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The EZ diffusion model provides a powerful test of simple
empirical effects

Don van Ravenzwaaij1 ·Chris Donkin2 · Joachim Vandekerckhove3

© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Over the last four decades, sequential accumula-
tion models for choice response times have spread through
cognitive psychology like wildfire. The most popular style
of accumulator model is the diffusion model (Ratcliff
Psychological Review, 85, 59–108, 1978), which has been
shown to account for data from a wide range of paradigms,
including perceptual discrimination, letter identification,
lexical decision, recognition memory, and signal detection.
Since its original inception, the model has become increas-
ingly complex in order to account for subtle, but reliable,
data patterns. The additional complexity of the diffusion
model renders it a tool that is only for experts. In response,
Wagenmakers et al. (Psychonomic Bulletin & Review, 14,
3–22, 2007) proposed that researchers could use a more
basic version of the diffusion model, the EZ diffusion. Here,
we simulate experimental effects on data generated from
the full diffusion model and compare the power of the full
diffusion model and EZ diffusion to detect those effects.
We show that the EZ diffusion model, by virtue of its
relative simplicity, will be sometimes better able to detect
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experimental effects than the data–generating full diffusion
model.
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In everyday life, we are constantly confronted with situa-
tions that require a quick and accurate action or decision.
Examples include mundane tasks such as doing the dishes
(we do not want to break china, but we also do not want to
spend the next hour scrubbing), or vacuum cleaning (we like
to get as many nooks and corners as possible, but also want
to get back to finishing that paper), but also more serious
activities, such as typing a letter or performing a placement
test. For all these actions, there exists a trade–off, such that
greater speed comes at the expense of more errors. This phe-
nomenon is called the speed–accuracy trade–off (Schouten
& Bekker, 1967; Wickelgren, 1977).

In experimental psychology it is common practice to
study this speed–accuracy trade–off with relatively simple
tasks. More often than not, the task requires participants
to decide between one of two alternatives as quickly and
accurately as possible. Notable examples include the lexi-
cal decision paradigm (Rubenstein et al., 1970) in which the
participant is asked to classify letter strings as English words
(e.g., LEMON) or non–words (e.g., LOMNE), and the mov-
ing dots task (Ball & Sekuler, 1982) in which participants
have to determine whether a cloud of partly coherently
moving dots appears to move to the left or to the right.
Typically, the observed variables from these and other two–
alternative forced choice tasks are distributions of response
times (RTs) for correct and incorrect answers. One way to
analyze the data from these kinds of tasks is to draw infer-
ences based on one of, or both, the mean of the correct RTs,
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or the percentage of correct responses. These measures,
however, do not speak directly to underlying psychologi-
cal processes, such as the rate of information processing,
response caution, and the time needed for stimulus encoding
and non–decision processes (i.e., response execution). They
also do not address the speed–accuracy trade–off.

The motivation among cognitive psychologists to be able
to draw conclusions about these unobserved psychological
processes has led to the advent of sequential accumulator
models. A prominent example of such a model is the dif-
fusion model (Ratcliff, 1978). The model assumes that an
observer accumulates evidence for responses until a thresh-
old level of evidence for one of the responses is reached. The
time taken to accumulate this evidence, plus a non–decision
time, gives the observed response time, and the choice is
governed by which particular threshold is reached.

Over the last four decades, as increasingly complex data
patterns were observed, the diffusion model grew in order
to account for these data. Ratcliff (1978) added the assump-
tion that accumulation rate varied from trial to trial in order
to account for the observation that incorrect responses were
slower than correct responses. Ratcliff and Rouder (1998)
assumed that the starting point of evidence could vary from
trial to trial (following Laming, 1968), allowing them to
account for incorrect responses that were faster than correct
responses. Finally, Ratcliff and Tuerlinckx (2002) also pro-
posed that non-decision time would vary across trials, an
assumption that allowed the model to account for patterns
in the speed with which the fastest responses were made.

The version of the diffusion model that includes all
components of between–trial variability is known hence-
forth as the ‘full’ diffusion model. As a theoretical
model of decision–making, the full diffusion model is
impressive – it accounts for a wide range of reliable
empirical phenomena. Among others, the diffusion model
has been successfully applied to experiments on percep-
tual discrimination, letter identification, lexical decision,
categorization, recognition memory, and signal detection
(e.g., Ratclif,f 1978; Ratcliff et al., 2004, 2006; Klauer
et al., 2007;Wagenmakers et al., 2008; vanRavenwaaij et al.,
2011; Ratcliff et al., 2010). Using the diffusion model,
researchers have examined the effects on decision mak-
ing of alcohol intake (van Ravenzwaaij et al. 2012), play-
ing video games (van Ravenzwaaij et al. 2014), sleep dep-
rivation (Ratcliff & van Dongen, 2009), anxiety (White
et al., 2010), and hypoglycemia (Geddes et al. 2010).
The model has also been applied extensively in the neu-
rosciences (Ratcliff et al., 2007; Philiastides et al., 2006;
Mulder et al., 2012).

In recent years, researchers have begun to use the full
diffusion model as a measurement model. A diffusion
model analysis takes as input the entire RT distribution for
both correct and incorrect responses. The model maps the

observed RTs and error rates into a space of psychological
parameters, such as processing speed and response caution.
Such an analysis has clear benefits over traditional analyses,
which make no attempt to explain observed data in terms of
psychologically meaningful processes.

A full diffusion model analysis is complicated, for two
reasons. First, the model is complicated to use. Parameters
for the model are estimated using optimization on functions
that involve numerical integration and infinite sums.While there
have been valiant efforts to make such models easier to use
(Donkin et al., 2009, 2011; Vandekerckhove & Tuerlinckx,
2007, 2008; Voss &Voss, 2007), the application of a full dif-
fusion model remains an approach most suited for experts.
Second, the model itself may be more complex than is
required by the data it is being used to fit, at least when the
model is being used as ameasurementmodel. When the data
do not provide enough constraint on the estimation of model
parameters, the more complex model will overfit the data,
which leads to increased variability in parameter estimates.1

In response to the complexity of the full diffusion model,
Wagenmakers et al. (2007) advocated for the use of the “EZ
diffusion model”. The EZ diffusion model forgoes between–
trial variability in accumulation rate, starting point, and
non-decision time, as well as a–priori response bias (but see
Grasman et al., 2009). By removing all of these additional
model components, no fitting routine is required to estimate
the parameters of the EZ diffusion model. Instead, the EZ
diffusion takes RT mean, RT variance, and percentage cor-
rect, and transforms them into a mean rate of information
accumulation, response caution, and a non–decision time.

The EZ model has been heralded for the ease with which
it can be applied to data. However, critics have claimed
that it is “too EZ” (Ratcliff, 2008, but see Wagenmakers
et al., 2008). It is true that the EZ diffusion model can not
account for the very broad range of data patterns for which
the full diffusion was developed. However, the patterns of
fast and slow errors, and shifting leading edges, that war-
rant the full complexity of the diffusion model are often
observed in experiments that are specifically designed to
observe such patterns, usually involving many thousands of
trials. It is unclear whether such complex patterns can be
detected in data coming from simpler experiments, at least
to the point that they constrain the estimation of additional
model parameters.

1To see this, imagine an experimental design in which the between-
trial variability in accumulation rate parameter in the diffusion model,
ν, is unidentifiable (i.e., every value of ν̂ can yield the same likelihood
value). If we were to fit a model to data that includes ν, the maxi-
mum likelihood value of the other parameters in the model, θ , will be
estimated conditional on ν̂. Because the parameters in the diffusion
model are correlated, the value of θ̂ depends on ν̂. As such, estimating
ν artificially increases the variability in estimates of θ .
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Fig. 1 The diffusion model and
its parameters as applied to a
moving dots task (Ball &
Sekuler, 1982). Evidence
accumulation begins at starting
point z, proceeds over time
guided by mean drift rate ν, and
stops whenever the upper or the
lower boundary is reached.
Boundary separation a

quantifies response caution.
Observed RT is an additive
combination of the time during
which evidence is accumulated
and non–decision time Ter
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Van Ravenzwaaij and Oberauer (2009) examined the
ability of both the full and EZ model to recover the mean
structure and individual differences of parameter values
used to generate fake data. The authors concluded that EZ
was well capable of recovering individual differences in the
parameter structure, but exhibited a bias in the recovery of
the mean structure. Interestingly, the full diffusion model
was unable to recover individual differences in the across–
trial variability parameters, casting doubt on the added value
of these extra parameters in more “typical” data sets. Recov-
ery of the mean structure depended very much on the
specific implementation.

Here, we show that the additional complexity of the full
diffusion model has adverse consequences when one aims to
use the model to detect the existence of an empirical effect.
Simplifying the parametric assumptions of the diffusion
model leads to increased precision in parameter estimation
at the cost of possible bias due to model mis–specification
(bias–variance trade–off; (Geman et al., 1992)). However,
for the purposes of decision–making, bias is not necessar-
ily detrimental (Gigerenzer & Brighton, 2009) while higher
precision leads to stronger and more accurate inference
(Hastie et al., 2005). One of the aims of this manuscript is
to help non–experts approach the notion of when to use the
EZ model over the full diffusion model.

We simulate data in which we systematically vary the
three main diffusion model parameters between two condi-
tions: drift rate, boundary separation, and non-decision time.
The data are simulated from a full diffusion model. We then
show that, compared to the full diffusion model, the EZ
diffusion model is the more powerful tool for identifying
differences between two conditions on speed of information
accumulation or response caution. We show that this holds
across simulations that differ in the number of trials per

participant, the number of participants per group, and the
size of the effect between groups. We compare the pro-
portion of times that the EZ and the full diffusion model
detected a between–group effect on either mean speed
of information accumulation, response caution, or non–
decision time parameters (in terms of the result of an
independent-samples t–test).

The remainder of this paper is organized as follows: in
the next section, we discuss the diffusion model in detail.
We examine the simple diffusion model, the full diffusion
model, and EZ. In the section after that, we discuss our
specific parameter settings for our simulation study. Then,
we present the results of our simulations. We conclude the
paper with a discussion of our findings and the implica-
tions for cognitive psychologists looking to analyze their
data with the diffusion model.

The diffusion model

In the diffusion model for speeded two–choice tasks
(Ratcliff, 1978; Vandekerckhove & Tuerlinckx, 2007; van
Ravenzwaaij et al., 2012), stimulus processing is conceptu-
alized as the accumulation of noisy evidence over time. A
response is initiated when the accumulated evidence reaches
a predefined threshold (Fig. 1). The decision process begins
at starting point z, after which information is accumu-
lated with a signal–to–noise ratio that is governed by mean
drift rate ν and within–trial standard deviation s.2 Mean

2Mathematically, the change in evidence X is described by a stochastic
differential equation dX(t) = ν · dt + s · dW(t), where s · dW(t)

represents the Wiener noise process with mean 0 and variance s2 ·
dt . The standard deviation parameter s is often called the “diffusion
coefficient” and serves as a scaling parameter that is often set to 0.1 or
to 1.
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drift rate ν values near zero produce long RTs and near–
chance performance. Boundary separation a determines the
speed–accuracy trade–off; lowering boundary separation a

leads to faster RTs at the cost of more errors. Together,
these parameters generate a distribution of decision times
DT . The observed RT, however, also consists of stimulus–
nonspecific components such as response preparation and
motor execution, which together make up non–decision
time Ter . The model assumes that Ter simply shifts the
distribution of DT , such thatRT = DT +Ter (Luce, 1986).

Hence, the four core components of the diffusion model
are (1) the speed of information processing, quantified by
mean drift rate ν; (2) response caution, quantified by bound-
ary separation a; (3) a–priori response bias, quantified by
starting point z; and (4) mean non–decision time, quantified
by Ter .

Full diffusion

The simple diffusion model can account for most data pat-
terns typically found in RT experiments, but has difficulty
accounting for error response times that have a different
mean from correct response times (Ratcliff, 1978). One way
for the model to produce slow errors is with the inclusion
of across–trial variability in drift rate. Such variability will
lead to high drifts that produce fast correct responses and
low drifts that produce slow error responses.

One way for the model to produce fast errors is with
the inclusion of across–trial variability in starting point
(Laming, 1968; Link, 1975; Ratcliff & Rouder, 1998). Such
variability will cause most errors to happen because of an
accumulator starting relatively close to the error boundary,
whereas correct responses are still relatively likely to hap-
pen regardless of the starting point. As a consequence, the
accumulated evidence will be lower on average for error
responses than for correct responses, resulting in fast errors.
For a more elaborate explanation of both of these phe-
nomena, the reader is referred to Ratcliff & Rouder (1998,
Fig. 2).

Thus, the full diffusion model includes parameters that
specify across–trial variability in drift rate, η, and in starting
point, sz. Furthermore, the model includes an across–trial
variability parameter for non–decision time, st , to better
account for the leading edge of response time distributions
(e.g., Ratcliff & Tuerlinckx, 2002).

EZ diffusion

The EZ diffusion model presents the cognitive researcher
with an alternative that does not require familiarity with
complex fitting routines, nor does it require waiting a poten-
tially long time on the model to estimate parameters from
the data (Wagenmakers et al., 2007). All the researcher

needs is to execute a few lines of code and the EZ param-
eters will be calculated instantaneously. The closed–form
solutions for the EZ diffusion model require the assumption
that there is no between–trial variability in drift rate, η, start-
ing point, sz, or non–decision time, st . Further, the model
assumes that responses are unbiased (i.e., z is fixed at half
of a).

The EZ diffusion model converts RT mean, RT variance,
and percentage correct, into the three key diffusion model
parameters: mean drift rate ν, boundary separation a, and
non–decision time Ter . The EZ diffusion model parameters
are computed such that the error rate is described perfectly.
EZ calculates diffusion model parameters for each partic-
ipant and each condition separately. For applications of
the EZ diffusion model, see e.g., Schmiedek et al. (2007),
Schmiedek et al. (2009), Kamienkowski et al. (2011), and
van Ravenzwaaij et al. (2012).

Power simulations

We conducted four sets of simulations. For every set, we
generated 4,500 data sets from the full diffusion model. All
of the data sets were intended to mimic a two–condition
between–subjects experiment. In the first three sets of sim-
ulations, we varied one of the three main diffusion model
parameters systematically between the two groups. The
fourth set of simulations was identical to the first, except we
varied the mean starting point parameter.

The range of parameters we used were based on the
distribution of observed diffusion model parameters, as
reported in Matzke and Wagenmakers (2009). For Group 1,
we sampled individual participant diffusion parameters
from the following group distributions:

ν ∼ N(0.223, 0.08)T(0, 0.586)

a ∼ N(0.125, 0.025)T(0.056, 0.393)

Ter ∼ N(0.435, 0.09)T(0.206, 0.942)

z = bias × a

η ∼ N(0.133, 0.06)T(0.05, 0.329)

sz ∼ N(0.3 × a, 0.09 × a)T(0.05 × a, 0.9 × a)

st ∼ N(0.183, 0.037)T(0, 0.95 × Ter)

The notation ∼ N(, ) indicates that values were drawn
from a normal distribution with mean and standard deviation
parameters given by the first and second number between
parentheses, respectively. The notation T() indicates that the
values sampled from the normal distribution were truncated
between the first and second numbers in parentheses. Note
that in the first three sets of simulations we fixed bias =
1
2 in both the simulations and the model fits, reflecting an
unbiased process such as might be expected if the different
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boundaries indicate correct vs. incorrect responding. In the
fourth set of simulations, we relaxed this assumption and
varied bias according to

bias ∼ N(0.5, 0.04)T(0.25, 0.75)

For Group 2, all individual participant diffusion parame-
ters were sampled from the same group distributions, except
for either drift rate ν (sets 1 and 4), boundary separation a

(set 2), or non-decision time Ter (set 3).3 For each parame-
ter, we ran three different kinds of effect size simulations: a
small, a medium, and a large effect size. Depending on the
effect size, the Group 2 mean of the parameter of interest
was larger than the Group 1 mean by 0.5, 0.8, or 1.2 within–
group standard deviations for the small, the medium, and the
large effect size, respectively. To illustrate for drift rate ν,
depending on the simulation, we sampled individual partic-
ipant diffusion parameters for Group 2 from the following
group distributions:

νsmall ∼ N(0.263, 0.08)

νmedium ∼ N(0.287, 0.08)

νlarge ∼ N(0.319, 0.08)

The small, medium, and large effect size mean param-
eters for boundary separation a and non-decision time Ter

can be derived in a similar fashion. We varied the number
of participants per group. The smallest group size was 10,
the largest group size was 50, and we included all interme-
diate group sizes in steps of 10. We also varied the number
of response time trials each participant completed: 50, 100,
and 200.

Thus, to sum up, our simulations varied along the follow-
ing dimensions:

1. Effect size: small (0.5 SD), medium (0.8 SD), and large
(1.2 SD)

2. Number of participants: 10, 20, 30, 40, 50
3. Number of trials: 50, 100, 200

This resulted in a total of 45 types of simulations. We
replicated each simulation type 100 times. We fit the result-
ing data with the full diffusion model, and we calculated
EZ parameters. Next, we performed a t–test on the differ-
ence between the drift rate parameters in each of the two
simulated groups, as estimated from the full diffusion and

3We chose not to include a simulation in which the bias parameter
was the only parameter that varied systematically between conditions.
We expect that the EZ model will incorrectly attribute the difference
in data to one of the three other parameters, and therefore lead to an
incorrect conclusion. Our recommendation is for the researcher who
expects response bias to vary across conditions to use the full diffusion
model, or the EZ2 model (Grasman et al., 2009).

the EZ diffusion models. We recorded whether the obtained
p–value was smaller than the traditional α of .05. Our anal-
ysis centers around the proportion of the 100 simulations for
which the p-value was less than α.

Results

The results of the drift rate ν, boundary separation a, and
non-decision time Ter simulations (sets 1 to 3) are shown in
Figs. 2, 3, and 4, respectively. In all plots, the y–axis plots
the proportion of 100 simulations for which a t–test on the
focal parameter of the two groups yielded a p < .05. The
results for the EZ diffusion model are plotted in the left col-
umn, and the full diffusion in the right column. For both
models, the number of participants in each group increases
the power of the analysis, as does the number of trials per
participant.
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EZ diffusion ν; right column = full diffusion ν. Top row = 50 tri-
als, middle row = 100 trials, bottom row = 200 trials. Different lines
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For both drift rates and boundary separation parameters,
the EZ diffusion model provides a higher-powered test than
does the full diffusion model. When the two groups differed
in terms of non-decision time, the EZ and full diffusion
models perform equivalently.

Finally, the results of the drift rate with start point bias
simulations (set 4) are shown in Fig. 5. We see that the
results of the set 1 simulations are mirrored for set 4.
Though the full diffusion model now fares slightly better
than before in terms of power, the EZ diffusion model still
provides a more powerful test of the difference between drift
rates. That is, even when starting point bias is allowed to
vary, the EZ diffusion model detects a difference between
the two groups more often than does the full diffusion
model.

Perhaps the higher power of the EZ diffusion model
comes at the expense of a higher Type 1 error rate for the
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other parameters? In order to investigate this potential
caveat, we have done the same kind of analyses for the
two non–focal diffusion model parameters. That is, for sets
1 and 4, we looked at the proportion of times an effect
was found for boundary separation and non–decision time
and compared these results for the EZ model and the full
diffusion model. For set 2, we made this comparison for
drift rate and non–decision time. For set 3, we compared
drift rate and boundary separation. Detailed results can be
found in the Supplementary Material, available on www.
donvanravenzwaaij.com/Papers. The conclusion is that the
type 1 error rate is very low and comparable for both models
for all simulation sets.

When taken together, the difference between the two
models is striking. This result is probably quite surprising,
given that the data were generated using the full diffusion
model. The full diffusion model should have an advantage,
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but the complexity of the model turns out to impair its abil-
ity to detect effects, even when compared to models that are
simplifications of the generating model.

Discussion

The result of our simulations is simple: EZ diffusion is
a more powerful tool than the full diffusion model when
attempting to detect a between–group effect on speed of
information processing or response caution. One potential
explanation for this result is that the parameters of the full
diffusion model are not well–constrained by the data from
a single condition. We simulated data from a model in
which only drift rate differed, on average, between the two
groups. However, when the full diffusion model was fit to
the data from an individual, then its six free parameters

(ν, a, Ter , η, sz, st ) varied in such a way to ‘overfit’ the data.
This additional variability in parameter estimates led to a
reduction in the power of the test comparing just the ν, a or
Ter parameters of the two groups.

We now discuss a number of possible alternative expla-
nations and caveats for our results.

Optimization versus calculation

A difference between the two approaches is that we use
a fitting routine to obtain the parameters of the full diffu-
sion model, while the EZ diffusion model utilizes closed–
form estimates of the model parameters. Here, we used
the fastDM (Voss & Voss, 2008) code in conjunction with
Quantile Maximum Proportion Estimation (Heathcote et al.,
2002) to fit the full diffusion model. The starting points of
the optimization algorithm were the true population–level
mean values, and SIMPLEX was used with a total of 2,500
steps. It is possible that the results we obtained were caused
because we were unable to find the best set of parameter
values with the full diffusion model.

To determine the extent to which parameter estimation
was an issue, we used the same method to estimate the
parameters of the EZ diffusion model, instead of relying
on the closed–form solutions. Put differently: we estimated
parameters for the simple diffusion model and compared its
power to that of EZ and full diffusion for the drift rate sim-
ulations. The result is almost identical power for the EZ and
simple diffusion models.4

The problem of optimization is less pronounced for the
simple diffusion model than for the full diffusion model,
because it has fewer parameters. That is, the optimizer will
more often find the best–fitting parameter estimates because
there are fewer parameters to optimize. However, the fact
that the results of EZ and simple diffusion are so similar
makes it, in our opinion, quite unlikely for this pattern to
emerge entirely as a result of optimization issues. On top of
that, even if the result were caused by poorer estimation of
the full diffusion model, it still might be preferable to sub-
vert this problem entirely, and simply use the EZ diffusion
model.

It is also important to stress again here that for our sim-
ulations, the data–generating process was the full diffusion
model. When applying the models to real data, both mod-
els become misspecified. As such, even perfect optimization
would not necessarily lead to higher power for the full
diffusion model.

4A figure with the results of this simulation is available in the Supple-
mentary Material that can be obtained from www.donvanravenzwaaij.
com/Papers.
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Parameter estimates will be biased

One issue with using the EZ diffusion model is that the
parameter estimates of the model are systematically biased
when the full diffusion model is used as the data gener-
ating process. As such, if the full diffusion model does
provide an accurate representation of the way in which deci-
sions are made, then one should interpret the actual values
estimated by the EZ diffusion model with care. In other
words, it is important to clarify that our positive assessment
of the EZ diffusion model is with respect to its statistical
power, and not with its estimation properties (see above
comments about the bias-variance trade-off). If the aim of
one’s research project is an unbiased estimate of full diffu-
sion model parameters, then one needs to conduct a very
different kind of experiment to the one simulated here (more
on that in the next section). However, the model compari-
son approach is especially appropriate if the primary interest
is in the discovery of general laws and invariances (e.g.,
Rouder et al., 2015).

Of course, issues with EZ’s unbiased estimates of the
full diffusion model should be taken with a grain of salt,
since it seems exceedingly unlikely that the full diffusion
is the data–generating process. As such, the real question
is whether the degree to which the bias in the parameter
estimates of the full diffusion model is smaller than that
of the EZ diffusion model, with respect to the true data–
generating process. Almost half a decade of research tells
us that the full diffusion model is a better representation of
the decision–making process than the EZ diffusion, but it
seems unlikely that the full diffusion model is actually the
true data–generating process. For example, response thresh-
olds appear to sometimes decrease over time (Hawkins
et al., 2015; Zhang et al., 2014), evidence appears to leak
with time (Usher & McClelland, 2001), and the drift rate
is not always a stationary signal (Smith & Ratcliff, 2009).
It is unclear to what extent the full diffusion parameter
estimates are biased because the model does not incor-
porate these factors, not to mention the factors not yet
identified.

More complex designs

The design of our simulation study was remarkably sim-
ple. Our simulations were limited to two between–subjects
conditions. It is lore among the choice response time model
community that such a design is unlikely to yield reliable
parameter estimates. As such, to those readers, our results
are presumably not overly surprising. Our message, and
therefore the series of simulations, is not meant for an expert
audience. Our design was meant to reflect the kind of exper-
iment that was not necessarily developed with response time
models in mind.

The diffusion model is becoming increasingly often used
as a post–hoc measurement model. A simple, between–
subjects analysis represents the kind of study to which these
models are being applied. Our message is rather that if it
is not the researcher’s goal to explain the detailed shape of
their response time distributions but rather to infer simple
differences between conditions, then they are probably bet-
ter served with an EZ diffusion model analysis, rather than
one in which all parameters of the full diffusion model are
estimated separately across conditions.

To get the best results of a choice response time model
analysis, however, researchers should consult existing tuto-
rials before running their studies (e.g., Voss et al., 2015).
The advice will be to have experimental conditions across
which parameters are not expected to vary. By constraining
some of the parameters of the model across experiment con-
ditions, it becomes possible to constrain even the between–
trial variability parameters of the full diffusion model. We
speculate that if we were to repeat our simulations with
multiple experimental conditions, and constrain most of the
parameters of the full diffusion model across those condi-
tions, that the power of the full diffusion model analysis
would increase.

Hierarchical Bayesian methods

We have taken a frequentist approach in this manuscript –
obtaining best–fitting parameters, and subjecting them to
null–hypothesis significance tests. This choice was made
in order to best mimic the approach likely to be taken
by someone new to choice response time models. We
prefer an alternative approach. First, we prefer to use hier-
archical models (e.g., Vandekerckhove et al., 2011), in
which parameters are estimated at the population–level, as
informed by individuals that are assumed to conform to
a particular statistical distribution (e.g., individual partic-
ipant drift rates are normally distributed). Second, rather
than obtaining a single set of best–fitting parameters, we
prefer to think about posterior distributions, which allow
for uncertainty in parameter values. Finally, we would
prefer to use Bayes factors to compare model parame-
ters. For example, for the design we used here, one could
obtain posterior distributions for the population–level mean
drift rates for each group, and then perform a Savage–
Dickey test on the difference between those two drift rates
(Wagenmakers et al., 2010).

For those willing to explore (slightly) more complicated
methods, a hierarchical Bayesian approach is worth the
effort. However, our general point that simpler models pro-
vide more precise parameter estimates carries the same
implications for Bayesian analyses. For example, if one
were to calculate Bayes factors based on the t–statistics we
used in our hypothesis tests, then a similar conclusion would
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be reached. Further, models with fewer unnecessary param-
eters will also yield narrower posterior distributions, and so
yield more conclusive Savage–Dickey Bayes factors.

Conclusion

What are we to learn from this? If researchers are inter-
ested in maximizing the power of their design, analyzing
their data with the full diffusion model is not always the
best approach. If the full diffusion model does not pro-
vide the highest power even when data are generated by
the full diffusion model, it is unlikely that the full diffusion
model would do much better with real data. These results
complement the results of van Ravenzwaaij and Oberauer
(2009), who found that the full diffusion model was unable
to recover individual differences in the across–trial variabil-
ity parameters. The full diffusion model provides a powerful
description of the full range of processes underlying per-
formance in speeded decision making tasks. Perhaps, we
presently lack the tools to collect data rich enough for
the specialized full diffusion model to outshine his more
parsimonious competitor.

We demonstrated that the cognitive researcher who is
interested in a powerful design for detecting experimental
effects in their RT tasks should analyze their data with rel-
atively simple versions of the diffusion model. Even in the
land of RT research, sometimes less is more.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.
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