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Abstract Theory development in both psychology and neu-
roscience can benefit by consideration of both behavioral
and neural data sets. However, the development of appropri-
ate methods for linking these data sets is a difficult statistical
and conceptual problem. Over the past decades, differ-
ent linking approaches have been employed in the study
of perceptual decision-making, beginning with rudimentary
linking of the data sets at a qualitative, structural level, cul-
minating in sophisticated statistical approaches with quan-
titative links. We outline a new approach, in which a single
model is developed that jointly addresses neural and behav-
ioral data. This approach allows for specification and testing
of quantitative links between neural and behavioral aspects
of the model. Estimating the model in a Bayesian frame-
work allows both data sets to equally inform the estimation
of all model parameters. The use of a hierarchical model
architecture allows for a model, which accounts for and
measures the variability between neurons. We demonstrate
the approach by re-analysis of a classic data set containing
behavioral recordings of decision-making with accompany-
ing single-cell neural recordings. The joint model is able to
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capture most aspects of both data sets, and also supports the
analysis of interesting questions about prediction, including
predicting the times at which responses are made, and the
corresponding neural firing rates.
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Introduction

For more than 50 years, mathematical theories of simple
decision-making have been based on the notion of “evidence
accumulation”. Evidence accumulation explains behavioral
and neurophysiological data by assuming that decisions
are made by gradually accumulating evidence from the
environment in favor of each possible choice. The first
choice to accumulate a threshold amount of evidence
is selected (see Fig. la). Through variations on this
basic theme, accumulator models of decision-making have
explained dozens of robust empirical phenomena (Palmer &
Shadlen, 2005; Ratcliff, 1978; Ratcliff & Rouder, 1998; Van
Zandt, 2000), and have been used as measurement tools to
understand important problems including clinical disorders
(Ho et al., 2014), alcohol intoxication (van Ravenzwaaij
et al., 2012), sleep deprivation (Ratcliff & Van Dongen,
2011), and many others.

More recently, neurophysiological research has pro-
vided insights into the neural underpinnings of decision-
making (for reviews, see: Glimcher, 2003; Shadlen &
Kiani, 2013; Purcell et al. 2012; Mulder et al. 2014).
Links between neurophysiology and cognitive models allow
the possibility of testing cognitive models on their ability
to simultaneously account for both behavioral and neural
data. Many researchers agree that this “neuro-cognitive
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B. Example neural firing rate trajectories from Roitman and
Shadlen’s (2002) highest coherence condition. These have
qualitative similarities to the activation trajectories in panel A.
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C. Schematic of Purcell et al’s (2010) modelling approach. Action
potential recorded from visually responsive neurons during decision-
making are used as inputs to drive evidence-accumulation models. This
schematic is greatly simplified. Purcell et al.’s analysis included details of
system dynamics not shown here, or in other accumulator models.
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Fig.1 Some previous research linking decision-making models with neural data

modeling” approach has the potential to provide important
insights into psychological and neuroscientific questions.
However, the information gained by this joint approach
requires coherent solutions for integrating the neural and
behavioral data.

Detailed links between neurophysiology and cognitive
decision-making models

The initial links between neurophysiology and cognitive
decision-making were drawn when researchers noticed that
certain cortical neurons in monkeys behaved similarly to the
basic structures assumed in evidence accumulation models
(Boucher et al., 2007; Britten et al., 1992; Glimcher, 2003;
Hanes & Schall, 1996; Kim & Shadlen, 1999; Schall, 2001;
Shadlen & Newsome, 2001; Schall, 2003). For example,
certain types of neurons in the frontal eye fields (FEF) and
lateral intraparietal (LIP) areas of macaque monkeys behave
analogously to the ‘“accumulator” structures in evidence
accumulation models: those neurons accumulate evidence
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towards a threshold, and a behavioral response follows soon
after (see Fig. 1b). Of course, the analogy is much more
sophisticated than this:

e A neuron in FEF reaches a stereotyped and invariant
firing rate just before a response is initiated.

e  The time the neuron takes to reach maximum firing rate
is related to the decision time of the monkey.

e The activity of the neuron can predict behavioral
responses, even when those responses contradict stim-
ulus evidence, and even when the stimulus contains
no evidence (for reviews, see: Gold & Shadlen, 2007,
Schall, 2003.

(Usher & McClelland, 2001) explored the relation-
ship between neurophysiology and cognitive decision-
making by developing their accumulator model of simple
decision-making with careful consideration of the dual
constraints imposed by neurophysiology and psychology.
(Hanks et al., 2011) identified particular neural trajecto-
ries with the trajectories of accumulator processes in their
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model. Other researchers have linked neural and behav-
ioral models by identifying experimental manipulations
which should induce corresponding qualitative differences
in model parameters and neurophysiological measurements
(Ho et al., 2009; Roitman & Shadlen, 2002; Heitz & Schall,
2013).

The tightest links between neural and behavioral data
can be made by jointly (i.e., simultaneously) modeling the
two data sets. As well as increasing the breadth of expla-
nation offered by a theory, jointly modeling neural and
behavioral data more tightly constrains the theory’s pre-
dictions. This constraint improves model identifiability and
can shine light on aspects of the theory that are not oth-
erwise easy to examine (a point also made by Purcell
et al. 2010). For example, cognitive models of decision-
making include a latent parameter which represents the
composite of two distinct processes (a ‘“non-decision time”
parameter, which represents time taken for stimulus input
processes and also for response output processes). As we
will show, these two processes can be separately identified
when the neurophysiological data and the behavioral data
are addressed simultaneously. Another key advance of this
approach over post hoc (or two-stage) linking approaches
is that joint models allow neural data to inform under-
standing of the behavioral aspects of the model, and vice
versa.

(Turner et al., 2013) developed an innovative approach
to joint modeling in which separate neural and behav-
ioral models were linked—by allowing covariance between
the models’ parameters—and the entire ensemble was esti-
mated together. The joint model and one-stage estimation
procedure allows for exploratory analysis of relationships
between neural and behavioral models. Turner et al.’s
approach also has the benefit of allowing the two differ-
ent data streams to jointly influence parameter estimates in
both models. We expand on this, and other important com-
parisons between two-stage and joint modeling approaches
in Two-stage modeling and joint modeling in the discussion
section.

Jointly modeling neural and behavioral data

(Purcell et al., 2010) proposed a model for confirmatory
analysis with specific and tightly constrained links between
the neural and behavioral elements. The model assumed
precise quantitative links between accumulators in cogni-
tive models and physiological structures (see Fig. 1¢). The
theory is evaluated by recording the timing of action poten-
tials (spikes) from both the evidence-producing neurons
(visual neurons in the FEF of the macaque) and the
evidence-accumulating neurons (movement neurons). The
recorded spikes from the visual neurons are used to drive

evidence accumulation in a cognitive accumulator model,
and the resulting evidence accumulation trajectories are
compared against the measured trajectories of the move-
ment neurons.

Purcell et al’s work marked an important theoretical
advance: theirs was the first work to quantify, within a
model, the assumed link between neural data and a cognitive
accumulator model (the trajectory of an evidence accumu-
lator). Our work builds on the work of Purcell et al. by
including an explicit model of the neural data (Purcell et al.
mapped the cognitive model directly to neural firing rates)
and a function for linking parameters of the neural and
accumulator models. The explicit joint model allows us to
address interesting questions that were not previously pos-
sible, such as “conditional on observing a certain response
time, what neural data are likely?”, and the converse ques-
tion, “conditional on observing certain neural data, what
response time is likely?”. By quantifying answers to these
questions, the joint model supports multiple ways of testing
theories against observed data. We use a computationally
tractable decision-making model (the linear ballistic accu-
mulator, or LBA, model: Brown & Heathcote, 2008) and a
simple neural model (an inhomogeneous Poisson process).
The joint model was implemented in a Bayesian framework
and includes hierarchical structures to account for random
variation between neurons from different recording sessions
and different stimuli conditions.

Our hierarchical structure directly models variability
between neurons. This has some advantages over other
methods, because the behavior of neurons is extremely vari-
able (Stein, 1965; Stein et al., 2005; Tomko & Crapper,
1974), even for those neurons within a specific class, which
are assumed to have a common purpose. This variability is
reflected in neurons with distinct firing characteristics. In
response to the same stimuli, some neurons may have very
little change between baseline and peak firing rate, whilst
neighboring neurons may have quite a dramatic change.
Accounting for this variability within computational mod-
els, especially in models tightly linking behavioral and
neural data, can be a difficult statistical problem. Typically,
this problem has been circumvented, removing the variabil-
ity between neurons by normalizing the firing rates of all
neurons within a data set. Although this allows for easier
implementation of computational models, it is at the cost of
lost information. Although describing neuronal variability
within a model is more veridical, the question is do models
without descriptions of neuronal variability provide just as
good approximations of the phenomenon of interest com-
pared to models with descriptions of neuronal variability?
The framework presented here allows for a more full, and
quantitative investigation of this model comparison question
which we present later.
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A. DATA. Behavioural data consist
of responses and response times
(4 trials are shown). Neural data
are spike time series recorded
from LIP neurons during each trial.
In this example, the receptive field
of the neuron corresponds to
“right” stimulus type.

Respond “left”
Respond “left”
Respond “left”

Respond “right”

B. STATISTICAL DESCRIPTION. The
behavioural data are described by
a joint distribution over response
times and choices. The neural data
are described by a time-
inhomogeneous Poisson process,
with piecewise linear rate.

“Left” Responses

Behavioural

Time

C. A JOINT MODEL.  The two-choice decision is
modelled as a race between two accumulators. The
result of the race makes predictions for the overt
response (which accumulator won) and for the
response time (how long the race took). The current
state of the accumulator corresponding to “right”
responses determines the firing rate of the Poisson
process used to describe the neural data. The firing
rate during the accumulation phase (red segment) is a
linear function of the height of the corresponding
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Fig. 2 Our modeling approach

A decision-making model for neural and
behavioral data

Data

We evaluated our model using data from a seminal exper-
iment reported by (Roitman & Shadlen, 2002). In the
“response time” segment of their experiment, Roitman and
Shadlen had two monkeys, denoted “B” and “N”, make
thousands of binary decisions about the motion direction
of a random dot kinematogram. On each trial, a random
dot kinematogram appeared on screen and the monkey indi-
cated whether the coherently moving dots were drifting
left or right. There were six levels of decision difficulty
manipulated by changing the proportion of coherently mov-
ing vs. randomly moving dots. Response times and choices
were recorded from each trial, as well as the timing of
action potentials from carefully selected neurons in the lat-
eral intraparietal area of the cortex. A different neuron was
selected for recording during each experimental session.
Some further details of the procedure and data structure are

@ Springer

given in Appendix A, but for full details see the original
publication’.

Model

The core element of our model is a simple accumulator
model of decision-making, the linear ballistic accumulator
(LBA: Brown & Heathcote, 2008). The LBA model has
been successfully applied to a large range of simple percep-
tual choice tasks, including the random dot kinematogram
(Ho et al., 2009; Forstmann et al., 2008; Forstmann et al.,
2010), and to behavioral decision-making data from mon-
keys (Heitz & Schall, 2012; Cassey et al., 2014). The LBA
models the decision between left- vs. right-moving motion
as a race between two accumulators, one of which repre-
sents the decision to respond “left” and the other which
represents the decision to respond “right” (see Fig. la).

IThe data set can be found online at https://www.shadlenlab.columbia.
edu/resources/RoitmanDataCode.html
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When the stimulus is presented, activity in these accumu-
lators grows linearly. When the activity of either accumu-
lator reaches a pre-set threshold, a decision is made and a
response is triggered. The rate of growth in activity is called
the “drift rate”, and it is typically larger for the accumulator
whose response matches the stimulus than for the accumu-
lator whose response does not, however there is trial-by-trial
random variation in the drift rate, which leads to occa-
sional incorrect choices. By specifying the parameters of
the model (the height of the response threshold, the distri-
bution of the drift rates, etc.) the model makes predictions
for the joint distribution over response choice and response
time (see Appendix B for details).

We expand the LBA model to include neural data in two
steps (see Fig. 2). We first define a statistical model for the
neural data (single cell recordings) collected by (Roitman
& Shadlen, 2002). That model is a time-inhomogeneous
Poisson process, where the spiking rate of the process fol-
lows a stereotyped path during each decision (see Fig. 2b).
The spike rate is initially constant at a pre-stimulus baseline
rate. Firing then dips and recovers just after the onset of the
stimulus, then the spike rate increases steadily during the
decision-making period itself, before finally falling rapidly
to a low baseline after a decision is made. This firing rate
path is specified by parameters that correspond to the pre
and post-decision baseline firing rates, the size and duration
of the post-stimulus dip, and the time to reach the decision
threshold (see Fig. 3 for an illustration, and Appendix C for
details).
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a: Pre-stimulus baseline firing rate.
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(stimulus encoding portion of non-decision time).
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(motor response portion of non-decision time).
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w: Post-decision baseline firing rate.

Fig. 3 Piecewise linear function for firing rate of the time-
inhomogeneous Poisson process. Red text indicates links with behav-
ioral model

Linking neural and behavioral data

The key step in linking the cognitive model to the neural
data is to link the firing rate during the period that repre-
sents information accumulation (i.e., the steady increase in
firing rate that takes place between stimulus onset and the
response) with the instantaneous amount of evidence in the
accumulators of the LBA model. This linking is illustrated
by the red-colored elements in Fig. 2b and c: the red line
segment in Fig. 2b shows the section of the neural firing rate
that is linked to evidence accumulation, and the red accu-
mulator trajectory in Fig. 2c shows the LBA model element
linked to the firing rate. It is possible to explore all kinds of
complex links between these two elements, but we restricted
our investigation to a simple linear link. That is, we assumed
that a one-unit change in the amount of evidence in an LBA
accumulator was equal to a fixed amount of change in the
firing rate of the neuron (only during the evidence accumu-
lation or ramping phase). This fixed amount is a parameter
of the model (the linking parameter, 6). Prior to any evi-
dence accumulation (i.e. + = 0) the LBA assumes there
is some starting amount of evidence in each accumulator,
which is a random sample from the interval [0, A]. Evidence
then accumulates at a rate given by the drift rate, v. At the
time a decision is made, that is when the response threshold
is reached, there are b units of evidence in the accumula-
tor. At any given time over the course of a decision, the
amount of evidence in an accumulator can be calculated
using geometry. The key element of linking the model to the
neural data is the dynamic link to the amount of evidence
in the accumulator at any given time. This dynamic link is
only for the pre-decision evidence accumulation phase.

Formally, the linking function between the state of the
evidence accumulator at time ¢ and the Poisson firing rate at
time ¢ is given by the following equation, but only for that
period during which evidence accumulation occurs (the red
segment in Fig. 2).

A
A = 0 x (x(t) _ 5) ta 1

where A(f) is the neural firing rate, x(¢) is the current
amount of evidence in the accumulator, A is the aver-
age starting activation of the LBA accumulators and « is
the pre-stimulus baseline firing rate of the neuron. LBA
accumulators have starting activation randomly (uniformly)
distributed between zero and A, so their average is just A /2.
Below, we explore two different models, one with A = 0
and one with A = 1. Future work could explore other link-
ing functions—e.g., such as assuming that firing rate is a
sigmoidal function of the evidence accumulator’s state.
The result of tightly linking the cognitive model to the
neural and behavioral data is a coherent model that does

@ Springer
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Fig. 4 A summary comparison of the fit to data for the main model
(more detail in Appendix F). a Full distributions of response times
for monkey “N”, separately for 0, .064, and .512 coherence condi-
tions (columns) and correct vs. incorrect responses (rows). All x-axes
show decision time (time of saccade) in seconds. Histograms show
data, smooth lines show posterior predictive distributions from the
joint model. Increasing coherence (across each row) leads to more cor-
rect responses and fewer incorrect responses, as well as faster response
time distributions. b Neural data (spikes per second) for monkey “N”,
separately for 0, .064, and .512 coherence conditions (columns) and
correct vs. incorrect responses (rows). The top two rows show neural
activity aligned against stimulus onset, the bottom two rows show neu-
ral activity aligned against response (saccade), with all x-axes showing

not require separate estimation of the parameters of a neural
model and a behavioral model. Instead, we jointly estimate
posterior distributions over all parameters in a hierarchi-
cal Bayesian framework. We use the resulting estimates to
illustrate how the model can address interesting questions
about prediction. For example, the model can predict immi-
nent behavioral responses and these behavioral predictions
increase in accuracy as the model is conditioned on more
and more neural data.

@ Springer

time in seconds. Histograms show data, smooth lines show posterior
predictive data from the joint model. Data and model predictions are all
cut off at the median response time for each condition, following Roit-
man and Shadlen (2002). Vertical green lines mark stimulus onset (fop
two rows) and response time (lower two rows). ¢ A comparison of data
from both Monkeys ,“B” and “N” (black and red solid lines, respec-
tively), against model predictions (circles). The top panel graphs mean
response time (in seconds) and the botfom panel graphs mean accu-
racy (proportion), both against all stimulus coherence conditions. The
circles show the mean statistics calculated from all posterior predictive
samples, and the error bars contain 95 % of statistics from all posterior
predictive samples

We show that previously inscrutable aspects of the LBA
model are revealed in greater detail by the joint model of the
neural and behavioral data. For example, the LBA includes
an offset parameter (known as fy or T, ) that represents the
time taken for non-decision processes, such as encoding of
the stimulus and executing the motor response. Our statisti-
cal model for the neural data includes separate components
representing the time taken for stimulus perception and the
time taken for response execution. These two components
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remove the need for a single offset parameter, instead allow-
ing us to fractionate the estimated offset time into a stimulus
encoding period (§) and a motor execution period(f).

Model variants

We investigated five model variants in total. The main
model we will report is the joint model as defined in the
manuscript. The joint model addresses both data streams
simultaneously and has hierarchical structures, which are
important for exploring the variability between neurons.
The second model variant included trial-to-trial variabil-
ity in start point, by setting the parameter A = 1 in the
LBA model. This is more typical of regular usages of the
LBA model, where parameter A (the width of the random
start-point distribution) is freely estimated. Computational
constraints limited us from freely estimating the A parame-
ter, but investigating the A = 1 model variant was important
to establish that setting A = O in the main model did
not limit generalizability. In addition, we also thoroughly
investigated three additional models. The third model vari-
ant we investigated was the same as the main model, but
without a hierarchical structure to accommodate variability
between neurons. Instead, that model estimated a single set
of parameters for all neurons, treating each as identical. The
fourth model was a standard LBA account of the behav-
ioral data only (no neural model, and no linking). The fifth
model was a neural-only model, using the time inhomoge-
neous Poisson model (no behavioral model, and no linking).
The neural-only and behavioral-only models were identi-
cal to the neural and behavioral components of the main
model. We detail results from the main model with com-
parisons to the variant, which does not take into account
neuronal variability. The remaining variants are addressed
briefly and results from these are shown in Appendix F
and G.

We estimated the posterior distributions over the parame-
ters of all the models in a hierarchical Bayesian framework.
Separate parameters were estimated for each recording ses-
sion (i.e., each neuron). These session-wise parameters were
constrained to follow truncated normal distributions. The
session-wise parameters, as well as the mean and standard
deviation parameters of the group-level truncated normal
distributions were estimated simultaneously. This procedure
was repeated for monkeys “B” and “N”.

Results
Goodness of fit

We first examined the goodness-of-fit of the main model
(i.e., including neuron-to-neuron variability and setting A =

0). We sampled posterior predictive data from the model
by replicating the number of sessions and trials per session
for each monkey 100 times. Each replication used an inde-
pendent random draw of parameters from the appropriate
session-specific posterior distribution. Conditional on these
parameters, we used the LBA model to generate synthetic
response times and choices, and used the evidence trajec-
tories from the LBA model to specify the firing rate of the
Poisson process which was used to generate neural data.
We compared mean RT, full RT distributions, and spike
rates between the posterior predictive data and the observed
data.

Figure 4c compares posterior predictive and observed
behavioral data. Mean RT (top panel) and mean accuracy
(bottom panel) are plotted for each monkey and each coher-
ence condition. Throughout, we use black plots for Monkey
B and red plots for Monkey N. The error bars illustrate
uncertainty in the model predictions due to both finite sam-
ple size and posterior parameter variance. The model’s
predictions for mean RT match the data very closely. For
Monkey B, the mean RT from the data and from poste-
rior predictive data agree to within less than 6 ms. across
all coherence levels, and for Monkey N to within 26 ms.
The match in predicted choice accuracy is also excellent
for Monkey B (within 3 % across all coherence levels),
and is fair for Monkey N (except for a 6 % mis-fit in
the 0.064 coherence condition). For reference, these fits
compare favorably with the simple statistical models tra-
ditionally fit to the such data summary statistics (e.g., see
Fig. 3 of Roitman & Shadlen, 2002).

Figure 4a shows a more detailed comparison of response
times between the model predictions and observed behav-
ioral data for monkey N (for complete fits to neural and
behavioral data for each coherence level for both monkeys
see Fig. 7 and 8 in Appendix F). Each panel in Fig. 4a shows
a histogram of observed response times (grey bars) over-
laid by the corresponding response time density calculated
from the posterior predictive model data. All panels use
the same axes, which illustrates how the number of correct
responses increases in the easier decision conditions (i.e.,
with increasing stimulus coherence, shown in the top row).
The number of incorrect responses shrinks correspondingly,
with no incorrect responses at all in the easiest condition.
The noise in the data is much more apparent in these plots
than in the plots of mean response time and accuracy, and it
is clear that some conditions elicited response time distribu-
tions that do not resemble the kinds of distributions usually
observed in human decision-making studies. For example,
in the two most difficult decision condition shown in Fig. 4a,
Monkey N produced response time distributions that were
negatively skewed. The LBA model misses the data in some
of those conditions, which is unsurprising: the LBA is a
model of human decision-making and is constrained by
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its architecture to predict peaked, positively skewed distri-
butions. Nevertheless, the data and model agree in most
conditions to a reasonable degree.

We also fit the standard LBA to the behavioral data
alone (a “behavioral-only” model; see Fig. 9 in Appendix
F), as a benchmark comparison. The behavior-only model
must fit the behavioral data at least as well as the joint
model, because the behavioral-only model is unconstrained
by the neural data—the joint model must compromise on
some behavioral parameters to better account for the neural
data. Despite the additional constraint imposed by the link-
ing function, the joint model captures the behavioral data
almost as well as the standard LBA, which is apparent by
comparison of Fig. 9 with Fig. 7.

Figure 4b compares the observed neural data and asso-
ciated predictions from the main model fit. The data in
Fig. 7b replicates the “T1” (or within receptive field) ele-
ments of Roitman and Shadlen’s (2002) Fig. 7a. In order to
also include model fits on our graph, we have used a less
compact arrangement, where each panel shows changes in
neural spiking rate for monkey N and a selection of stim-
ulus coherences, as time unfolds during decision-making.
As columns move left to right decisions become more dif-
ficult (from 0 to 0.064 to 0.512 coherence). The first row
shows data aligned on stimulus onset, while the second row
shows data aligned on saccadic response. Following (Roit-
man & Shadlen, 2002), and since fewer and fewer trials
contribute to the graphs at longer and longer response times,
we have trimmed each graph at the median response time
for its particular condition.

The data aligned on stimulus onset (top row) show a
steady, moderate firing rate before the stimulus, which rises
approximately linearly before falling away. The model cap-
tures this trend well, but appears to miss the post-stimulus
dip in firing rate which occurs in the first 100-150 ms. after
the stimulus appears. We attribute this to two factors. Prior
to the post-stimulus decrease in firing rate there is slight
and almost immediate increase in firing rate, just after the
stimulus appears. Our piecewise linear model of the neural
data does not include this additional artifact. Also, this may
illustrate one aspect where the joint nature of the model has
imposed difficult constraints: the model has estimated the
dip-and-recover parameters (8 and §) to be small. This is
due to the tendency of the LBA to estimate small values for
non-decision time, which are reflective with the behavioral
artifacts of stimulus encoding and motor execution. This
causes a superior fit to the behavioral data. However the cost
of estimating a small non-decision time is that it forces a
reduction of § (the duration of the post-stimulus dip) caus-
ing the post-stimulus dip to be missed. This requires further
investigation in future work with the possibility of directly
modeling this additional artifact.
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The data aligned to responses (bottom row) show an
approximately linear increase in firing rate until just a
few milliseconds before the onset of the saccade, which is
marked by the vertical green lines. The saccade is followed
by a rapid decline in firing rate to a new, much lower base-
line. The model captures these effects very closely, via the
timing and rate parameters, 8, ¥, and .

The posterior distributions over the parameters corre-
sponding to the model fits above are detailed in Table 2
of Appendix E. These parameter estimates illustrate some
interesting patterns. For example, Monkey B waited for
more evidence to accumulate before making a decision than
did Monkey N (higher evidence threshold, b; this pattern
also holds for the model that includes start point variability,
see Appendix G). The time taken for firing rate to reduce
to baseline after a response (parameter y) was about 0.12
s, for both monkeys, but there was very large variability
between neurons in this quantity (the corresponding o esti-
mate, which measures standard deviation across neurons,
is about 0.24 s). Similarly, the critical parameter linking
neural and behavioral data (6) varied greatly between neu-
rons. The posterior distribution over 6 suggests that about
one neuron in six changed its firing rate by less than ten
spikes per second during the course of evidence accumula-
tion. By comparison, the median change in firing rate during
evidence accumulation was around 30 spikes per second.

We also fit a neural-only model, corresponding to just the
neural elements of the joint model. The neural-only model
must always fit the neural data at least as well as the joint
model, for the same reason of statistical nesting as above:
the joint model is forced to accommodate constraints from
the behavioral data. Fig. 10 in Appendix F shows the fit to
the neural data for the neural only model. Comparison with
Fig. 8 again shows that the decrement in fit for the joint
model is not overly large.

Out-of-sample prediction tests
Predicting upcoming neural and behavioral data

In this section, we test generalizability of the model by pre-
dicting data that were not used for model fitting. We do
this separately for the main model, which allows neuronal
variability, as well as for the model which does not allow
neuronal variability and treats all neurons identically. The
hierarchical model (with neuronal variability) is expected
to outperform the non-hierarchical model (without neuronal
variability) as the hierarchical model can learn about indi-
vidual neuron differences which allow it to differentiate its
predictions for each particular neuron in the held out trial.
Because the joint model makes predictions for both neu-
ral and behavioral data, the predictive performance can
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be assessed by the difference between the predicted and
observed response times and also by the difference between
the predicted and observed spike counts. We use the mod-
els to predict both response times as well as spike rates
using maximum a posteriori (MAP) estimates for the model
with neuronal variability. To evaluate the averaged model,
we calculated MAP predictions, except that we conditioned
on parameter estimates that were MAP across all neurons
(rather than for the particular neuron associated with the
left-out data).

For each session (i.e., neuron) and for each monkey, we
randomly selected one-fifth of the trials as a test set, to be
excluded from training. The posterior distributions over the
model parameters were then calculated from the remain-
ing data, and used to make predictions for the left-out data.
For each left-out trial, we predicted the time at which the
response would occur, and also the firing rate of the neu-
ron (estimated by the number of spikes observed in each
small window of time) at each time point in a 0-2 s window
from stimulus onset. After these predictions, we allowed the
model to refine its predictions by conditioning each trial’s
predictions on more and more of the data observed during
that trial. That is, for any given left-out trial, the first pre-
diction of response time and firing rate was made without
allowing the model any knowledge of the data from the left-
out trial. The next prediction was made allowing the model
to condition its predictions on the first few spikes recorded
during the first 100 ms of the left-out trial. The next predic-
tion conditioned on a few more spikes that occurred during
the next 100 ms, and so on until the model incorporated all
data from the left-out trial (including the observed response
and response time).

We evaluated the model’s prediction performance in two
ways. For the neural data, we compared the number of
spikes that the model predicted to occur in each 100 ms bin
to the actual number that was observed in that bin, during
the left-out trial. For the behavioral data, we compared the
absolute difference between the RT predicted by the model,
and the observed RT from the left-out trial. After sufficient
data had been revealed to the model on any given trial,
the actual response for that trial—and the associated RT—
must also have been revealed. The best “prediction” from
any reasonable model at this stage is the actual, observed
RT. Similarly, the best “prediction” for any already-revealed
spikes are those actual spike counts. For this reason, the pre-
diction error of the model falls to zero as more and more
data are revealed.

We made predictions for response times by finding, for
each trial, that response time with the maximum a poste-
riori probability, conditioned on the maximum a posteriori
parameter estimates calculated from the calibration data,
calculated using Eq. 3 from Appendix E. That equation

depends on the observed spiking data for the trial in ques-
tion, C;;, and this dependence allows us to condition the
response time predictions on different amounts of revealed
decision time. The effect of this is shown on the x-axes in
Fig. 5a for a subset of coherences for Monkey “N”. For
example, x = 0.5 shows the accuracy of response time pre-
dictions when the likelihood calculations include data that
were observed during the first 0.5 s after stimulus onset.
Fig. 5b shows the same effect of conditioning model pre-
dictions on increasing amounts of revealed data for the
neural data. The solid lines in Fig. 5a and b summarize the
performance of the response time and spike count predic-
tions, respectively, across all trials and across all samples of
left-out data for the model which allows for neuronal vari-
ability. The dashed lines indicate the performance of the
model without neuronal variability. It illustrates that a model
which fails to take into account the differences between neu-
rons makes poorer predictions (i.e., larger prediction errors).
Indeed the performance of the two models only becomes
commensurate until after the majority of the data have been
revealed, that is, only when the model without neural vari-
ability can condition its predictions on the majority of the
data (be it behavioral or neural) is its prediction accuracy
similar to the model with neuronal variability. This effect
is larger for Monkey “N” than for Monkey “B”, because
the amount of between-neuron variability in parameters was
larger for Monkey “N”.

It is clear that the main model, which includes neuronal
variability, makes better predictions before any data are
revealed about the particular left-out trial (i.e., at x = 0)
and continues to do so as more data are revealed. It took,
on average, 0.64 s and 0.92 s (for monkeys “B” and “N”,
respectively) of revealed data for a model which did not
account neuronal variability to perform with commensu-
rate success to that of a model which did account for this
variability. This is an important result, demonstrating that
valuable information is lost when neuronal variability is not
accounted for. Indeed inclusion of this variability greatly
improves the performance of the model.

Predicting response time distributions and neural fir-
ing rate trajectories: The incorporation of both behavioral
and neural data in the joint model means that the model
predictions for behavioral data change based on the neural
data, and vice versa. Fig. 5S¢ demonstrates this effect of con-
ditioning RTs on neural dynamics. We separated observed
RTs based on whether the neural data had either few (<14)
or many (> 28) spikes occurring in the first 0.6 s of the
trial. These response times are plotted as grey histograms
in Fig. 5c. We made the same separation for the posterior
predictive RT data, based on the posterior predictive neu-
ral data. The predicted distributions from the main model
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are shown as red lines in Fig. 5c. The distributions of data
are clearly different between the many and few spike con-
ditions, and the model’s predictions are sensitive to this
difference.

Figure 5d demonstrates the corresponding effect of con-
ditioning neural data on behavioral data. We separated trials
according to whether they had fast RTs (0.2-0.5 s) or slow
RTs (0.7-1 s). The neural data from these trials are shown
as gray histograms, aligned both on stimulus onset (upper
row) and response (bottom row). As before, we compared
the observed data with the posterior predictive data by tak-
ing spike trains generated out of the model and grouping
based on the same RT ranges, using the model’s predicted
RTs. The model (red lines) identifies the different character-
istics between the two ranges, with a faster ramping in spike

Coherence 0
0.30 r

Coherence 0.256

Main Model — with

- - neuronal variability
0.25 r

neuronal variability

Mean absolute error of predicted RT (sec.)

s B .

Mean absolute difference between
observed and expected spikes per bin

Duration of revealed data (sec.)

Fig. 5 Predictive model performance for Monkey “N”. a Prediction
error (mean absolute difference, in seconds) when predicting response
times from unseen data for coherence levels 0 and 0.256. Predictions
are given by the MAP estimator conditioned on increasing durations
of revealed data from each trial (x-axes). The solid line in each panel
shows prediction error from the joint model that allows for individual
neuron differences. The dashed line shows prediction error from an
average (non-hierarchical) version of the joint model, which does not
account for parameter differences between neurons. As more data is
revealed, prediction error drops and approaches zero when the tempo-
ral window includes the actual response and response time as observed
information. b Neural data prediction error for coherence levels O and
0.256, measured by the mean absolute difference between the observed
and predicted spike counts in 0.05-s bins. Predictions are given by the
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rate for the faster RTs and a slower ramping of spike rate for
the slower RTs.

Discussion

As with many research topics in psychology and neuro-
science, the study of decision-making has been informed by
both behavioral and neural data. Over past decades, differ-
ent approaches have been taken to integrate the behavioral
and neural evidence, with increasing statistical sophistica-
tion allowing tighter integration in recent years. Tighter inte-
gration can be important as it allows, among other things,
more precise, quantitative testing of deep model assump-
tions about the link between behavior and neuroscience
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MAP estimator conditioned on increasing durations of revealed data
from each trial (x-axes). The solid line in each panel shows predic-
tion error from the joint model. The dashed line shows prediction error
from a non-hierarchical version of the joint model which does not
account for parameter differences between neurons. ¢ Response time
distributions conditioned on spike trains. For the early stages of trials
(i.e., < 0.6 s), for coherence level 0.256, resulting RTs are grouped
based on whether the corresponding spike train portion had either few
(<14) or many (> 28) spikes, plotted as grey histograms. Posterior pre-
dictive RTs group according to the same criteria are overlaid as solid
lines. d Spike trains conditioned on response times. Empirical spike
trains whose corresponding saccade was made in the RT range 0.2-0.5
s or 0.7-1 s are plotted. Posterior predictive spike trains from the same
RT ranges are overlaid as solid lines
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(e.g., Purcell et al. 2010; Turner et al. 2013; Turner et al.
2016).

We evaluated our modeling approach using data from
a seminal experiment reported by (Roitman & Shadlen,
2002). This experiment had two monkeys making thousands
of decisions about random dot motion, with simultaneous
recordings of behavioral data and action potentials from
neurons involved in the decision-making process. The joint
model was able to fit the full distributions of response
times, for both correct and incorrect responses, across the
six different levels of decision difficulty. Simultaneously,
the model fit the change in firing rate of decision-related
neurons both across conditions as well as across time during
each decision trial.

Not all of the behavioral model fits were quite as close
to the data as is typical for the LBA (e.g., the fifth panel
in the top row, and the second and fourth panels in the sec-
ond row of Fig. 7). We attribute this to two causes. Firstly,
behavioral data from monkeys are not quite the same as
behavioral data from humans, for which the LBA model
was developed. In addition to species differences, it is typi-
cal for monkeys to undergo training which can be orders of
magnitude greater than is standard for human participants.
It is possible that such training results in response time data
with different characteristics to standard human experimen-
tation, or perhaps there are differences in the underlying
cognitive processes (cf. Hawkins et al. 2015). However, the
instances of misfit are most likely attributed to the fact
that this instance of the LBA model is very tightly con-
strained because it must jointly account for the behavioral
data and the neural data. This causes tension between adjust-
ing parameters to optimize agreement with the behavioral
data and adjusting parameters to optimize agreement with
the neural data.

Two-stage modeling and joint modeling

It is important to highlight some similarities and differences
between our approach and previous approaches to linking
behavioral and neural data streams. One common element
in the work to date that has linked behavioral and neural
data streams is the use of a two-stage approach (however see
Turner et al. 2013). In such approaches, first a model is fit
to one of the data streams (typically a cognitive model is fit
to the behavioral stream, such as response times). Secondly,
based on the outcomes of the model fit, considerations are
made about how elements of the model fit map onto ele-
ments of the other data stream (typically the neural stream).
These considerations may be how accurately elements of the
model predicts changes in (assumed) analogous elements of
the neural data, such as changes in firing rates of single neu-
rons (e.g., Hanes & Schall, 1996) or changes in amplitudes
of EEG recordings (e.g., Logan et al. 2015).

(Purcell et al., 2010) used a more sophisticated two-stage
approach. In addition to fitting the behavioral data, one ele-
ment of the neural data was also used to inform specific
mechanisms of various cognitive models. As such, elements
of both data streams informed the initial first-stage model
fitting. Following this, the model fits were compared to
different neural data, which were not used to inform the
model fitting. Purcell et al. were able to perform informative
model comparison as well as answer interesting prediction
questions using this two-stage linking process.

The joint modeling framework outlined in this paper
builds on the foundational work of (Purcell et al., 2010)
and (Turner et al., 2013). Like Turner et al., our approach
links both data streams in a single step, within one frame-
work. The joint model defines a specific, quantitative link
between the neural and behavioral data, and allows parame-
ters to be estimated simultaneously from both data sets. This
framework allows the model to address interesting ques-
tions, such as making predictions for neural data on the
basis of observed behavioral data, and importantly, make
predictions for behavioral data on the basis of observed
neural data, something which was not possible with Pur-
cell et al’s approach. Our approach puts the behavioral
and neural data sets on an equal footing, allowing infor-
mation from each data set to inform estimation of all of
the model parameters. It is this equality that means that the
model can make predictions for neural data as well as for
behavioral data. Our approach also brings extra constraint
to the model. For example, the parameter governing non-
decision time in evidence accumulation models (f9 here,
often called T,, in diffusion models) is under-constrained
by behavioral data, but might be constrained by neural data.
The model also allowed us to address interesting prediction
questions. We illustrated how the model can make predic-
tions for response times as well as for neural firing rates,
and how these predictions can be conditioned on partially
observed data. When the predictions were conditioned on
more and more partial data from each trial, the predicted
response times and firing rates became more and more
accurate.

Both approaches are informative for cognitive-
neuroscience. As we see it, however, there are some
important advantages to our novel framework. One of the
promises of cognitive-neuroscience is that new (neural) data
streams should constrain models. This constraint requires
that neural data inform model fitting, not just model devel-
opment. In many instances of the two-stage approach,
neural data, or at least a portion of the neural data, are
used as a post-hoc performance metric. This means that
constraint is provided by the neural data after fitting, to be
applied to the following iteration of model development. In
our approach, all data (neural and behavioral) equally con-
strain model estimation. This has important consequences
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for model selection issues. For example, in the two-stage
approach there is the potential for a tension between the
importance of the two data streams. If one model provided
a better fit for the behavioral data, but another model
provided a better fit for the neural data, then what should
we conclude? Further to this point, suppose one model
provided a good fit to the behavioral data, then in second
stage the model performed poorly in the prediction of the
neural data. In the usual version of the two-stage approach,
this would lead to the model being rejected. However, it is
entirely possible there were other model parameters, which
would have allowed an acceptable compromise—providing
an almost-as-good fit to the behavioral data, and a much
better account of the neural data. Rejecting this model
seems wrong, and a joint modeling framework can avoid
that outcome.

Model comparison was a key feature of (Purcell et al.,
2010), who compared multiple model architectures using
their two-stage linking approach. While we did not try
to distinguish between competing model architectures, our
framework has great potential for solving model selection
issues. As well as those outline above, the Bayesian imple-
mentation of our framework provides important and power-
ful statistical advantages in terms of model selection, with
Bayesian model selection methods such as Bayes factors
(O’Hagan, 1995; Wasserman, 2000), Deviance Informa-
tion Criterion (Spiegelhalter, 1998) and Widely Applicable
Information Criterion (Watanabe, 2010) all applicable.

We compared the performance of a model that accounted
for neuronal variability and a model which did not, as well
as models that accounted only for neural data or only for
behavioral data. The main model performed much better
than the model which treated neurons as identical, which fits
with the well-known variability in the performance charac-
teristics of cortical neurons. Despite being well known, it
can be a difficult statistical matter to coherently deal with
inter-neuron variability. Typically, firing rates are normal-
ized within-neuron, circumventing the problem. This, of
course, results in the loss of potentially important informa-
tion. We demonstrated that when this neuronal variability is
taken into account, the predictive performance is far supe-
rior to that of a model which is naive to the variability
between neuron.

A final distinction can also be drawn between our
approach and that of (Purcell et al., 2010) in terms of
theory development. Both approaches had different lev-
els of theoretical focus. Purcell et al. were interested in
studying different system level implementations, that is, dif-
ferent cognitive model architectures. In this approach, the
model itself is being studied as an object of interest. In
the literature on the philosophy of computational modeling
this approach has been termed abstract direct represen-
tation (cf., Godfrey-Smith, 2009; Irvine, 2014; Weisberg,
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2007). Whereas, we focused on how data streams interact,
the individual model architectures within the joint frame-
work are somewhat auxiliary to the framework itself. This
model-based theorizing focuses more on “...making novel
claims about underlying, and as yet unobserved, structures
or causal mechanisms” (p.17, Irvine, 2014).

Cause and effect in joint models

At the level of the entire brain, it is clear that the causal
relationship between neuronal firing and behavior runs from
the former to the latter—(Purcell et al., 2010) use this struc-
ture in their model. However, it is possible to set up a joint
model, such as ours, with many different causal structures,
embodying different assumptions. Some of these structures
are statistically equivalent, and so will not be discriminable.
The model we have proposed assumes a structure which
may, at first, seem counterintuitive. Our model assumes that
the evidence accumulation process is the root cause of both
the behavioral data, and (with conditional independence)
the neural spiking data. While this might seem to violate
the causal relationship between brain and behavior, our
approach has practical strengths, and makes philosophical
sense when we acknowledge that we are working with data
from only a single neuron in each session. The single neuron
clearly is not the cause of the behavioral response, because
the influence of the multitude of other neurons not being
measured. With this in mind, our approach can be seen as an
approximation, in which the many unmeasured influences
on behavior are approximated by assuming independence
between the single observed neuron and the behavioral data,
after conditioning on the state of the evidence accumulation
process.

An important consideration is that the neural data are
incomplete with respect to the accumulator model, because
they correspond to just one of the two decision responses
(accumulators). The consequence of this is that we are
lacking information about the complementary accumulator;
on roughly half the trials, the monkey’s response corre-
sponded to the accumulator that was not being recorded.
This is a computationally tricky problem to solve, requir-
ing numerical integration over both the unobserved neural
data (i.e., the data from the unrecorded neuron correspond-
ing the receptive field to which a saccade was made) as
well as the unobserved finishing time for the accumulator
corresponding to those neuronal data. Again, assuming con-
ditional independence between the response times and the
spikes trains, or put differently, assuming response times
and spikes trains interact indirectly via linking separately to
the root node of accumulated evidence allows for a more
tractable model. More direct linking between behavioral and
neural data is desirable, however we leave this for future
research (Fig. 6).
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Fig. 6 Illustrative ways in
which the causal structure of a
joint model might be conceived.
The simplest approach follows a
simplified version of reality
(left). A more realistic account
of reality includes a very large
number of unmeasured, and
unmodeled, causes (center). Our
approach (right) might be seen
as an approximation of this,
where the single observed data,
and all the unmeasured data are
treated as effects of a single
underlying phenomenon

Behavior

Simplest Assumption
Of Causality

Conclusions

We have described a novel joint model which simultane-
ously accounts for both behavioral (response times and
saccades) and neural (spike trains) data from a perceptual
decision-making task. The predictive ability of the model
is bi-directional; response times and saccades can be pre-
dicted from spike train data and vice versa. The key advance
of our work is the importance attributed to both streams
of data, allowing neural and behavioral data to simultane-
ously inform model estimation and our understanding of
perceptual decision-making.

Appendix A: Data

Let P be the number of neurons for a particular monkey
(P=23 and P=31 for Monkey B and N respectively). Let
N; be the number of trials recorded in a single session for
neuron j. Unless otherwise noted, all behavioral and neural
data are indexed by two subscripts: j representing sessions
(j = 1...P)and i representing trials within sessions (i =
1...Nj).

Each trial involved the presentation of a random
dot kinematogram with a particular direction and
coherence. The stimulus direction was always either
left or right, and coherence was one of six values
(0,0.032,0.064,0.128, 0.256, 0.512). We use S§;; and
Qi; to denote direction and coherence, respectively. The
behavioral data include vectors RT;; of response times
and R;; of responses. The neural data are represented
as a set of vectors, C. Each element, C;;, is a vector
of random length containing the times of spike events
recorded during a trial, measured relative to stimulus
onset. Let n;; be the number of spikes recorded in trial
i during session j so that vector C;; has length n;;. To
model the spike data, we also introduce vectors 7% and
7€ for the times at which recording began and ended.

Limited Neural Data

\EE]
Data

Accumulator

Model

Behavior

Behavior

Our Model’s
Causal Structure

Causality Given

(Roitman & Shadlen, 2002) recorded continuously from
the neurons during sessions, but we have clipped the
recordings to always have 7};’”” —0.11sec. and
Tii”d = RT;j + 0.31sec.

The neural data are limited to recordings from one side of
the decision process. In terms of the accumulator model, the
neural data correspond to just one of the two accumulators.
Thus, for about half of the trials, the monkey’s response cor-
responded to the accumulator that was not being recorded
(i.e., the response was away from the receptive field of
the recorded neuron). These trials present a problem for
modeling, as calculating likelihoods for observed behavioral
data requires integration over the unobserved neural data
as well as the unobserved finishing time for the accumula-
tor corresponding to those neural data (unobserved, as this
accumulator lost the race to threshold). To ease the compu-
tational burden associated with the integration, we restrict
our modeling to trials on which the observed response was
a saccade towards the receptive field of the neuron being
recorded. Using the terminology of (Roitman & Shadlen,
2002), we are using data from “T1” trials in which the
monkey responded correctly, as well as from “T2” trials
in which the monkey answered incorrectly. This restriction
solves a problem of unobserved data, which would require
integration otherwise.

Appendix B: Behavioral Model

The LBA model has three parameters that specify the accu-
mulators: non-decision time offset, 7o; the range of starting
points, A; and the response threshold, . In pilot work, we
found that setting A = O (i.e., no random variability in start-
ing points for the accumulators) provided a reasonable fit to
the data, and greatly simplifies the computational algorithm
(by removing the need to integrate firing rate calculations
across different evidence trajectories). This setting (A = 0)
also has precedent in modeling highly over-practiced data
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from non-human primates (Cassey et al., 2014), however,
see Appendix G.

We constrained the other two parameters (o and b) to
be constant across all six coherence conditions. A benefit
of our joint model is that the neural data constrains one of
these parameters. The parameter 7o is assumed to represent
the time taken for two different processing stages: the time
to perceive and encode the stimulus before decision-making
can begin, and the time to execute the response after a deci-
sion is reached. The neural data allow separate estimation of
those two components—see parameters 8 and § below.

LBA drift rates are distributed across trials according to
truncated normal distributions (positive values only). A full
model could include 24 drift rate parameters: a mean and
a standard deviation for each of the two racing accumula-
tors, for each of the six stimulus conditions. We have limited
the complexity of the model by assuming that the standard
deviation of the drift rate distributions is 1.0 for the accumu-
lator corresponding to the correct response in all coherence
conditions. In the zero-coherence condition, we assumed
that the drift rates are identically distributed for the two
responses, reflecting the lack of information (note that this
is not strictly necessary, as the monkeys could have been
biased). This makes for 16 drift rate parameters in total, for
the six coherence conditions. That is, a single mean drift rate
parameter for all distributions in the zero-coherence condi-
tion (unit standard deviation for all those distributions), and
then in each of the other five coherence conditions there
are three parameters: one mean drift rate for the accumu-
lator corresponding to the correct response, and one mean
drift rate and one standard deviation for the accumulator
corresponding to the incorrect response.

With those assumptions, the likelihood of a particular
response time and response choice was derived by (Brown
& Heathcote, 2008). The amount of evidence in an accumu-
lator (also called its activation) is a line with intercept given
by the start point and slope given by the drift rate. Call this
quantity x (¢).

Appendix C: Neural Model

We model spike arrival as a time inhomogeneous Poisson
processes with a piecewise linear firing rate A(¢, ®), where
t represents time during each decision, measured relative to
stimulus onset, and ® is a short-hand notation for the entire
set of model parameters (which are defined below). The
parameters that specify A(z, ®) are the junctions of the lin-
ear segments (see Fig. 3 in the main text). These parameters
vary across sessions (neurons) but not across trials, so they
are indexed by j = 1... P only.

From the start of recording until the stimulus
appears, the neuron has a baseline firing rate given by

@ Springer

parameter «. The first period following stimulus onset
is marked by a dip-and-recovery in firing rate, which is
unrelated to decision-making (see also Roitman & Shadlen,
2002, p.9486). The dip-and-recovery is modeled by a linear
“V” shape, governed by two parameters: its width (§) and
depth (A).

The period following the dip-and-recover is the sole
period of firing which is assumed to be related to evidence
accumulation. During this period, the firing rate increases
linearly toward threshold value. If the threshold is reached,
a decision response is triggered. No parameters are required
for the height of the threshold or the time taken to reach
threshold, as these quantities are constrained by the link
with the LBA model. The height is inferred from the LBA
model’s threshold parameter, b, via the linking assump-
tion. The time taken to reach threshold is inferred from the
observed response time, i.e.: RT;; — 8 — 8. When the thresh-
old is reached, an overt behavioral response (i.e., a saccade)
occurs after a delay of length 8. The firing rate drops from
its threshold value to a post-decision baseline rate of w. This
drop is linear over the period from g before the saccade to
y after the saccade.

The above assumptions determine the instantaneous fir-
ing rate function, A(#) over the recording period. With this
calculated, the likelihood of the spike times observed during
trial i of session j is given by:
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The integral is over the recording interval, T =
(Tl.‘;.’“”, Ti‘;."d). We use C;;[k] to indicate the k'™ element of
the vector of spike arrival times C;j, k = 1...n;;. Eq. 2
is just the standard density function for a non-homogeneous
Poisson process (Weinberg et al., 2007).

Appendix D: Linking

The key link between the LBA model and the neural data
is between the evidence accumulation trajectory of the LBA
accumulator and the evidence accumulation segment of the
Poisson firing rate (see red elements in Fig. 2 in the main
text). It is possible to instantiate and test all kinds of quanti-
tative linking functions, but we have constrained the model
to the simplest possible linking assumption. We assume a
linear relationship between neural firing rate and the evi-
dence trajectory of the LBA model. This relationship is
specified by a single parameter (6) for the scale: a one-unit
change in evidence in the LBA accumulator corresponds to
a firing rate change of 6 spikes per second. Denote by x(¢)
the activation of the LBA accumulator after an accumula-
tion time of ¢ seconds. This corresponds to a firing rate at
time ¢ + 8 of o + 6 x x(z). With an evidence threshold in
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the LBA model of b, these assumptions imply a firing rate
threshold of o« + 6 x b

Appendix E: Estimating the Model

Calculating the joint likelihood over the behavioral and
neural data is made easier by our assumption of no start
point variability in the LBA model (A = 0). Without that
assumption, the likelihoods must be integrated over the dif-
ferent evidence trajectories implied by different start points.
This integration is simple to accomplish numerically, but is
computationally costly.

Without start point variability, as here, the joint likeli-
hood for a single trial’s neural and behavioral data can be
specified in closed form. Let ¢4 (.|, o) represent the den-
sity of a normal distribution truncated to positive values,
with mean p and standard deviation o, and let (.|, o)
represent the corresponding cumulative distribution func-
tion. Let v, and s, be the mean and standard deviation
parameters of the truncated normal distribution of drift rates
for the accumulator corresponding to the recorded neuron,
and v, and s, be the corresponding parameters for the other
accumulator. If we denote by ® a vector of all the model
parameters, then the joint likelihood is given by:

L(RT;;, Ci;|®) = m
* R —p=s "
b
¢+<m|vr,sr>u€ul®> )

where L(C;;|®) is given by Eq. 2. The first three terms of
Eq. 3 correspond to the standard LBA model density (Brown
& Heathcote, 2008).

We estimated the posterior distributions over the parame-
ters of the joint model in a hierarchical Bayesian framework.
The hierarchy allows all model parameters to vary with
session (i.e., neuron) and imposes truncated normal distri-
butions on these session-wise parameters. The session-wise
parameters, as well as the mean and standard deviation
parameters of the group-level truncated normal distributions
were estimated simultaneously, but separately for mon-
keys “B” and “N”. Samples were drawn using Markov
chain Monte-Carlo with proposals generated by differential
evolution (Turner et al., 2013). We used 60 sampling
chains, drew 5,000 samples from each, and used ran-
dom, widely distributed start points. We discarded the
first 4,000 samples from each chain as burn-in, and con-
firmed convergence of the Markov chains by graphical
inspection.
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Table 1 Priors
Parameter Prior on u Prior on o
o ¢4 (40, 20) r4,0.5)
8 $+(0.1,0.2) re,5s)
A ¢4 (10, 10) I'@3,0.5)
B $+(0.1,0.2) r'a,s)
y ¢+(0.1,0.2) ra,s)
w ¢+ (10, 10) ra,n
6 ¢+ (40, 20) r4,0.5)
b b+(2,2) re,n
v ¢+(3,3) ra,n
K ¢+(1, 1) re,3s)

We imposed moderately informed priors on the mean and
standard deviation parameters of the group-level distribu-
tions. These priors were informed by results from (Roitman
& Shadlen, 2002) (for the neural parameters) and from pre-
vious fits of the LBA model (for the behavioral parameters).
In all cases, the prior distributions were wide enough to
encompass more than double the range of plausible values.
The priors for all mean (u) parameters were positive-only
truncated normal distributions and for all standard devia-
tion (o) parameters were gamma distributions, with settings
given in Table 1. Note that the priors on the drift rate dis-
tributions’ means and standard deviations (v and s) are
identical for all coherence conditions, and for both accumu-
lators. Table 2 summarizes the posterior distributions for all
monkey-level parameters. Therefore, the table contains two
rows for each session-level parameter: one row for the mean
and one row for the standard deviation parameter of the
corresponding monkey-level truncated normal distribution.

Appendix F: Model performance

Below we display the complete model fits to the behavioral
(Figs. 7 and 9) and neural (Fig. 8) data for the main model.
Fits to the behavioral data for the standard LBA (Fig. 9),
and to the neural data for the standard Poisson neural model
(Fig. 10) are also shown for comparison.

Figure 11 is the comprehensive version of Fig. 5a show-
ing prediction error for both monkeys and across all coher-
ence conditions.

Appendix G: Allowing for start point variability

The parameterization used for all fits reported in the main
text had no variability in the start point of the accumulators
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Table 2 Posterior parameter estimates (medians, and 95 % highest posterior density intervals), for both monkeys. These are given for both the
mean (u) and standard deviation (o) of the truncated normal distribution across sessions (i.e., across neurons)

Monkey B Monkey N
Coherence Parameter Median 95 % HPD Median 95 % HPD
o uw 31.9 [24,38] 31.6 [22,38]
o 15.7 [12,22] 18.2 [14,25]
5 " 0.00939 [0.00055,0.03710] 0.01792 [0.00039,0.05904]
o 0.0320 [0.0086,0.0670] 0.0556 [0.012,0.085]
A “w 1.412 [0.081,5.016] 0.261 [0.012,2.672]
o 2.561 [0.88,7.10] 0.702 [0.23,6.39]
" 0.123 [0.0085,0.2442] 0.126 [0.01,0.26]
Y o 0.225 [0.12,0.36] 0.265 [0.16,0.40]
" 0.004047 [0.00014,0.01492] 0.000603 [3.3e-05,4.3e-03]
p o 0.0218 [0.010,0.037] 0.0030 [0.00062,0.01538]
0 " 5.78 [0.45,11.83] 15.94 [3.5,25.1]
o 10.5 [7.2,15.3] 19.1 [14,27]
® "w 0.820 [0.029,2.990] 0.598 [0.024,2.238]
o 4.06 [2.6,6.4] 4.11 [2.8,5.9]
b "w 2.71 [2.4,3.0] 1.64 [1.4,2.0]
o 0.239 [0.16,0.38] 0.355 [0.27,0.48]
0 ; "w 3.28 [2.9,3.6] 1.79 [1.6,2.2]
o 0.248 [0.085,0.478] 0.202 [0.084,0.384]
; " 3.60 [3.1,3.9] 2.11 [1.8,2.6]
¢ o 0.326 [0.15,0.63] 0.216 [0.087,0.380]
0.032 0% uw 3.03 [2.4,3.5] 1.75 [1.4,2.1]
o 0.333 [0.14,0.99] 0.188 [0.06,0.57]
g " 1.158 [0.9,1.6] 0.627 [0.12,0.90]
e o 0.324 [0.13,0.95] 0.366 [0.17,1.27]
’ “w 3.82 [3.4,4.1] 2.31 [2.1,2.7]
¢ o 0.241 [0.09,0.48] 0.236 [0.097,0.489]
0.064 0% “w 2.78 [1.9,3.3] 1.52 [0.94,1.88]
o 0.343 [0.15,0.96] 0.363 [0.15,0.88]
s n 1.265 [0.82,1.84] 0.478 [0.036,0.963]
¢ o 0.325 [0.14,0.91] 0.425 [0.16,0.86]
’ " 4.42 [4.0,4.8] 3.01 [2.7,3.5]
¢ o 0.325 [0.13,0.62] 0.214 [0.088,0.432]
0.128 0% “w 1.679 [0.25,2.71] 0.766 [0.058,1.387]
o 0.865 [0.33,1.91] 0.630 [0.21,1.18]
s uw 0.935 [0.15,1.76] 0.414 [0.027,0.962]
¢ o 0.564 [0.17,1.22] 0.498 [0.24,0.91]
v n 5.30 [4.8,5.7] 4.03 [3.7,4.6]
¢ o 0.310 [0.17,0.67] 0.294 [0.15,0.54]
0256 v " 1.012 [0.062,2.246] 0.496 [0.033,1.313]
o 0.852 [0.27,1.86] 0.523 [0.14,1.17]
s uw 0.738 [0.09,1.57] 0.391 [0.029,1.051]
¢ o 0.546 [0.19,1.10] 0.373 [0.10,0.86]
v n 6.55 [6,7] 5.77 [5.3,6.3]
¢ o 0.607 [0.33,0.97] 0.790 [0.52,1.15]
0512 o " 1.169 [0.053,2.474] 0.829 [0.031,2.190]
o 0.976 [0.35,2.13] 0.786 [0.26,1.64]
s uw 0.796 [0.075,1.609] 0.561 [0.028,1.352]
¢ o 0.52 [0.2,1.2] 0.43 [0.09,1.00]
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Fig. 7 Full distributions of response times for both monkeys, sepa-
rately for each stimulus coherence condition (column) and correct vs.
incorrect responses (rows). Histograms show data, smooth lines show
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posterior predictive data from the joint model. Increasing coherence
(across each row) leads to more correct responses and fewer incorrect
responses, as well as faster response time distributions
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Fig. 8 Neural data (spikes per second) for both monkeys, separately
for each stimulus coherence condition (column) and correct vs. incor-
rect responses (rows). The top two rows show neural activity aligned
against stimulus onset, the bottom two rows show neural activity
aligned against response (saccade), with all x-axes showing time in

seconds. Histograms show data, smooth lines show posterior predic-
tive data from the joint model. Data and model predictions are all cut
off at the median response time for each condition, as per Roitman
and Shadlen (2002). Vertical green lines mark stimulus onset (fop two
rows) and response time (lower two rows)
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Fig. 9 Same format as Fig. 7, displaying fits to the behavioral data for the

(i.e., A = 0). This was computational practical. With no
start point variability, it is not necessary to integrate over all
possible start points (U[0, A]) in firing rate at the start of
evidence integration. The benefit of this was a substantial
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decrease in the time it took to fit the joint model. How-
ever, this speed up does come at a theoretical cost; with
no start point variability, the LBA has no other mecha-
nisms to capture the speed-accuracy trade-off, a ubiquitous
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Fig. 10 Same format as Fig. 8, displaying fits to the neural data for the piecewise linear neural model only
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Fig. 11 Prediction error (mean absolute difference, in seconds) when
predicting response times from unseen data. Predictions are given by
the MAP estimator conditioned on increasing durations of revealed
data from each trial (x-axes). The solid line in each panel shows
prediction error from the joint model that allows for individual neu-
ron differences. The dashed line shows prediction error from an

decision-making phenomenon in both humans and non-
human primates (e.g., Cassey et al. 2014). Here we report
fits from the joint model with identical parameterization to

average (non-hierarchical) version of the joint model which does not
account for parameter differences between neurons. As more data is
revealed, prediction error drops and approaches zero when the tempo-
ral window includes the actual response and response time as observed
information

the main text fits except for start point variability where A =
1. The inclusion of start point variable does improve the
fit, although this is not surprising given the extra flexibility.
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Fig. 12 A comparison of data from Monkeys “B” and “N” (black and
red solid lines, respectively) against predictions (circles) from a model
which allows start point variability (A = 1). The left panel graphs
mean response time (in seconds) and the right panel graphs mean

accuracy (proportion), both against stimulus coherence. The circles
show the mean statistics calculated from all posterior predictive sam-
ples, and the error bars contain 95 % of statistics from all posterior
predictive samples
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However, as shown in Figs. 12, 13 and 14, the improvement
in fit is marginal. As such, due to commensurate model per-
formance and computational efficiency we chose to analyze
the model with no start point variability.
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