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Abstract Optimally recruiting cognitive control is a key fac-
tor in efficient task performance. In line with influential cog-
nitive control theories, earlier work assumed that control is
relatively slow. We challenge this notion and test whether
control also can be implementedmore rapidly by investigating
the time course of cognitive control. In two experiments, a
visual discrimination paradigm was applied. A reward cue
was presented with variable intervals to target onset. The re-
sults showed that reward cues can rapidly improve perfor-
mance. Importantly, the reward manipulation was orthogonal
to the response, ensuring that the reward effect was due to fast
cognitive control implementation rather than to automatic ac-
tivation of rewarded S-R associations. We also empirically
specify the temporal limits of cognitive control, because the
reward cue had no effect when it was presented shortly after
target onset, during task execution.
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Introduction

Humans are cognitive beings with intentions and goals. To
achieve those goals, they monitor actions and their outcomes
to adjust attention and effort levels to suit the situation

(Botvinick, Cohen, & Carter, 2004). This set of top-down
processes is referred to as Bcognitive control,^ because it al-
lows controlling basic cognitive processes. Control improves
task performance but carries a cost (Kool, McGuire, Rosen, &
Botvinick, 2010). To decide if enhancing control is useful,
humans integrate cues for difficulty and reward. Evidence
for cue integration has been reported in several fMRI studies
(Krebs, Boehler, Roberts, Song, & Woldorff, 2012; Vassena
et al., 2014) and their influence on control implementation
was formalized in computational reinforcement learning
models (Verguts, Vassena, & Silvetti, 2015).

Classical models of cognitive control conceptualize control
as a serial and thus relatively slow process (Posner & Presti,
1987; Shiffrin & Schneider, 1977), as do more recent models
where reactive control is updated between-trials in response to
experienced task difficulty (Botvinick, Braver, Barch, Carter,
& Cohen, 2001; Botvinick et al., 2004). Also, proactive con-
trol (in response to cues before task onset) is conceptualized as
rather slow (Braver, 2012). These models have inspired ex-
perimental designs exploring relatively slow control, such as
the investigation of between-trial adaptation (Gratton, Coles,
& Donchin, 1992). Conversely, recent associative models ar-
gue that control is implemented via associations between per-
ceptual, motor, and control representations (Egner, 2014;
Verguts & Notebaert, 2008, 2009). In this view, a difficult or
potentially rewarding stimulus triggers a control representa-
tion, which subsequently improves the signal-to-noise ratio of
current processing pathways. From such a point of view, con-
trol might be implemented more rapidly, perhaps even during
task execution. Yet, its exact time course was not clearly spec-
ified in such models, perhaps due to lack of empirical speci-
fication of this time course.

Research has recently started to look at the time course of
control. Evidence for fast control implementation was report-
ed in an EEG frequency tagging experiment (Scherbaum,
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Fischer, Dshemuchadse, & Goschke, 2011) showing that on
difficult, incongruent trials, attention towards task-relevant in-
formation increases continuously throughout the trial. A large
literature shows that cues that are directly relevant for task
execution are processed more efficiently (Kunde, Kiesel, &
Hoffmann, 2003; Spruyt, De Houwer, Everaert, & Hermans,
2012). Item congruency (as in Scherbaum et al., 2011) is in
this sense directly relevant for task execution and can thus be
expected to be processed efficiently. However, it remains un-
clear to what extent task-irrelevant cues, such as reward cues,
which are uninformative about the upcoming task, can induce
control enhancements on a faster time-scale, as predicted by
associative models.

The influence of reward on performance has been exten-
sively studied. Beneficial effects of reward on cognitive con-
trol were found consistently (Bijleveld, Custers, & Aarts,
2010; Botvinick & Braver, 2015; Padmala & Pessoa, 2010,
2011) strongly suggesting that reward motivates participants
to intensify control. This earlier work mostly demonstrated
relatively slow adjustments. In many studies, reward was ma-
nipulated between subjects (Huebner & Schloesser, 2010) or
between blocks (Leotti & Wager, 2010; Padmala & Pessoa,
2010). This allows participants to deliberately increase con-
trol, but its time scale remains unknown. Another common
procedure is to present cues indicating upcoming reward be-
fore task onset. Here also, there is ample time for cue process-
ing, because it is always presented with a long interval (several
seconds) before task onset (Aarts et al., 2014; Bijleveld et al.,
2010; Knutson, Taylor, Kaufman, Peterson, & Glover, 2005;
Krebs et al., 2012; Padmala & Pessoa, 2011; Schevernels,
Krebs, Santens, Woldorff, & Boehler, 2014).

Studies investigating faster reward-based control imple-
mentation are scarce. Krebs, Boehler, and Woldorff (2010)
used a Stroop task in which trials with certain ink colors were
rewarded and showed that responses were faster for those
trials than non-rewarded ones. Because reward information
was presented only at task onset, this suggests control can be
implemented on a very short time scale. A similar fast reward
effect was shown for response inhibition (Boehler, Hopf,
Stoppel, & Krebs, 2012). In both studies, however, specific
rewarded stimuli were linked to specific responses. Hence,
when a stimulus and subsequent response were rewarded,
the S-R link was possibly strengthened. When the rewarded
stimulus was then presented again, the associated response
was automatically activated, possibly speeding task perfor-
mance (Damian, 2001). Studies avoiding this issue by using
an orthogonal S-R mapping are scarce and only report evi-
dence for slow control (Neely, 1977). The latter priming study
concluded that control implementation takes at least 400 ms.

As mentioned above, associative models theoretically al-
low fast control but as the literature review illustrates, an em-
pirical specification of its time course is currently lacking.
Filling this gap is the aim of the current study. A visual

discrimination task was used in combination with symbolic
reward cues unrelated to the target stimulus and response.
Three different fast cue timings allowed investigating the time
course of cognitive control implementation. The reward cue
was presented either 200 ms before, simultaneous to, or
200 ms after target onset. This third condition was included
to study ultra-rapid control enhancement during a trial, when
task execution has already been initiated. Note that for all
timing conditions, the cue-target interval was considerably
shorter than in the reward studies discussed above (Aarts
et al., 2014; Bijleveld et al., 2010; Krebs et al., 2012;
Schevernels et al., 2014). Crucially, the cues were uncorrelat-
ed with responses so no S-R learning could occur for the cue.
This ensures we measured control rather than automatic S-R
effects.

Experiment 1

Method

Eighteen paid subjects participated. Reward consisted of
points linked to winning a gift voucher. Stimuli were present-
ed centrally on a black background in 18 blocks of 48 trials. A
trial (Fig. 1) consisted of a full grey circle (1000 ms), the
target, being an opening in the top and bottom of the grey
circle (400 ms), a fixation cross (600 ms), and feedback
(600 ms). Participants indicated the larger of the two openings
with a button press. There were two difficulty levels, deter-
mined by the size difference in the openings. A reward cue
was presented, indicating no information (+# in white, 50% of
trials), reward (+4 in green, 25% of trials), or no reward (+0 in
red, 25 % of trials). Cue timing was variable: 200 ms before
(pre), simultaneous to (at) or 200 ms after (post) target onset
(all timings equally probable). Feedback depended on the re-
ward manipulation and the response (+4 or +0 in green for
correct and −4 or −0 for error trials). Fifty percent of all trials
were rewarded (if correct). All trial types were presented ran-
domly intermixed.

A linear mixed effects (LME) model was fitted for reaction
times (RTs) with several predictors: reward (reward vs. no
reward vs. neutral), cue timing (pre- vs. at vs. posttarget on-
set), location of the largest opening (location; top vs. bottom)
and difficulty (easy vs. hard). Also, a random intercept across
subjects was modeled. Although a maximal random effects
structure has been proposed as optimal (Barr, Levy,
Scheepers, & Tily, 2013), it has been argued recently that this
often results in overparameterized models that fail to converge
(Bates, Kliegl, Vasishth, & Baayen, 2015). Therefore, a model
building strategy was applied. The added value of a random
slope per subject was tested by comparing the basic model to a
model with a random slope for one of the predictors. This was
then repeated for every predictor. Significant random slopes
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were obtained for location and difficulty, which were added to
the final model. Effects in this final model were tested by
ANOVA type III; F-statistics were calculated with Kenward-
Roger adjustment of the degrees of freedom (Kenward &
Roger, 1997).

A generalized linear mixed effects (GLME) model for bi-
nary data was fitted for accuracy with the same predictors and
model selection procedure as for RT analysis. The final model
included a random slope for location. Because no small-
sample adjustments of the degrees of freedom for binary re-
sponses have been proposed in the literature, chi-square sta-
tistics rather than F-statistics are reported.

Results

RT

Results showed a main effect of difficulty, F(1, 17) = 127.66, p
< 0.001 (slower RTs for difficult trials), and cue timing, F(1,
13336) = 22.36, p < 0.001. RTs were slowest in the at condition
(compared to post: t(1, 17) = 6.00, p < 0.001; compared to pre:
t(1, 17) = 5.17, p < 0.001) and fastest in the pre condition
(compared to post: t(1, 17) = 2.46, p = 0.03). Crucially, there
was a significant main effect of reward information, F(1,
13335) = 4.04, p = 0.02, which interacted with cue timing,
F(2, 13335) = 7.20, p < 0.001 (Fig. 2a). To investigate this
interaction, the effect of reward was tested for each cue timing
separately. This revealed no significant effect for the post con-
dition, F(2, 16) = 0.43, p = 0.66, a marginally significant effect

for the at condition, F(2, 16) = 2.77, p = 0.09 and a significant
effect in the pre condition, F(2, 16) = 6.54, p = 0.008. To further
qualify the effect of reward in the pre condition, paired t-tests
were performed, revealing a difference between reward and no-
reward cues, t(1, 17) = 4.52, p < 0.001, and between reward
cues and neutral cues, t(1, 17) = 2.30, p = 0.03 but not between
no-reward cues and neutral cues, t(1, 17) = 1.76, p = 0.10.

Accuracy

There was a main effect of difficulty, χ2(1,N = 18) = 74.76, p <
.001 (more errors for difficult trials) and of cue timing, χ2(1, N
= 18) = 20.82, p < 0.001. Fewest errors were made in the post
condition (compared to at: t(1, 17) = 3.18, p < 0.01; compared
to pre: t(1, 17) = 3.61, p < 0.01). There was no difference
between the at and pre condition, t(1, 17) = 1.28, p = 0.22.
There was no main effect of reward, χ2(2, N = 18) = 2.46, p
= 0.29, but there was an interaction of reward and cue timing,
χ2(4, N = 18) = 10.02, p = 0.04 (Fig. 2b). To investigate this
interaction, the reward effect was modeled for each cue timing
separately. There was no significant reward effect in the post
and at conditions, χ2(2, N = 18) = 1.32, p = 0.52 and χ2(2, N =
18) = 1.04, p = 0.60 respectively, but there was a reward effect
in the pre condition, χ2(2, N = 18) = 15.37, p < 0.001.

Discussion

We investigated how rapidly reward prospect can modulate
task performance. The beneficial reward effect was clear when
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the cue preceded target onset, both for RTs and accuracy,
indicating truly enhanced processing efficiency rather than a
shift in speed-accuracy tradeoff. The reward effect was less
clear when cue and target appeared simultaneously, with only
a marginally significant effect for RTs and no effect for accu-
racy, and disappeared altogether when the cue followed target
onset.

To explore the marginally significant effect in the simulta-
neous condition and to push the timing limits of the fast con-
trol adjustments observed in Experiment 1, cue processing
was reduced to its simplest form in Experiment 2. In
Experiment 1, participants distinguished between three
intermixed cue types (neutral, reward and no-reward). In
Experiment 2, we confined neutral cues and informative cues
(reward or no-reward) to separate, alternating blocks, thus
reducing the number of cues and making distinction easier.
Furthermore, we increased power by testing a larger number
of subjects.

Experiment 2

Method

Twenty-seven paid subjects participated. The method was
nearly identical to that of Experiment 1 (Fig. 1), except that
trials with neutral cues and trials with informative cues ap-
peared in separate alternating blocks.

The predictors and model selection procedure were identi-
cal to that of Experiment 1. Both the model for RTs and accu-
racy included random slopes for location and difficulty.

Results

In a preliminary analysis, neutral blocks were compared to
informative blocks by fitting an LME model for RTs with
block type (neutral vs. informative) as the fixed factor and a
random slope for block type. Results showed an effect of

Fig. 2 Experiment 1: RTs (A) and error rates (B) were significantly
influenced by reward in the pre condition. The reward effect is mainly
driven by response speeding for reward trials relative to neutral trials
(plotted in yellow and orange, A) and by an increase in error rate for

no-reward trials compared to neutral trials (plotted in red and orange,
B). Experiment 2: RTs (C) were significantly influenced by reward in
the pre and at condition, error rates (D) were only influenced by reward
in the pre condition. *p < 0.05, **p < 0.01, ***p < 0.001
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block type, with faster RTs in neutral blocks compared with
informative blocks, F(1, 26) = 7.49, p = 0.01. There was no
block difference for error rates (tested with a GLMEmodel for
binary responses), χ2(1, N = 27) = 2.48, p = 0.11. Because of
this block effect, neutral trials cannot be straightforwardly
compared to reward and no-reward trials. Hence in the re-
mainder of the results, we focus on informative blocks only.

RT

A main effect was observed of difficulty, F(1, 26) = 115, p <
0.001 (slower RTs for difficult trials) and of cue timing, F(1,
26) = 74.24, p < 0.001. RTs were slowest in the at condition
(compared to post: t(1, 26) = 5.16, p < 0.001; compared to pre:
t(1, 26) = 7.68, p < 0.001) and fastest in the pre condition
(compared to post: t(1, 26) = 3.15, p < 0.01). There was a
main effect of reward, F(1, 9871) = 14.88, p < 0.001. The
interaction of reward and cue timing was marginally signifi-
cant, F(1, 9872) = 3.65, p = 0.056 (Fig. 2c; note that an F-
statistic is by definition two-sided). To investigate the interac-
tion further, separate models were fitted for each timing con-
dition. These revealed no effect of reward in the post condi-
tion, F(1, 3372) = 0.56, p = 0.46, but did show an effect in the
pre and at condition, F(1, 3250) = 11.69, p < 0.001, and F(1,
3260) = 4.72, p = 0.03, respectively.

Accuracy

There was a main effect of difficulty, χ2(1,N = 27) = 133.87, p
< 0.0001 (more errors for difficult trials), and of cue timing,
χ2(1, N = 27) = 29.37, p < 0.001. Fewest errors were made in
the post condition (compared to at: t(1, 26) = 3.37, p < 0.01;
compared to pre: t(1, 26) = 2.20, p = 0.04). There was no
difference between the at and pre condition, t(1, 26) = 0.22,
p = 0.82. There was a main effect of reward, χ2(2, N = 27) =
6.35, p = 0.01, and an interaction of reward and cue timing,
χ2(4, N = 27) = 7.93, p < 0.01 (Fig. 2d). Tests for each cue
timing separately revealed no significant reward effect for the
post or at condition, χ2(2, N = 27) = 0.005, p = 0.94 and χ2(2,
N = 27) = 0.34, p = 0.56 respectively, but there was an effect
for the pre condition, χ2(2, N = 27) = 15.37, p < 0.001.

General discussion

In two experiments, we demonstrated that control can be rap-
idly enhanced in response to reward. The use of three timing
conditions also provides novel insights into the nature and
time course of cognitive control implementation. When a
reward-predictive cue was presented 200 ms before target on-
set, it improved processing efficiency. The effect of reward
diminished as less time was available for cue processing, with

smaller effects for simultaneous cue and target presentation,
and no effect for cues presented after target onset.

One might argue that difficulty was unmatched across
timing conditions: the less time there was to process the cue,
the more difficult the task might have become. Because re-
ward and difficulty cues are weighted in the decision to in-
crease control, increased difficulty might eliminate a reward
effect. However, RTs were faster and fewer errors were made
in the post condition than in the simultaneous condition, indi-
cating that, if anything, the task was more difficult in the
simultaneous condition, where we did find a reward effect.

A broad research effort is uncovering the fast and far-
reaching influences of reward on cognition. Visual attention
research has extensively shown that rewarded stimuli capture
attention automatically, even when this is counterproductive
(Hickey & van Zoest, 2012; Pearson, Donkin, Tran, Most, &
Le Pelley, 2015). Interestingly, this might imply that the cur-
rently reported reward effects are an underestimation of en-
hanced control. Reward cues automatically attracted attention
away from the actual discrimination task stimulus, which
would cause a slowing of responses rather than the observed
speeding.

Our findings challenge models that conceptualize cognitive
control as a slow process (Botvinick et al., 2001, 2004;
Braver, 2012; Posner & Presti, 1987; Shiffrin & Schneider,
1977). Such models have been challenged before in congru-
ency tasks. There, the magnitude of the congruency effect
depends on the proportion of incongruent trials in the task.
This proportion congruency effect (PCE) is typically ascribed
to a slow process that tonically enhances control in the context
of high proportions of incongruency (Braver, 2012). In con-
trast, Crump, Gong, andMilliken (2006) showed that the PCE
also occurs if the proportion congruency only becomes appar-
ent at stimulus onset, suggesting a fast, stimulus-driven con-
trol enhancement. Our research shows that also task-irrelevant
reward cues (i.e., which are uninformative for the task) can
induce such rapid adjustments.

The current research supports more recent accounts that
conceptualize cognitive control from an associative learning
viewpoint (Egner, 2014; Verguts & Notebaert, 2008, 2009)
and adds to these models by specifying the time constraints
of cognitive control. We emphasized that we were careful to
exclude stimulus-response learning; however, what then is
learned in the associative learning point of view? We argue
that subjects learn associations between perceptual (in this
case, reward cue) and control (rather than motor) representa-
tions, which are automatically activated with the next cue
appearance (e.g., in event files: Hommel, 1998; Waszak,
Hommel, & Allport, 2004) and quickly trigger appropriate
levels of control. Future research is needed to determine
whether such cueing requires training at all (instruction-
based control implementation) and whether its timing changes
with extensive training.
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