in our mental rotation ex-
periment, they can choose the range of angles (e.g., between
0° and 60°) and the number of levels (e.g., four equispaced
levels of 0°, 20°, 40°, and 60°). Textbooks and methodologi-
cal papers on this topic state that the effect size depends on the
research design (Grissom & Kim, 2012; Kelley & Preacher,
2012; Kline, 2013; Olejnik & Algina, 2000). Still, in reality, it
is our view that experimental design is rarely taken into con-
sideration when reporting and interpreting variance-
accounted-for effect sizes. There may be at least two reasons
for this. First, some researchers might report effect size mea-
sures just because they are required by the APA Publication
Manual (American Psychological Association, 2009) or be-
cause it is customary to report such measures in the field (i.e.,
they have not carefully considered the meaning of effect sizes
in the quantitative sense). Second, although they know that the
research design can affect the resultant effect size, they may
not have noticed how much it is affected by simply changing
the research design.

Thus, the objective of this study was to show quantitatively
how and how much the variance-accounted-for effect size
depends on the researcher’s choice of these experimental de-
signs. To this end, for the population effect size, we derived an
equation that describes the relationship. For the sample effect
size, we used Monte Carlo simulation to find their expected
values. By using these results, we argue that researchers can
substantially affect the effect size simply by manipulating the
number of levels and their range. Next, we revisited the as-
sumptions and a further generalization is made. Finally, the
importance and implications of our results as well as important
related studies is discussed. To ensure the replicability and

generalizability of our results, the R programs used to generate
all figures and conduct the simulation study in this article are
shown in Supplemental Material B.

A rich, related literature shows how design affects the var-
iance components. In particular, an important area of previous
studies is the field of the optimal research design. There, the
optimality of the research design is typically measured by
certain design criteria such as A-, D-, and E-optimality.
These criteria are functions of the variance of the parameters
(Atkinson, Donev, & Tobias, 2007; Melas, 2006), and there-
fore one may directly relate them to the variance-accounted-
for effect size. Meanwhile, the focus of the current paper is not
primarily to find or discuss the optimal design given some
prior assumptions. Rather, our goal is to demonstrate how
and how much researchers can affect the resultant effect size
by simply selecting the number (and range) of levels and how
we can quantitatively study them. An accessible cover story,
straightforward mathematical derivations, and a simulation
study are provided for this purpose. Related studies are
discussed in more detail in the Summary and Discussion
section.

Population and sample effect sizes

We start by introducing the effect size measures in which we
are interested. The population variance-accounted-for effect
size, ηpop

2 , is defined as the ratio of the total population vari-
ance (of the dependent variable Y), which is explained by the
factor of interest (represented by the design variable X).
Because the population value is generally not known, re-
searchers typically use one of three major sample effect size
indices (Grissom & Kim, 2012; Olejnik & Algina, 2000). Eta
squared (η2; Fisher, 1925), which is obtained by replacing the
population variances with the respective sample sum of
squares, is a traditional index. Although η2 is easy to under-
stand and can be useful as a descriptive measure, it is known to
have a positive bias. Less biased alternative estimators are
epsilon squared (ε2; Kelley, 1935) and omega squared (ω2;
Hays, 1963). Table 1 summarizes the population and three
sample effect size indices in a single between-subjects factor
design, which we consider in this study for simplicity.

Population effect size as a function of the number
and range of levels

Method

For the population effect size, we derive the closed-form func-
tion that describes the relation between the effect size and
number and range of levels. In our cover story, we made two
assumptions. First, the relationship between the rotation angle
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and reaction time is considered to be linear. Shepard and
Metzler (1971) showed evidence of the linearity between
these two variables (see Fig. 2 in their paper). Second, levels
are chosen to be equispaced. When the range of levels is [0°,
60°] and the number of levels, which we denote by k, is k = 3,
this means that the levels are chosen as 0°, 30°, and 60°;
when k = 4, they are 0°, 20°, 40°, and 60°; and so on. We feel
that our choice of assumptions is one of the most natural
compared with other choices when no particular reason exists
to the contrary. However, as shown in Summary and
Discussion, these two assumptions can be further relaxed
and substituted by the condition of equispacedness in the de-
pendent variable.

To investigate the effect of the range of levels, let us denote
the standardized mean difference effect size between the max-
imum and minimum treatments by d. That is, d is given by

d ¼ μmax−μmin

σE
; ð1Þ

where μmax and μmin represent the population dependent var-
iable values that correspond to the maximum and minimum
treatment and σE represents the error standard deviation. Thus,
d can be understood as the popular population Cohen’s d
(Cohen, 1988) between the minimum and maximum treat-
ment. Although d is a measure of the dependent variable, in
our cover story we can also see d as a measure of the range of
levels because when the relationship between the rotation an-
gle and reaction time is linear, μmax − μmin is a linear deter-
ministic function of the range of levels.

Results

In the above setting, we find that the population effect size is
represented in closed form as

η2pop ¼
d2 k þ 1ð Þ

12 k−1ð Þ þ d2 k þ 1ð Þ : ð2Þ

To our knowledge, Equation (2) is novel. The derivation is
straightforward, and is given in the Appendix. Importantly, as
shown in the Appendix, this is found to be a monotonically
decreasing function of the number of levels k and a
monotonically increasing function of standardized range
d. To clarify the implications, Fig. 1 plots Equation (2)
for different k s and d s.

Thus, given that the range of levels is fixed, such as be-
tween [0°, 60°], then the maximum variance-accounted-for
effect size is achieved when we choose the number of factors
to be the least possible value, that is, k = 2. From their slopes, it
can also be seen that the effect of the number of levels is rather
substantial. For example, suppose that the standardized range
is d = 0.3. Then, ηpop

2 is 0.022 when k = 2. However, ηpop
2 de-

creases to two-thirds of the previous level just by adding one
more level (k = 3). The rate of decrease reaches very close to
50 % when k = 5. The fact that the population effect size is a
decreasing function of the number of levels with such a large
dependence may be ironic for psychological science re-
searchers because more levels in an experiment would gener-
ally lead to more elaborate measurement and a better under-
standing of the phenomenon of interest. However, despite
researchers’ efforts to add more levels to better understand
the phenomenon, the resultant effect size monotonically de-
creases. If researchers want to maximize ηpop

2 , they should use
just two levels.

The other finding that ηpop
2 is a monotonically increas-

ing function of the range of levels d may not be as
surprising as the case for k, but it is still important be-
cause it implies that researchers can intentionally
Bmanipulate^ the effect size. For example, assume in
our cover story that the original range of [0°, 60°]
amounts to d = 0.3, which yields ηpop

2 = 0.022 when k =
2. Without changing the number of levels, if researchers
double the range to [0°, 120°], the effect size becomes
ηpop
2 = 0.083, which is 3.75 times larger than the original

effect. Furthermore, if they triple the range to [0°, 180°],
it yields ηpop

2 = 0.168, which is 7.65 times larger.

Table 1 Formulas for the population variance-accounted-for effect size and corresponding sample effect size indices in a single between-subjects
factor design

Effect size Characteristic Formula Reference

Population eta squared (ηpop
2 ) Population η2pop ¼ σ2M

σ2T

Eta squared (η2) Sample (uncorrected) η2 ¼ SSM
SST

Fisher (1925)

Epsilon squared (ε2) Sample (bias-corrected) ε2 ¼ SSM−d f MMSE
SST

Kelley (1935)

Omega squared (ω2) Sample (bias-corrected) ω2 ¼ SSM−d f MMSE
SSTþMSE

Hays (1963)

σ2 = population variance, SS = sum of squares, df = degrees of freedom, andMS = mean squares. For the subscript, T = total,M = treatment (or means),
and E = error
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Sample effect size as a function of the number
and range of levels

Method

The next question is whether this population relationship also
holds in the sample. Because the finite sample expected values
of the sample effect size indices are not available in closed
form, we used Monte Carlo simulation to understand their
behavior. For a meaningful comparison between the number
of levels, we need to consider an appropriate sample size. Two
possible scenarios are considered. One is when the total sam-
ple size is fixed (fixed total-N scenario) and the other is when
the sample size per condition is fixed (fixed N-in-each-level
scenario). In the former scenario, the total sample size is set to
N = 120, and thus the sample size for the j -th level is given by
nj = 120/k. In the latter scenario, the sample size for the j -th
level is set to be nj = 20, and thus the total sample size is given
by N = 20k. In both scenarios, we considered the number of
levels in k = 2, 3, 4, 5, 6, 8, 10, and 12. Table 2 summarizes the
sample size settings.

The true range d is set to be one of 0.2, 0.5, and 0.8,
corresponding to Cohen’s small, medium, and large criteria
for the standardized mean difference (Cohen, 1988). The

artificial dataset for the j -th level is generated from a normal
distribution with a corresponding mean and variance one. For
the generated dataset, the sample effect sizes η2, ε2, and ω2

are calculated. This process is repeated 1,000,000 times per
condition.

Results

The resultant Monte Carlo expected values of the three sample
effect size indices are illustrated in Figs. 2 and 3 for the fixed
total-N scenario and fixed N-in-each-level scenario, respec-
tively. It is clearly seen that the expected behavior of samples
ε2 and ω2 is similar to that of the population effect size (com-
pare c–f in Figs. 2 and 3 with Fig. 1) in both scenarios.
Therefore, the interpretation for them is also the same. That
is, researchers can intentionally inflate the resultant expected
values of the sample effect sizes, ε2 and ω2, by using the
minimum number of levels and a large range of levels, while
the effect of this manipulation is substantial; intentional choice
can easily double or half the resultant effect size. Thus, one
can expect that our findings for the population (Equation (2),
Fig. 1) similarly hold in the sample as long as bias-corrected
sample effect size indices are used.

(a) (b)

Fig. 1 Population variance-accounted-for effect size (ηpop
2 ) as a function of (a) the number of levels k and (b) the standardized range of levels d

Table 2 Simulation settings of total and per-level sample size in the two scenarios

Number of levels k

Scenario 2 3 4 6 8 10 12

Fixed total-N Total sample size N 120 120 120 120 120 120 120

Sample size per level nj 60 40 30 20 15 12 10

Fixed N-in-each-level Total sample size N 40 60 80 120 160 200 240

Sample size per level nj 20 20 20 20 20 20 20
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However, the relationship between the number of
levels k and sample η2 differs from others. In the fixed
total-N scenario, η2 is shown to be an increasing func-
tion of the number of levels k, although it decreases
once when d is not small (d = 0.5 and 0.8; Fig. 2a). In
the fixed N-in-each-level scenario, η2 is an increasing
function of the number of levels when d is small and

a decreasing function when d is large (Fig. 3a). In the
literature, it has been argued that generally η2 may not
be a recommended sample effect size because it tends
to largely overestimate the population value (Fisher,
1925; Okada, 2013; Olejnik & Algina, 2003). Still, in
practice, it is one of the most often used effect size
indices (Peng et al., 2013). Our result reveals an

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Monte Carlo expected values of the sample effect size indices in
the fixed total-N scenario. Top panels: η2 as a function of (a) the number
of levels k and (b) the standardized range of levels d. Middle panels: ε2 as

a function of (c) the number of levels k and (d) the standardized range of
levels d. Lower panels: ω2 as a function of (e) the number of levels k and
(f) the standardized range of levels d
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additional reason for not recommending η2: although the
population effect size is a decreasing function of the
number of levels k, sample η2 can sometimes be its
increasing function. Thus, it may be possible for re-
searchers to obtain a seemingly large value of sample
η2 by setting a large number of levels. However, in fact,
the population effect size becomes smaller by this

manipulation. Therefore, this seeming increase is deceptive,
and such research practice is far from recommended.

Note that because our objective is to analyze the
behavior or expected values and that reporting intervals
would complicate the figure, we only reported the
Monte Carlo expected values in Figs. 2 and 3.
However, for the complete results and details on the

(a) (b)

(c) (d)

(e) (f)

Fig. 3 Monte Carlo expected values of the sample effect size indices
under the fixed N-in-each-level scenario. Top panels: η2 as a function of
(a) the number of levels k and (b) the standardized range of levels d.

Middle panels: ε2 as a function of (c) the number of levels k and (d) the
standardized range of levels d. Lower panels: ω2 as a function of (e) the
number of levels k and (f) the standardized range of levels d
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2.5 %, 25 %, 75 %, and 97.5 % quantiles, see Supplemental
Material A.

Summary and discussion

BAnswers^ to the question

Let us return to our cover story of mental rotation. From the
findings of this study, the Banswer^ to Question 1 is that stu-
dents should choose the number of levels to be as small as
possible, that is, just two levels (k = 2). For Question 2, they
should choose the range of levels to be as large as possible,
that is, between [0°, 180°], and again just two levels. If the
initial range [0°, 60°] corresponds to d = 0.3, then choosing
two levels rather than five would double the resultant expected
effect size. Further, widening the range to [0°, 180°] would
make it more than seven times larger. It now becomes clear
that researchers’ choice of the number and range of levels
substantially affects the resultant effect size.

Revisiting the assumptions

Although we made a linearity assumption in our cover story
for simplicity, this can be relaxed a little further. As clarified in
the derivation in the Appendix, the critical premise of our
derivation is the equispacedness of the population means of
the dependent variable (Y). If this holds, our results do not
depend on the functional form between X and Y. Of course,
the equispacedness of Y holds when the following three hold:
X is continuous, the levels are equispaced in X, and the rela-
tionship between X and Y is linear. Still, equispacedness can
also hold in many other scenarios. When the relationship is
nonlinear, one can still find non-equispaced levels in X that
result in equispaced Y. Moreover, although some readers
might have thought that our results are based on continuous
or ordinal X, as implied by our cover story, that is not actually
the case. In fact, X can also be a purely categorical variable. In
such a case, dummy indicator variables that correspond to
each level are introduced. Then, their coefficients are quanti-
tative variables even when X is categorical. Thus, we can
choose the level (category) that results in the minimum and
maximum treatments. Our critical assumption is just that the
dependent means are equispaced within this range.

Some readers may find that this equispacedness is still a
strong assumption. Our view is that equispacedness is one of
the most natural assumptions when no further information is
given. Even so, we can also likewise study other cases. The
approach we took in this paper can be similarly used to eval-
uate both the population and the sample behaviors of the effect
size in different scenarios. The Banswers^ to the research
questions posed may differ when the assumptions of an
equispaced dependent variable change. Investigating the

consequences in other scenarios would thus be a fruitful ave-
nue of future research, and the literature on the optimal re-
search design would serve as a valuable reference.

Why is this the case?

Some readers may find difficulty in intuitively accepting the
above Banswers.^ The formal mathematical derivation is giv-
en in the Appendix. Instead, here, we show an intuitive expla-
nation of why this is the case.1 For the decomposition of
variance, the following law of total variance is well known:

Var Yð Þ ¼ E Var Y
���X

� �� �
þ Var E Y

���X
� �� �

: ð3Þ

On the right-hand side, the first term is the expected value
of the error variance, which is σE

2 in our scenario and therefore
not affected by the researcher’s choice of the number of levels.
The second term involves the average sum of the squares over
the group means, which thus corresponds to σM

2 . In our sce-
nario of equispaced Y within a fixed range, it would be intu-
itive that this term is a decreasing function of the number of
levels. Because the variance-accounted-for effect size is given
as the ratio of the second term to the total, it is also a decreas-
ing function of the number of levels.

The above leads us to understand this issue in a broader
sense. The seemingly paradoxical fact discussed in this paper
occurs in part because the variance-accounted-for effect size is
standardized by using the total variance. As discussed in
Baguley (2009), standardized effect sizes are affected, or
Bdistorted,^ by the research design (or anything) that affects
the variance even though it does not affect the essential rela-
tionship between X and Y. In this sense, the standardized effect
size may be better understood as a measure of the detectability
of the effect rather than the magnitude of the effect itself.
Then, the use of simple (i.e., unstandardized) effect sizes
may be recommended in more applications than currently.
Refer to Baguley (2009) for discussions on when
standardized and simple effect sizes are appropriate and to
Baguley (2004) for related discussions on the effect of the
research design.

That being said, the current popularity of standardized ef-
fect sizes in psychology is also understandable. A standard-
ized effect size may be more natural in psychology compared
with physical science because the metrics of variables studied
in psychology rarely have an intrinsic meaning. Furthermore,
in meta-analytic studies, standardized effect size measures are
often used to combine the results of various studies that have
different metrics for the dependent variable (as well as other
research designs). In fact, as pointed out by Kelly and

1 This intuitive explanation was suggested by Dr Maarten Marsman
(University of Amsterdam), to whom the authors would like to express
their thanks.
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Preacher (2012), some authors such as Olejnik and Algina
(2003) and the National Center for Education Statistics
(2002) define the effect size as a Bstandardized^ measure of
effect. However, as demonstrated in this paper, standardized
effect sizes have some undesirable side effects (i.e., they are
more vulnerable to differences in the research design).

Related studies

As mentioned at the beginning of the paper, the fact that var-
iance components depend on the experimental design has
been investigated and pointed out by a variety of studies2. A
rich literature exists in the field of the optimal research design.
Some are quite mathematically oriented, whereas other works
are readily accessible to psychological researchers. For exam-
ple, Mead (1988, Chapter 17) discussed how the variance of
the parameter estimates is affected by the experimental design.
Moreover, McClelland (1997) demonstrated that one can de-
termine the allocation of observations across the five levels of
the explanatory variable that maximizes the variance. The
Appendix of McClelland (1997) mathematically shows (in
the case of five levels) that the maximum variance of X is
obtained when half of the observations are allocated to each
extreme condition. Thus, the results we have shown in this
paper are in line with those of the literature, although our focus
is not on finding the optimal design but rather quantitatively
investigating how and how much the effect size is affected by
the research design. We made the equispacedness assumption
and derived the functional form of the relationship, which can
be used to evaluate how the resultant effect size would change
when we manipulate the design.

Another important field of the literature is that of extreme
group analysis (EGA). In our settings, we have shown that one
can obtain the maximum effect size by choosing the minimum
number of levels and maximum range. This is similar to the
case of EGA, which refers to the practice sometimes used in
empirical studies of examining the effect of X on Y, typically
when X is continuous, by selecting only those individuals who
are on the extreme ends of the distribution on X. Typically, the
objective of conducting EGA is to increase power; however, it
also affects the resultant effect size. For example, Humphreys
(1985) pointed out that standardized effect sizes are Binflated^
when extreme groups are analyzed. The same was discussed
in detail by Preacher, Rucker, MacCallum, and Nicewander
(2005). Our setting in this paper is different from the typical
context of EGA in that we consider the choice of levels, which
is a categorical explanatory variable, while EGA typically
considers the choice of groups based on continuous

explanatory variables. Still, the intuition obtained from the
literature can help researchers better understand the
phenomenon.

Take-home messages and future studies

Effect sizes have been considered to be important because
they allow comparisons across studies, even when different
scales are used, and consequently constitute the basic ele-
ments of research synthesis (Fritz, Scherndl, & Kühberger,
2012). The effect size obtained in a study has often been
considered to be beyond the control of the researchers.
However, in this paper, we demonstrated that effect size is
vulnerable to the research design. The variance-accounted-
for effect size can be better understood as Bthe ratio of the
variance explained by X in the given research design.^ This
does not represent the pure measure of the relationship be-
tween X and Y, but rather measures the discriminability of
the effect of X in the given research design. This point is in
line with previous studies (Baguley, 2009; Kelley & Preacher,
2012).

The important take-home message of this paper is that the
variance-accounted-for effect size substantially depends on
the researcher’s choice of experimental design such as the
number and range of levels, and that this dependency between
the effect size and research design can be studied mathemati-
cally. Thus, a simple meta-analysis of the variance-accounted-
for effect size would be irrational unless the effect of the re-
search design, such as the number and range of levels, is
explicitly considered and handled.

In our view, despite the extensive literature, relatively little
attention has been paid to how much the variance-accounted-
for effect size depends on the research design, even though
many authors now report it in their papers. Of course, it is not
our intention to argue that the variance-accounted-for effect
size is useless. Rather, the current paper calls for more atten-
tion: the research design needs to be explicitly considered and
handled when we interpret, compare, and synthesize the
variance-accounted-for effect size.

The idea of a generalized effect size (Olejnik & Algina,
2003) is an appealing approach to retain comparability among
different designs in terms of the use of blocking factors or
covariates, or the inclusion of additional factors. Still, it is
not intended to retain the comparability between studies that
have different designs in terms of the number and range of
levels. Future studies could investigate better ways of com-
bining the effect sizes from multiple studies that differ in as-
pects of the research design.

Recently, the undesirable research practice called Bp-
hacking^ has become a concern. This refers to the fallacy of
exploiting a researcher’s degree-of-freedom until p < 0.05 is
reached by, for example, keep adding participants in an exper-
iment (Murayama, Pekrun, & Fiedler, 2013; Rouder, 2014;

2 Important studies discussed in this subsection (and the Introduction)
were suggested by Dr. Thom Baguley (Nottingham Trent University),
to whom the authors would like to express their thanks.
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Simmons, Nelson, & Simonsohn, 2011). Thus, the practice of
reporting effect sizes has been recommended through the
movement away from an overdependence on p values.
However, if the scientific community resorts too much to the
variance-accounted-for effect size as a primary measure of
research instead of p values without paying attention to the
given research design, then another undesirable research prac-
tice of Beta squared hacking^ might occur in turn, in which
researchers intentionally choose to use the design that inflates
the effect size. Standardized effect sizes are dependent on the
research design, and therefore researchers can affect them
simply by choosing an appropriate research design.

We considered the case of a single between-subjects factor
design for simplicity. However, our argument should essen-
tially apply to within-subjects factor and more complex de-
signs as this concerns the decomposition of the error term. Our
argument should also apply to the partial effect size measures
often reported in practice, because these are defined by
subtracting a constant from the denominator of the ordinary
(non-partial) effect size. Our results also are strongly expected
to be applicable to the sample ε2 and ω2 as well as their partial
versions in more complex designs because their biases are
known to be small. Additional future simulation research
may prove this point.
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Appendix: Derivation and derivatives of equation (2)

Let μj be the population mean in the j -th (j = 1,…, k) level3.
Without loss of generality, let μ1 = 0 and μk = d*. This means
that μ1 corresponds to the population mean in the condition
that results in the minimum effect μmin, and μk corresponds to
the population mean in the condition that results in the max-
imum effect μmax. Because the scale is arbitrary, we choose μ1
to be 0 and μk to be d*. Then, Equation (1) can be rewritten as

d ¼ μmax−μmin

σE
¼ d*

σE
: ð4Þ

We also assume that when the number of levels increase, the
population mean takes the equispaced values between μ1 and
μk. Then, each μj can be represented as

μ j ¼
d*

k−1
j−1ð Þ: ð5Þ

Note that this is a slightly relaxed assumption compared with
the original assumptions of equispaced independent variables
and linearity. From Equation (5), the mean of μj is given as

μ ¼ 1

k

Xk

j¼1

μ j ¼
d*

2
: ð6Þ

By substituting Equations (5) and (6) into the definition of
variance of the population means σM

2 ,

σ2
M ¼

X k

j¼1
μ j−μ

� �2

k
¼

X k

j¼1
d*
k−1 j−1ð Þ− d*

2

� �2

k

¼ d*2 k þ 1ð Þ
12 k−1ð Þ : ð7Þ

Further, from Equation (4), σE
2 is given as

σ2
E ¼ d*2

d2
: ð8Þ

By substituting Equations (7) and (8) into the definition of
ηpop
2 ,

η2pop ¼
σ2
M

σ2
T
¼ σ2

M

σ2
M þ σ2

E
¼

d*2 k þ 1ð Þ
12 k−1ð Þ

d*2 k þ 1ð Þ
12 k−1ð Þ þ d*2

d2

¼ d2 k þ 1ð Þ
12 k−1ð Þ þ d2 k þ 1ð Þ ; ð9Þ

which proves Equation (2).
The partial derivative with respect to k is

∂
∂k

d2 k þ 1ð Þ
12 k−1ð Þ þ d2 k þ 1ð Þ

¼ −
24d2

12 k−1ð Þ þ d2 k þ 1ð Þ� �2 ≤0: ð10Þ

Therefore, ηpop
2 is a monotonically decreasing function of k.

Similarly, the partial derivative with respect to d is

∂
∂d

d2 k þ 1ð Þ
12 k−1ð Þ þ d2 k þ 1ð Þ

¼ 24d k2−1
� �

12 k−1ð Þ þ d2 k þ 1ð Þ� �2 ≥0: ð11Þ

Note that the last inequality holds because by definition d ≥ 0
and k ≥ 2. Therefore, ηpop2 is a monotonically increasing func-
tion of d.

3 The ANOVAmodel is a special case of a general linear model in which
all the explanatory variables are categorical and all the elements of the
design matrix are dummy variables (e.g., Dobson, 2002, Chapter 6).
Then, μj corresponds to the coefficient of the dummy variables.
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