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Abstract Ongoing research explores whether animals have
precursors to metacognition—that is, the capacity to monitor
mental states or cognitive processes. Comparative psycholo-
gists have tested apes, monkeys, rats, pigeons, and a dolphin
using perceptual, memory, foraging, and information-seeking
paradigms. The consensus is that some species have a func-
tional analog to human metacognition. Recently, though, as-
sociative modelers have used formal-mathematical models
hoping to describe animals’ “metacognitive” performances
in associative-behaviorist ways. We evaluate these attempts
to reify formal models as proof of particular explanations of
animal cognition. These attempts misunderstand the content
and proper application of models. They embody mistakes of
scientific reasoning. They blur fundamental distinctions in
understanding animal cognition. They impede theoretical de-
velopment. In contrast, an energetic empirical enterprise is
achieving strong success in describing the psychology under-
lying animals’ metacognitive performances. We argue that this
careful empirical work is the clear path to useful theoretical
development. The issues raised here about formal modeling—
in the domain of animal metacognition—potentially extend to
biobehavioral research more broadly.
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Introduction

Metacognition is the awareness of one’s mental states or cog-
nitive processes (knowing, doubting, remembering, etc.)
coupled with the ability to regulate behavior adaptively using
that awareness. Metacognition in humans is central to think-
ing, memory, comprehension, and decision making
(Dunlosky & Bjork, 2008; Flavell, 1979; Koriat &
Goldsmith, 1994; Nelson, 1992). A large experimental and
educational literature takes metacognition as its focus.
Metacognition is a sophisticated cognitive capacity possibly
linked to consciousness and self-awareness (Koriat, 2007,
Nelson, 1996). This link is why metacognitive states are often
personalized, as when we say: / don’t know; / don’t remem-
ber. Metacognition emerges late in human development
(Balcomb & Gerken, 2008)—its earliest developmental roots
have not been mapped. Indeed, metacognition might be so
sophisticated a capacity that it is uniquely human.

Still, given metacognition’s importance, it is a natural ques-
tion whether nonhumans share aspects of this capacity
(Komell, 2009; Metcalfe, 2008; Smith, 2009). If they do, it
could bear on their consciousness and self-awareness. It could
affect theoretical debates in comparative psychology, and af-
fect the interpretation of behavioral research. It could illumi-
nate metacognition’s evolutionary beginnings and possibly
the earliest (nonverbal) forms it takes in very young human
children (Balcomb & Gerken, 2008). It could point to nonver-
bal forms of cognitive regulation that might benefit children
with special needs. Thus, researchers have actively explored
animal metacognition, creating one of comparative

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.3758/s13423-015-0985-2&domain=pdf

1342

Psychon Bull Rev (2016) 23:1341-1353

psychology’s influential literatures (e.g., Basile, Hampton,
Suomi, & Murray, 2009; Basile, Schroeder, Brown, Templer,
& Hampton, 2015; Beran & Smith, 2011; Beran, Smith, &
Perdue, 2013; Call, 2010; Couchman, Coutinho, Beran, &
Smith, 2010; Foote & Crystal, 2007; Fujita, 2009; Kornell,
Son, & Terrace, 2007; Paukner, Anderson, & Fujita, 2006;
Roberts et al., 2009; Smith, Coutinho, Church, & Beran,
2013; Suda-King, 2008; Sutton & Shettleworth, 2008;
Templar & Hampton, 2012; Washburn, Gulledge, Beran, &
Smith, 2010; Washburn, Smith, & Shields, 2006; Zakrzewski,
Perdue, Beran, Church, & Smith, 2014). Many researchers
have contributed to this literature—our citations are only il-
lustrative. Primates have shown diverse, seemingly
metacognitive performances in tasks involving food search,
psychophysical discrimination, information seeking, memory
monitoring, and so forth. Perhaps some animals monitor their
cognition, and know when they know or remember. It is wide-
ly agreed that this would be a singularly important conclusion
about animal minds.

Associative cues and “metacognitive” performances

However, as in all domains of behavioral research, interpreta-
tive issues arise. A range of psychological interpretations
could be given to a performance that seems metacognitive
on the surface. One could emphasize lower-level associative-
learning processes, or higher-level cognitive processes, or
metacognitive processes that are perhaps reliant on something
like working consciousness.

In particular, in animal-metacognition research, there has
been a focus on associative explanations of “‘metacognitive”
performances. These performances might be explained as
low-level (reactive) conditioning phenomena if animals’
“uncertainty” responses are cued by stimuli or conditioned
by reinforcement. The associative-metacognitive issue has
dominated the theoretical debate (Basile & Hampton, 2014;
Basile et al., 2015; Carruthers, 2008; Hampton, 2009;
Jozefowiez, Staddon, & Cerutti, 2009a,b; Le Pelley, 2012,
2014; Smith, 2009; Smith, Beran, & Couchman, 2012;
Smith, Beran, Couchman, & Coutinho, 2008; Smith,
Couchman, & Beran, 2012, 2014a, b; Staddon, Jozefowiez,
& Cerutti, 2007). It has dictated the form and application of
formal models in this domain. It has even framed the litera-
ture’s article titles (e.g. Metacognitive Monkeys or
Associative Animals?—Le Pelley, 2012).

The associative-metacognitive debate is sharpened because
the field’s methods do sometimes entangle procedural
learning/associative responding with possible metacognitive
monitoring. That is, researchers often give animals indetermi-
nate stimuli to produce the uncertainty animals may monitor.
Those stimuli will also produce errors and reduce rewards.
Procedural-learning systems could sense these contingencies.
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Avoidance responses could entrain to problematic stimuli,
helping the animal avoid errors for responses made to those
stimuli. These responses might seem metacognitive, but might
not be. Thus, attributing higher-level cognitive monitoring to
animals is difficult, though such monitoring could be present.

Yet strong empirical progress is being made. Acknowledging
the difficulty of interpretation, researchers have introduced em-
pirical approaches that address associative interpretations. One
concern is that animals have often received tangible rewards for
metacognitive responses (Foote & Crystal, 2007; Fujita, 2009;
Hampton, 2001; Inman & Shettleworth, 1999; Kornell et al.,
2007; Suda-King, 2008; Sutton & Shettleworth, 2008). As
pointed out by Smith, Beran, et al. (2008), this approach
might give those responses associative strength and appetitive
attractiveness independent of their metacognitive basis. But
researchers have addressed this concern repeatedly. Animals
show adaptive metacognitive responses even when those re-
sponses eamn no concrete reward (Beran, Smith, Redford, &
Washburn, 2006; Couchman et al., 2010; Smith, Beran,
Redford, & Washburn, 2006; Smith, Redford, Beran, &
Washburn, 2010).

A second concern is that researchers often use first-order
stimulus qualities to create metacognitive uncertainty (i.e.,
concrete, visible stimulus features like size, color, etc.).
Error-causing (timeout-bringing!) stimulus features could be-
come associatively aversive and avoided for this reason—not
based on a metacognitive judgment. Research with monkeys
has allayed this concern by showing adaptive metacognitive
responses even when the task requires conceptual or memory
judgments not linked to particular stimuli—even in some
cases when no stimulus is visible (Hampton, 2001;
Hampton, Zivin, & Murray, 2004; Kornell et al., 2007;
Shields, Smith, & Washburn, 1997; Smith, Shields,
Allendoerfer, & Washburn, 1998; Washburn et al., 2010).

A third concern is that researchers often give trial-by-trial
reinforcement. If animals can associate consequences to the
stimulus-response combinations that earned them, they might
condition through low-level mechanisms to avoid problematic
stimuli, with no metacognitive basis for avoidance. Research
with monkeys has allayed this concern by showing
metacognitive responses when reinforcement is deferred
(i.e., presented only after each trial block) so that assigning
credit for reinforcement to particular stimulus-response com-
binations is difficult and the normal pathways for procedural
learning are blocked (Couchman et al., 2010; Smith et al.,
20006).

We do not prejudge here the correct theoretical interpreta-
tion of animals’ “metacognitive” performances. But the sense
of the literature is that metacognition research has moved be-
yond some associative hypotheses. The emerging consensus
is that some species share some aspects of humans’
metacognitive capacity. Sutton and Shettleworth (2008, p.
266) concluded that “metamemory, the ability to report on
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memory strength, is clearly established in rhesus macaques
(Macaca mulatta) by converging evidence from several
paradigms.” Fujita (2009, p. 575) concluded that “evidence
for metacognition by nonhuman primates has been obtained in
great apes and old world monkeys.” Roberts et al. (2009, p.
130) concluded that “substantial evidence from several labo-
ratories converges on the conclusion that rhesus monkeys
show metacognition in experiments that require behavioral
responses to cues that act as feeling of knowing and memory
confidence judgments.” Carruthers and Ritchie (2012, p. 76)
concluded that “this body of work, taken as a whole, cannot be
explained in low-level associationist terms, as involving mere
conditioned responses to stimuli.”

Associative models and “metacognitive”
performances

Of course not everyone supports this consensus. One can
question the weight to give the empirical demonstrations just
described. One can question whether ruling out some associa-
tive hypotheses is decisive or not. One can propose additional
associative mechanisms that have not yet been addressed. In
this spirit, associative modelers have recently used formal
models to criticize the animal-metacognition phenomena.
That is, they have developed “associative” models that depict
the reinforcement histories associated with error-causing stim-
uli that might cue avoidance (not metacognitive) responses.
Staddon et al. (2007) and Jozefowiez et al. (2009a,b) used the
Behavioral Economic Model to fit rats’ metacognitive perfor-
mance in Foote and Crystal (2007). Le Pelley (2012) asked
whether an associative model could fit the metacognitive per-
formances produced by macaques. He also assumed that
stimulus-response registers were updated over trials so as to
encode reinforcement histories and entrain response strategies
to those histories. Below we describe one of the associative
models in detail. To be fair and self-critical, one of us (Smith,
Beran et al., 2008; Smith, Shields, & Washburn, 2003) initi-
ated the formal-mathematical approach to animal
metacognition.

These models have exerted a powerful theoretical pull in
our field. Colleagues have shown they will reject a
metacognitive interpretation of performance if an associative
model fits the data. They have shown they will accept an
associative interpretation if the associative model fits the data.
Editors and reviewers have required these models to be incor-
porated in articles, recommended rejection of articles based on
the outcome of modeling, and disallowed theoretical consid-
erations of animal metacognition if associative models fit. A
very distinguished colleague once told us that seeing associa-
tive models reproduce metacognitive phenomena had pro-
duced a conversion experience against the possibility of ani-
mal metacognition. If these interpretative and judgmental

standards seem appropriate, then this article will be brightly
illuminating.

This article is about the use of these models in the area of
animal metacognition. It is about the logic of the use of formal
models as mathematical fits for animals’ performance. We will
ask why researchers believe these models are explanatory. We
will specify what models can never grant animal-
metacognition research. We will consider their serious limita-
tions. We will show that the current application of models in
our field reflects poor scientific reasoning and potentially
harms theoretical development of our field. We will consider
the alternative ways in which researchers can advance the
literature, given that these formal models do not presently
contribute to that advance.

These issues have broad implications for biobehavioral re-
search. Similar models are used similarly in many domains
(e.g., numerosity, timing, foraging, gratification delay, deci-
sion-making). We do not assert that other models inevitably
share the problems we point to—each field must make its own
determination. But a general reassessment of how models are
used and interpreted could be constructive. The animal-
metacognition literature is an elegant case study in making
this reassessment—one that springs from the work of many
excellent researchers and modelers.

A target animal-metacognition performance

We begin by presenting a target data pattern from an animal-
metacognition experiment. In this example (Smith et al.,
2013), a rhesus macaque (Macaca mulatta) completed a
sparse-uncertain-dense task. On each trial, he saw a box in
the screen’s top center filled with some number of randomly
placed lit white pixels on a black background (Levels 1-60).
The 30 sparsest and 30 densest trial levels, respectively, de-
served the Sparse and Dense response. These responses re-
ceived a food reward or a trialless timeout period if correct
or incorrect. Trial levels near the discrimination breakpoint
(Levels 30-31) were difficult and error producing. The ma-
caque could also make an uncertainty response that produced
the next trial without providing any feedback or reinforce-
ment. Despite this neutral outcome, the uncertainty response
was potentially useful. Through its judicious use—only on
difficult trials—the macaque could fend these trials off, avoid
errors and timeouts, and increase rewards in the task.

Figure 1 shows the macaque’s performance over about 3,
000 trials. He showed a familiar pattern. He responded uncer-
tain most for trials near the discrimination breakpoint. He
somehow correctly evaluated that these trials were difficult
and error producing, and he declined them selectively and
adaptively. Humans often show identical data patterns.
Interestingly, humans say their uncertainty responses are
prompted by conscious metacognitive uncertainty.
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Fig. 1 Proportion of uncertainty responses (solid circles), sparse
responses (open squares), and dense responses (open triangles) made
by the macaque Murph in the sparse-uncertain-dense task of Smith
et al. (2013). The horizontal axis indicates the objective density of the
trial (Levels 1-30: Sparse; Levels 31-60: Dense)

Macaques say nothing! Their performance might be
metacognitive or associative. Josefowiez, Le Pelley,
Staddon, and their colleagues favor the associative interpreta-
tion. They apply associative formal-mathematical models to
see whether they can describe associatively how animals per-
form in these tasks so that the metacognitive interpretation can
be dismissed. We will illustrate these models next.

An “associative” model of animal metacognition

The macaque in the task just described received trial-by-trial
feedback. Transparent reinforcement could let animals tabu-
late in memory the reinforcement histories attaching to differ-
ent stimulus-response combinations. From a neuroscience
perspective, we might say instead that immediate feedback
would allow the updating of neural connections from visual
cortex to motor cortex, perhaps with cells in the caudate nu-
cleus as facilitating intermediaries, so that procedural learning
ensued (e.g., Arbuthnott, Ingham, & Wickens, 2000;
Calabresi, Pisani, Centonze, & Bernardi, 1996; Gamble &
Koch, 1987; Hollerman & Schultz, 1998; MacDermott,
Mayer, Westbrook, Smith, & Barker, 1986; Schultz, 1992;
Wickens, 1993).

An illustrative associative model can instantiate this sys-
tem. Its design is uncontroversial. Like all associative models
in our area, it assumed that performance in uncertainty tasks is
organized along a continuum of psychological representations
of increasing strength (here, increasing density from sparse to
dense). It assumed that objective stimuli were perceived with
perceptual error (so that a Level 10 stimulus would create a
perceptual impression from trial to trial in the range, say, of 8
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to 12). The model assumed that simulated observers respond
to the trial’s subjective level or impression (not the objective
stimulus level), just as a macaque must do. It assumed that
animals tabulated in memory the reinforcement histories
attaching to different stimulus-response combinations, and
that they grew averse to responding Sparse or Dense to stimuli
(and to particular responses made to them) proportionally to
their errors. Figure 2 shows this response-strength function as
it wanes toward the middle of the continuum containing error-
prone levels. The function’s steepness was controlled by a free
parameter (sensitivity) in our model that governed the expo-
nential decay of response strength.

The model assumed that the third, avoidance response had
a constant attractiveness across the continuum in accordance
with its constant consequence (Fig. 2, horizontal line). This
avoidance threshold’s height on the y-axis (threshold) was
also a free parameter in our model, with higher values produc-
ing more avoidance responding generally and more broadly
across the continuum. Simulated observers made a Sparse or
Dense discrimination response if the reinforcement-based re-
sponse strength was greater. They made the avoidance re-
sponse if its response strength was greater.

We varied the values for sensitivity and threshold to find
those that best recovered the 180 proportions (three responses
x 60 stimulus levels) the macaque showed. To quantify the
model’s fit, we found the sum of the squared deviations (SSD)
across corresponding observation-prediction pairs. We mini-
mized this measure to find the best-fitting parameters. They
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Fig. 2 A reinforcement-history portrayal of performance in a sparse-
dense discrimination with a third response assumed to manage stimulus
aversion and response avoidance. The horizontal axis indicates the
subjective impression created by the objective stimulus on the trial. The
solid line instantiates the idea that the third response could be the default
option with a constant response strength that is selected when aversion or
avoidance weakens the tendency to respond sparse or dense. The dotted
line instantiates the idea that response strength for the sparse and dense
responses would wane exponentially going inward as the frequency of
errors increased
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were .101 (sensitivity) and .108 (threshold). For these best-
fitting parameters, we calculated an intuitive measure of
fit—the average absolute deviation (AAD). This measure rep-
resents the average of the deviations between observed and
predicted pairs (with the deviations always signed positively).
Figure 3 shows that this model’s predictions (lines) fit well the
macaque’s results (symbols). The SSD between correspond-
ing points was .2019. The AAD per point was .0192; on av-
erage, the 180 observation-prediction pairs differed by less
than .02.

That the associative model recovers “metacognitive” per-
formance has a strong impact on animal scientists. We have
seen many times the effect a fit like this has. A strong infer-
ence immediately follows that this model is the correct inter-
pretation of the animal’s performance, that the assumptions of
associative-learning theory are justified regarding that perfor-
mance, and that the target performance was therefore not
metacognitive. The power of the fit of an associative model
is extraordinary.

A “metacognitive” model of animal metacognition

In reality, an immediate obstacle blocks using an associative
model to justify inferences like these. There is a rival model
we also illustrate here. To be fair, we must let this model fit the
same data first. This model assumes that the macaque moni-
tored psychological signals of uncertainty and that he was able
to place two confidence criteria along the Sparse—Dense
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Fig. 3 Murph’s performance in the sparse-uncertain-dense task of Smith
et al. (2013), depicted with symbols as described in the legend to Fig. 1.
Also shown are the best-fitting predictions produced by an “associative”
model as it fit those observed data using a third response to manage
stimulus aversion and response avoidance (solid line aversion-
avoidance response; dashed line sparse responses; dotted line dense
responses). Details of the model and model fitting are described in the text

continuum. These confidence criteria are central to all aspects
of signal-detection theory (Macmillan & Creelman, 1991).
These criteria offer an alternative descriptive framework.
Using them, the macaque could use the Sparse and Dense
responses for the easy and certain (i.e., high-confidence) trials
outside the criteria and farther from the discrimination’s
breakpoint. He could reserve the uncertainty response for the
difficult (i.e., low-confidence) trials between the criteria and
nearer the breakpoint. Thus, the uncertainty response was
modeled as arising from the application of a form of uncer-
tainty monitoring or metacognition, though not necessarily the
full human version of uncertainty monitoring and conscious
metacognition.

The model assumed the same density continuum and per-
ceptual error as the associative model. It assumed that one
criterion (criterion sparse-uncertain, free parameter CSU)
was placed to separate easier Sparse trials from Uncertain
trials, and one criterion (criterion uncertain-dense, free
parameter CUD) was placed to separate Uncertain trials from
easier Dense trials. On each trial, the model assumed that the
animal perceived an objective stimulus with perceptual error,
yielding that trial’s subjective impression. If that impression
were below CSU, between CSU and CUD, or above CUD,
respectively, the model chose the Sparse, Uncertain, or Dense
response. If CSU and SUD were placed at 28 and 32, the
uncertainty region would be narrow, and the animal would
make uncertainly responses stingily for few trial levels. If
the criteria were placed at 24 and 36, the uncertainty region
would be wider and uncertainty responses more plentiful.

The metacognitive model did not include the sensitivity
and threshold parameters of the associative model. They were
replaced by CSU and CUD. The associative and
metacognitive models in this article had the same number of
free parameters—two. One must not suppose that the
metacognitive model was more complex or parameter rich,
or that the associative model is to be preferred because it
was somehow simpler.

The metacognitive model was grounded in modeling tech-
niques (e.g., perceptual error, discrimination thresholds, signal
detection) that extend back many decades in experimental
psychology. Thus, the associative and metacognitive models
in this article used equally venerable and successful basic
modeling assumptions. There is no basis for giving the asso-
ciative model explanatory preference because of its historical
depth.

The theoretical perspective of uncertainty monitoring and
uncertainty responding have also had as long a history in
human research as behaviorism has had in animal research
(e.g., Fernberger, 1914; Jastrow, 1888). Along this dimension,
too, there is no basis for preferring the associative model based
on historical precedent.

We varied the values for CSU and CUD to find those that
best recovered the macaque’s 180 response proportions. The
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best-fitting values were 27.1 (CSU) and 34.2 (CUD). Figure 4
shows that the “metacognitive” model’s predictions (lines) fit
well the macaque’s performance (symbols). The SSD between
corresponding values was .126, i.e., a 37.5% reduction in the
summed error of prediction compared to the “associative”
model. The AAD per point in the two graphs was .014—a
25% better fit to the data than the “associative” model found
(.019). The fit of the metacognitive model was at least as good
as that of the associative model.

At this point, we have described two formal-mathematical
models that reflect different psychologies. Both fit the data
very well. One cannot simply accept the associative interpre-
tation, because the metacognitive model certainly fits compet-
itively. One cannot accept the metacognitive interpretation,
though, because the associative model fits competitively,
too. One cannot attack the metacognitive model, by claiming
that its criteria need not be really metacognitive and that ani-
mals might actually be associative. For we did not attack the
associative model similarly, by noting that its processes need
not really be associative, and that animals might actually be
metacognitive. Generally, we cannot approach the interpreta-
tive question using any bias toward associationism or
cognitivism that we may have because then bias, and not
science, would pre-decide the issue. Instead, we need a disci-
plined resolution between the perspectives behind the two
models. Readers might consider which interpretation they
might choose in this situation. So, instead of indicating to us
the correct psychological interpretation of these performances,
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Fig. 4 Murph’s performance in the sparse-uncertain-dense task of Smith
et al. (2013), depicted with symbols as described in the legend to Fig. 1.
Also shown are the best-fitting predictions produced by a
“metacognitive” model as it fit those observed data assuming that the
macaque monitored psychological signals of uncertainty and was able
to place two confidence criteria along the Sparse-Dense continuum (solid
line uncertainty responses; dashed line sparse responses; dotted line
dense responses). Details of the model and model fitting are described in
the text
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the models freeze us between equivalent associative and
metacognitive interpretations. And now we will see that the
interpretative situation regarding these two models is actually
far worse than this.

Deep convergence, deep trouble

The deeper problem is that the associative and metacognitive
models have a perfect mathematical correspondence. To illus-
trate, we took the predictions of the associative model that best
fit the macaque’s performance, and we used those predictions
as the target to be fit by the metacognitive model. Both perfor-
mance profiles are overlain in Fig. 5, as the metacognitive
model (black symbols) tried to reproduce what the associative
model had predicted (open symbols). If you do not see any
open symbols, look very closely. That difficulty is the point
here. These two data patterns are essentially identical. The
SSD between the two performance patterns was .0011, indicat-
ing vanishingly small differentials. The AAD per associative-
metacognitive data pair was .0013, indicating the same.
Whatever the two nominal kinds of cognitive processing the
models envision, in reality they are mathematically isomorphic.

We took one more step to confirm this. We created 17
simulated creatures using the metacognitive model, with
CSU gradually decreasing from 30 down to 14, and with
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Fig. 5 The convergence between the associative and metacognitive
formal model. To make this graph, the best-fitting prediction of the
associative model—as it fit the macaque’s observed discrimination data
(Fig. 1)—was used as the data-fitting target, and that target was then fit by
the metacognitive model. The horizontal axis indicates the objective
density of the trial (Levels 1-30, sparse; Levels 31-60, dense). Shown
are the proportions of aversion-avoidance responses (open circles), sparse
responses (open squares), and dense responses (open triangles) originally
produced by the associative model, and the best-fitting proportions of
uncertainty responses (black circles), sparse responses (black squares),
and dense responses (black triangles) produced by the metacognitive
model fitting the prediction of the associative model



Psychon Bull Rev (2016) 23:1341-1353

1347

CUD gradually increasing from 30 up to 46. The parameter
configuration 30-30 would produce no uncertainty responses.
The configuration 14-46 would produce exuberant uncertain-
ty responding. Thus, we covered a range of “metacognitive”
strategies from 0 to generous uncertainty responding given a
wide uncertainty-response region that spanned more than half
the stimulus continuum. We let each of these simulated
“metacognitive” data patterns become the fitting target now
for the “associative” model.

Figure 6 shows the result of this extensive simulation. The x-
axis shows the width of the uncertainty region along the stim-
ulus continuum for 17 versions of the metacognitive model
(i.e., quantity CUD minus CSU). The y-axis shows the best-
fitting threshold for choosing a Sparse/Dense response as the
associative model fit each version. The remarkable result (filled
symbols) is that these nominal metacognitive and associative
parameter values trace a sigmoid of perfect equivalence.

Figure 6 (open circles) shows the result of fitting a logistic
curve to the 17 points. The curves are nearly indistinguishable,
with 99.93% of variance explained. As the “metacognitive”
model’s uncertainty region widens, the “associative” model’s
threshold for choosing a Sparse/Dense response heightens, in
perfect mathematical lockstep.
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Fig. 6 The convergence between the associative and metacognitive
formal models. To make this graph, we produced 17 simulated
performers who performed according to the predictions of the
metacognitive model. They had Sparse-Uncertainty and Uncertainty-
Dense confidence criteria, respectively, placed at Levels 30-30, Levels
29-31, Levels 28-32, and so forth out to Levels 14-46. As the width of
the uncertainty region increased (e.g., 46—14 = width 32), the uncertainty
response was used more generously. Each of 17 performance profiles was
then fit by the associative model, so that we could assess the relationship
between the width of the metacognitive uncertainty region in the
metacognitive model (x-axis) and the height of the aversion-avoidance
threshold in the associative model (y-axis). The two parameters—
uncertainty-region width and aversion-avoidance threshold height—
have a perfect mathematical correspondence (solid symbols). A simple
logistic function recovered this relationship perfectly (open symbols)

The “metacognitive” and “associative” models are only
alternative ways to parameterize performance space mathe-
matically. The threshold parameter (associative model) and
the width parameter (metacognitive model) accelerate the
use of the uncertainty response in the same way. There might
be six other isomorphic ways to parameterize performance
space. There is no interpretative choice embodied by these
models, or required by them, or allowed by them, because
they are exactly the same mathematical thing. Indeed, the
models are so hopelessly entangled mathematically that they
cannot even validly or reasonably express the kinds of pro-
cesses that the two theoretical ideas behind the models sup-
posedly espouse. These are two arbitrary mathematical de-
scriptions, two glorified factor-analyses of the data that are
simple rotations of each other and therefore psychologically
empty. The models are weak, inseparable, indistinguishable,
and they are not up to the task of driving psychological inter-
pretation or theory in either direction, in any direction. They
must be removed from the theoretical discussion regarding
animal (and human!) metacognition.

The trouble with “associative” and “metacognitive”
models

That is the situation in the animal-metacognition literature.
But the lessons there extend more broadly to other research
areas. Therefore, here we offer some general observations
about formal models as a general caution.

Models are pure mathematics. They are gradients, numer-
ical transformations, decay functions, thresholds. One cannot
read anything into a model beyond these transformations, or
extrapolate them to any mind or cognitive system.

Models restate the empirical result. The models’ output in
Figs. 3 and 4 recovers the behavior of declining more trials
near the midpoint of the continuum. We already observed the
macaques doing this. Neither model adds value to this
observation.

Models are post hoc rationalizations. Their parameters take
on the values they do to reproduce a graph. The model’s pa-
rameters are exhausted—that is, used up—re-expressing that
graph. They have no additional interpretative or conceptual
content.

Models only reparameterize the observations. For example,
they turn the animal’s frequency of uncertainty responding
into a threshold-parameter value in the associative model.
But they have only redescribed the original situation mathe-
matically. They are a conceptually empty translation of the
data into a new form. Moreover, it is likely, and it is devastat-
ing, that the translation is only one of many. For no one math-
ematical translation is better than another. None is closer to the
animal’s mind. None has any intrinsic tie to the animal’s

psychology.
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Therefore, models are silent on the issue of psychological
processing. Take the height of the aversion-avoidance thresh-
old. It tells us only that we needed that value to recreate the
animal’s frequency of uncertainty responses. But the animal
need not have performed the task in any way like that nomi-
nally specified by the model. So models do not and cannot
express associative processing or metacognitive processing.
They embody no psychological processes, only abstract math-
ematical transformations.

Finally, models may blur even the most fundamental dis-
tinctions about animals’ minds. In our case, fully conscious
(human!) metacognition and purely associative responding
would produce the same data pattern as we have seen. Both
underlying psychologies would then be fit by the same math-
ematics/model. Some have mistaken the fit of the associative
model to assert that everything is associative. One could use
the fit of the metacognitive model to assert that everything is
metacognitive. Neither assertion is correct. Indeterminate
models cannot make a processing determination.

Ilustrating a definitive contrast between models

This criticism of animal-metacognition models will not extend
to all research areas. Sometimes formal models can cut deeper
to analyze the true structure of animal cognition. An example
will show why animal-metacognition models do not cut
deeper.

Smith, Redford, and Haas (2008) tested exemplar models
of categorization. Exemplar theory holds that animals store
category exemplars as separate, individuated memory traces
spread out like a cloud in the mind’s psychological space.
They endorse new items into the category if—on comparison
to these multiple, separated cognitive reference points—the
items are similar enough to belong. Exemplar theory makes
an elegant, obligatory prediction. If the animal stores individ-
uated exemplars spread out in psychological space, then even
a perfectly typical new item will not be maximally endorsed
into the learned category. The reason is that the item can never
be close to all the stored exemplars at once. It will always be
near to some exemplars in psychological space but far from
others (Smith, 2002; Smith & Minda, 2001, 2002).

Figure 7 (filled symbols) shows one macaque’s endorse-
ment gradient in a categorization task—that is, the proportion
of times the animal endorsed items into the category from
random items clearly outside the category to prototypical
items at the category’s center. His prototype endorsement level
was as high as possible. The exemplar model (Es) predicted
lower prototype endorsements and its predictions were con-
sistently off by 10% per item type, a strongly disconfirming
degree of error. The exemplar model is strong, clear and test-
able in this case, because it instantiated the organization of
psychological space in the animal’s mind as dictated by its
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Fig. 7 The proportion of times a macaque endorsed into a learned
category to-be-categorized test items that were outside the category
(rand.), non-typical category members (high-level distortions), typical
members (low-level distortions), highly typical members (v. low-level
distortions), or prototypical members (prot.). Also shown is the best-
fitting predicted profile (£) when a standard exemplar-based
categorization model fit the macaque’s performance as well as it could.
From “Prototype abstraction by monkeys (Macaca mulatta),” by J. D.
Smith, J. S. Redford, and S. M Haas, Journal of Experimental
Psychology: General, 137, 390-401. Copyright 2008 by the American
Psychological Association. Reprinted with permission

theory. This representational geometry enforced predictions
that macaques strikingly disconfirmed.

The animal-metacognition models lack this strength. They
define response regions of avoidance or uncertainty. But they
are only surface mathematical descriptions of data patterns
that could have any psychology underlying them.

There are doubtless many instances in biobehavioral re-
search of models that cut deeper because they instantiate an
inherent property of the animal mind that can be clearly tested.
So, to be clear, we are not dismissing formal modeling. But
researchers and modelers, and consumers of research and
models, must be vigilantly evaluative about the uses to which
models are put. Models that are only mathematical descrip-
tions of behavioral patterns—that could have any psychology
underlying them—must be given no ability to influence de-
bate or theory in biobehavioral fields.

The need for interpretative symmetry

In the animal-metacognition literature, when an apparently
metacognitive model fits macaques’ performance, this has
no persuasive scientific impact. When the apparently associa-
tive model fits, this has a shaping influence. This asymmetry
was expressed in Smith, Beran et al. (2008), Staddon et al.
(2007), Josefowiez et al. (2009a,b), and Le Pelley (2012).
Previous sections explained why a belief in associative
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responding based on modeling is unjustified. Now we explain
why it is troubling.

The logical positions in the two scenarios are symmetrical.
Each model fits. Each indicates a nominal kind of information
processing. Each is mathematically abstract and psychologi-
cally neutral. In reality, neither model has standing as a de-
scription of the animal’s information processing. By favoring
the associative interpretation, we are proceeding by pure bias
without scientific grounding. The reason why the associative
model and the associative interpretation carries weight is that
it brings our underlying associative bias to the fore. We accept
the associative account because we prefer and believe it. The
decision is not evidence based. The models’ fits tell us nothing
supporting this decision. As we have said (Smith, Beran, &
Couchman, 2012, p. 294), “The models do not specify con-
crete cognitive representations, processes of interest in mind,
or regions of interest in brain. They do not specify levels of
intentionality or awareness. They are psychologically empty
because they are mathematically neutral. They do not point
toward a high-level or low-level description of the data.”

In our view, the resolution to this issue is that interpretative
symmetry must hold. We must treat the metacognitive and
associative models equivalently. When someone asserts that
a metacognitive model confirms metacognition, or that an
associative model confirms associative processing, we must
reject both assertions equally sharply. Neither interpretative
step is justified, because one simply cannot send mathematics
to do psychology’s job. Not in our domain or in any other area
of biobehavioral research.

Inappropriate logic in modeling situations

In fact, both assertions from modeling exemplify poor scien-
tific inference and logic. The problem is that one can derive
multiple models to reproduce a data set. We confirmed this
possibility here. The animal might be responding to associa-
tive strengths, or metacognitive doubts, or reinforcement his-
tory, or risk aversion, or stimulus-specific exemplar memori-
zation, and produce the same graph in every case. So, there is
nothing intrinsically true about a model’s specific inner
boxology. This is a fiction—a creation of the modeler. One
cannot reify that boxology by inserting it into the animal’s
mind. For which of these five possible processing psycholo-
gies would one so insert?

If you do reify a model’s processes, you have committed
the basic logical error of affirming the consequent. That is,
you have asserted a conditional (If the animal’s performance
is associative, my associative model will fit), you have af-
firmed the consequent (my associative model fits), and you
have concluded that the antecedent premise is true (the ani-
mal’s performance is associative).

An intuitive example shows why this conclusion is a falla-
cy. I can assert the conditional: if it’s raining, I’ll have an
umbrella. You may affirm the consequent—I have an umbrel-
la. This does not confirm the rain. It might be really hot; I
might have had a skin cancer diagnosed; I might be on anti-
biotics; I might have had my eyes dilated. An affirmed con-
sequent never allows backward inference to a particular cause,
because many causes could have led to the umbrella or the
animal’s performance curve. Yet this improper form of logic
has been common in the animal-metacognition literature and
in other research areas, too, as associative modelers have
interpreted their models” fits.

It is extraordinary that we all know about the indefensibility
of affirming the consequent, yet we readily enable it when
associative modelers treat animal metacognition and other
phenomena. Our area, perhaps other areas, too, must raise its
game beyond the current logical/scientific standards of the use
of formal models.

Limiting our conclusion

The associative-metacognitive debate plays out on different
levels in our field. We must delimit what we are and are not
concluding.

First, there is the level of the formal models that describe
mathematically animals’ behavior. This is where our criticism
lies. The models—mathematically shallow, inferentially
weak—have no real tie to associative or metacognitive pro-
cessing assumptions. The models do not distinguishably re-
flect their underlying theories and they cannot further theoret-
ical discussion in this area.

Second, there is the level of associative and metacognitive
processing assumptions. We are not criticizing this level of the
debate, or the principled ideas of associative-learning theory.
Those ideas are elegant and challenging. We are not favoring
the constructs of animal metacognition. These ideas are new
and developing. Neither psychology is yet ruled out or in.
There are important issues of process and representation still
to be resolved. To be clear, we think this level of the debate is
scientifically strong and highly productive.

Third, there is a philosophy-of-science level to the debate
that can be summarized as follows. Perhaps the "bias" favor-
ing associative models has a basis. Associative models have
been successful, applied to many phenomena. The constructs
of associationism have naturally gained currency and popular-
ity. Isn’t it the way of science that popular and useful con-
structs are preferred? These constructs are also familiar and
comfortable to comparative researchers, another possible rea-
son to grant them descriptive privilege. Associative learning is
a simple processing idea producing a simple model, another
possible reason for preference. And some animal researchers
would apply Morgan’s Canon or Ockham’s Razor to animal-
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metacognition findings, again giving associative processing
descriptive privilege.

Our conclusions about modeling do not reach this philo-
sophical level. However, reviewers suggested we give our
view on these issues to benefit readers and the broader dialog.

First, the idea of uncertainty-based decisional criteria joins
associative-learning theory in having great historical depth,
empirical/theoretical success, and wide-spread familiarity to
researchers broadly, so these rationales for the associative-
learning preference fall away in our research literature.

Second, a preference based on simplicity falls away as
well. It is dispiriting that associative theorists go shopping
for alternative low-level interpretations as the principal ones
are disconfirmed. By turns, they have suggested stimulus
aversion/avoidance, reinforcement history, reward maximiza-
tion, latency, associative connections to dithering behavior,
and so forth. There is nothing simple about constantly
revisiting the associative-apps store, or trying to guess which
of many possible associative cues the animal might be
responding to in any specific case, or determining why and
how it could continually switch among them. In contrast, if
one grants animals a simple uncertainty-monitoring system,
one explains performance in many tasks. A generalized uncer-
tainty state will apply to tasks of perception, memory, forag-
ing, numerosity, timing, and so forth. This is easily as simple
an interpretation as the associative description provides.

Third, a preference based on parsimony falls away too.
Humans and animals produce nearly identical graphs in some
uncertainty tasks (e.g., Shields et al., 1997). It is
unparsimonious to interpret humans’ performance
metacognitively but animals’ performance associatively—it
multiplies mechanisms inelegantly. In no other case we know
of, be this younger/older children or younger/aged adults,
would this sharp divergence follow from the same data pat-
tern. Instead, one would naturally interpret similar perfor-
mances similarly. This is even truer because monkeys and
humans share evolutionary histories and homologous brain
structures. The parsimonious interpretation when monkeys
perform uncertainty tasks similarly to humans is that the psy-
chological processes are similar (De Waal, 1991; Smith,
Couchman et al., 2012; Sober, 2012). We think it is quite
plausible that evolution would have given multiple species
the adaptive capacity to manage uncertainty.

Thus, our view is that it is a poor choice to use any histor-
ical or simplicity consideration to tie-break models or to guide
psychological interpretation. This is especially true in a new
research area. Animal-metacognition research is about
(potentially) opening a new window on animals’ minds.
Why would you pre-judge what you will see through that
window? To let the popularity of associative models be the
tie-breaker is a worse choice. This would let faddism guide
modeling and interpretation in animal-metacognition re-
search, and we believe this is not the way of science. All of
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these choices would deny empirical research the space to itself
guide theoretical interpretation, when it—and not our model-
ing preference—should be determinative.

We would not ever base our psychological interpretation of
an animal’s behavior on abstract precedence or preference,
especially a behavior reflecting a new facet of animal cogni-
tion (metacognition). If one understands the processes and
representations the creature is using, then one does not need
to rely on precedence/preference. If one does not know, then
surely waiting to interpret is the proper course. Waiting, and
actively exploring the matter empirically. The only issue in
comparative science is which processing assumption is true,
never which assumption is venerable or popular.

The experimentalist’s toolkit

This article would represent a disheartening assessment if we
were doubting the broad potential of the animal-metacognition
field to make theoretical progress. Emphatically, we are not.
Only the application of the formal models has definitively failed
in this area. But the understanding of animals’ uncertainty-
monitoring performances does not depend on that application
(Smith et al., 2014a, b). By letting the models go, one can see
clearly that researchers have developed many experimental
tools and paradigms for furthering that understanding.

For example, Basile, Hampton and their colleagues ex-
plored the associative cues that might underlie macaques’ un-
certainty performances, starting with a theoretical article
(Hampton, 2009). Basile and Hampton (2014) also outlined
this cue-based scientific investigation. Basile et al. (2015)
evaluated several cues using a computerized task of ma-
caques’ memory monitoring. They found no evidence to sup-
port the hypotheses of behavioral cue association, rote re-
sponse learning, expectancy violation, response competition,
generalized search strategy, or postural mediation. Instead,
they consistently found evidence for the metacognitive hy-
pothesis. This research joins many other findings showing that
animals’ uncertainty monitoring transcends the associative di-
mensions of reinforcement, associable stimuli, and so forth
(Hampton, 2001; Kornell et al., 2007; Shields et al., 1997,
Smith et al., 1998; Washburn et al., 2010). The uncertainty-
monitoring performances of macaques and apes especially
have risen above what one could comfortably call associative
responding. These species have answered negatively the
associative-responding question in this domain. One sees that
comparative psychologists are quietly writing the psychology
of animal metacognition through empirical research, with no
necessary contribution from mathematical models.

Smith and his colleagues have taken a complementary ap-
proach by asking about the cognitive level at which animals
monitor and respond adaptively to uncertainty. For example,
Smith et al. (2013) added a secondary task requirement to the
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ongoing uncertainty-monitoring performance of macaques. The
secondary task acted as a concurrent cognitive load. Smith et al.
suggested that perceptual-classification responses (e.g., Sparse,
Dense) would be stimulus-based and associative in the tradi-
tional sense, making few demands on working memory or ex-
ecutive attention. Then they would be barely affected by the
load. Smith et al. suggested that uncertainty responses might be
dependent on working memory or executive attention. Then
they would be strongly affected by the load. In fact, in the
Sparse-Uncertain-Dense task already described, concurrent
tasks disrupted macaques’ uncertainty responses far more than
their Sparse or Dense responses. This result complements re-
search in which humans performed memory tasks while
reporting metacognitive states (Schwartz, 2008). Here, too,
memory loads strongly affected metacognitive judgments,
sharply decreasing tip-of-the-tongue experiences. Schwartz
concluded that working memory and metamemory use similar
processes, a conclusion supported by Smith et al. (2013).

Associative modelers have no way to explain the response
dissociation produced by a concurrent load. One cannot pur-
sue any interpretation that portrays the uncertainty response as
an associative reaction to stimuli just as the Sparse and Dense
responses are. Any such interpretation fails because the re-
sponses behave qualitatively differently when cognitive re-
sources are occupied. Associative models even lack any way
to distinguish different levels of executive and nonexecutive
cognition because they are nonspecific stimulus-response
models. To incorporate these results, one must grant that un-
certainty responses in animals reflect some different psycho-
logical organization.

To be fair, though, one need not claim that the results show
full-fledged metacognition as in humans, including conscious-
ness and self-awareness of doubt and uncertainty. Smith et al.’s
results do not grant anywhere near so generous a license.

But in this failure of reach, one sees one of the most salu-
tary aspects of empirical research in this area. That is, current
empirical work has grounded the distinctive theoretical pre-
mise that metacognition is not all-or-none. There can be a
constructive theoretical middle ground wherein one grants
organisms a basic uncertainty-monitoring capacity without
overinterpreting that capacity. In this middle ground may lie
the evolutionary roots of human metacognition and its
(nonverbal) ontogenetic roots in human children. Then one
sees that the behavioral animal paradigms expand the range
of metacognition paradigms available for testing young hu-
man children. These paradigms might also be used to explore
the metacognitive capacities of children with language-delay,
autism, or mental retardation. There might be more basic
forms of cognitive regulation (more implicit; less language-
based) that could be preserved or fostered in children who are
challenged in the highest-level introspective aspects of meta-
cognition. In all these ways, the middle ground of theory in-
tegrates comparative in an appropriate way into the

mainstream of cognitive science and human psychology. Of
course the middle ground demotes and sidelines the sharp
metacognitive-associative debate that has not really served
us that well. It takes away any need for us to force onto
animal-metacognition results the associative prejudgments of
last century’s philosophies of what is simple or parsimonious.
Finally, most relevant to the present article, it naturally lets us
rid ourselves of the apparently sharply contrastive, really
completely entangled, formal models of metacognitive
performances.

It is not our purpose to force through some resolution of the
associative debate about animal-metacognition. But it is nec-
essary to point out that the approaches just described have
distanced many of animals’ metacognitive performances from
available stimulus or associative cues in any traditional sense.

It is our purpose to say that the approaches just described
are strong theoretical-empirical approaches for exploring the
phenomena of animal metacognition. This positive statement
applies equally to researchers favoring associative or
metacognitive perspectives. These empirical approaches
trump the weak and unscientific practice of fitting an
“associative” model and claiming it fits. This approach may
be psychology’s dullest tool. Its use in some cases may spring
from the hope to prejudge important scientific issues, a poor
path forward for science. Its use in some cases may reflect the
wish to gloss over empirical findings that are uncomfortable
for one’s preferred theory, a worse path forward for science.
Therefore, this formal-modeling approach has the potential to
do substantial harm in slowing the progress of this area’s the-
oretical development, and it must be carefully reconsidered. A
similar reconsideration of formal models in other areas of
biobehavioral research may also be warranted.
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