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Abstract Perceptual and preferential decision making have
been studied largely in isolation. Perceptual decisions are
considered to be at a non–deliberative cognitive level and
have an outside criterion that defines the quality of deci-
sions. Preferential decisions are considered to be at a higher
cognitive level and the quality of decisions depend on the
decision maker’s subjective goals. Besides these crucial dif-
ferences, both types of decisions also have in common that
uncertain information about the choice situation has to be
processed before a decision can be made. The present work
aims to acknowledge the commonalities of both types of
decision making to lay bare the crucial differences. For
this aim we examine perceptual and preferential decisions
with a novel choice paradigm that uses the identical stim-
ulus material for both types of decisions. This paradigm
allows us to model the decisions and response times of both
types of decisions with the same sequential sampling model,
the drift diffusion model. The results illustrate that the dif-
ferent incentive structure in both types of tasks changes
people’s behavior so that they process information more
efficiently and respond more cautiously in the perceptual as
compared to the preferential task. These findings set out a
perspective for further integration of perceptual and prefer-
ential decision making in a single ramework.
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Introduction

People make many decisions every day. Perceptual deci-
sions, such as judging whether a traffic light is green
or red are at a low cognitive level as they are made
rather quickly without much deliberation. Preferential deci-
sions, such as buying a car or investing in stocks, are
at a higher cognitive level as they require more deliber-
ation and depend on the decision maker’s goals. Despite
these differences, the two types of decisions also have a
lot in common: in both situations, information about the
choice options needs to be considered and processed to
form a final decision. The present work aims at identifying
the crucial differences between the two types of decision
making.

Perceptual decision making

The first type of decision making, perceptual decision
making, has been the focus of psychological research for
decades. This research aims at understanding how peo-
ple process objective information to make a decision. For
this goal, many experimental tasks have been developed.
For example, in the popular moving dot motion task, par-
ticipants have to make the elementary perceptual decision
as to whether dots are moving to the left or right (e.g.,
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Britten, Shadlen, Newsome & Movshon, 1992). More com-
plicated tasks include lexical decision, in which participants
have to decide quickly whether a presented letter string
is an existing word or not (e.g., Keuleers, Diependaele &
Brysbaert, 2010) and the house–face discrimination task in
which participants have to judge whether presented pictures
represent either houses or faces (e.g., Summerfield, Egner,
Mangels & Hirsch, 2006). Arguably, the latter two tasks
require more than just perceptual information processing.
We use the term “perceptual” here to indicate tasks where
there is an objective criterion that defines the correctness
of the response. The performance of participants on per-
ceptual tasks, as expressed in response time and accuracy,
is assumed to reflect the ease of processing of stimulus
information: fast and accurate responding indicates effi-
cient information processing; slow and inaccurate respond-
ing indicates less efficient processing. This straightforward
interpretation of speed and accuracy is, however, often prob-
lematic due to the strong relation between accuracy and res-
ponse time (RT). This relation is known as the speed–
accuracy trade–off (Schouten & Bekker, 1967; Pachella,
1974; Wickelgren, 1977): speeding up leads to more errors
and more accurate behavior requires slower responding. A
very successful account of RT data is offered by the dif-
fusion model (Ratcliff, 1978; Ratcliff & Tuerlinckx, 2002),
which naturally models the speed–accuracy trade–off by the
adjustment of response thresholds.

The diffusion model for perceptual decision making

The diffusion model has been applied mostly to speeded
two–choice situations where there is one correct response
option (for an exception, see Milosavljevic, Malmaud, Huth,
Koch & Rangel, 2010). The range of tasks that have been
modeled with the diffusion model include lexical deci-
sion (Wagenmakers, Ratcliff, Gomez & McKoon, 2008;
Dutilh, Krypotos & Wagenmakers, 2011), letter discrimi-
nation (Thapar, Ratcliff & McKoon, 2003), brightness dis-
crimination (Ratcliff and Rouder, 1998, 2000), the random
dot motion task (van Ravenzwaaij, Dutilh & Wagenmakers,
2012), and the implicit association test (Van Ravenzwaaij,
Van der Maas & Wagenmakers, 2011).

The diffusion model assumes that when presented with
a stimulus, participants continuously sample information
from that stimulus. When the stimulus is of, say, type
“A”, the integrated evidence in favor of response A over
B will on average increase over time, until a pre-set
boundary is reached. At this point, the corresponding
response is initiated (Fig. 1). However, the integrated evi-
dence is assumed to be noisy. This assumption allows
the model to account for both variability in response
times and the occurrence of eventual errors (dark line
in Fig. 1).

stimulus encoding response executiondecision time

total RT

"B"

"A"

starting point

bo
un

da
ry

 s
ep

ar
at

io
n

Fig. 1 The diffusion model. The two example sample paths repre-
sent the accumulation of evidence from an a stimulus, resulting in
one correct response (light line) and one error response (dark line).
A response is initiated when one of the boundaries is reached. The
distributions of correct and error responses are represented by the his-
tograms below and above the boundary respectively. As is evident from
the histograms, the correct, (upper) a boundary is reached more often
than the incorrect, (lower) b boundary. The total RT consists of the
sum of a decision component, modeled by the diffusion process, and a
non–decision component that represents the time needed for peripheral
processes such as stimulus encoding and response execution

The diffusion process is governed by seven parameters.
The parameters of the model are 1) drift rate v, which
quantifies the rate of information processing. Low abso-
lute values of v produce relatively long RTs and high error
rates and are associated with difficult stimuli or low abil-
ity. 2) Boundary separation a defines how much evidence
is integrated before a response is initiated. Higher bound-
ary values yield relatively slow, but accurate responding.
Lower boundary values yield relatively fast, but error–prone
responding. The magnitude of the boundary separation thus
reflects response caution and thereby defines the speed–
accuracy trade-off. 3) Starting point z reflects eventual a
priory bias in favor of one of the response options. Often,
studies refer to relative bias B, which is defined as z/a.
A value of .5 for bias B reflects unbiased responding. 4)
Non–decision time Ter defines the shift of the response
time distributions. This parameter is assumed to capture
stimulus–nonspecific components of RT, such as response
preparation and motor execution. In addition, there are
three parameters that define the across–trial variability of
three of the parameters. 5) η: The drift rate on each tri-
als is assumed to be drawn from a normal distribution with
mean v and standard deviation η. 6) sz: Each trial’s starting
point is assumed to be drawn from a uniform distribution
around mean z with range sz. Parameters η and sz allow the
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diffusion model to account for the fact that errors are some-
times faster and sometimes quicker than correct responses.
7) st : The non-decision time on each trial is assumed to be
drawn from a uniform distribution around mean Ter with
range st . This variability in non–decision time allows the
model to account for relatively large variability in the lead-
ing edge (e.g., the 10 % quantile) of the response time
distribution.

The big strength of the diffusion model is that its param-
eters, when estimated to fit a data set, can be interpreted
as reflecting psychological components of the decision pro-
cess from which these data originate. Validation studies
have shown that specific experimental manipulations affect
the parameters according to the interpretation given in the
descriptions above. Studies by Voss, Rothermund & Voss
(2004), Ratcliff & Rouder (1998) and Wagenmakers et al.
(2008) have shown that instructions to respond less cau-
tiously lead to lower estimates of boundary separation a,
easier stimuli lead to higher estimates of drift rate v, unequal
reward rates and unequal proportions of stimulus types
influence the estimate of bias B, and a less convenient
response–button mapping lead to an increased non–decision
time Ter . Note that this unique mapping of parameters to
decision components have been challenged. For example,
Rae et al. (2014) show that increased pressure on speed
might not only reduce boundary separation, but also the
quality of information processing, as quantified by drift
rate v.

The diffusion model is a typical sequential sampling
model. The simple assumption of a sequential sampling
process allows the model to describe many phenomena in
empirical data. This assumption has also proven able to
account for data in the second type of decision making that
we study here: preferential decision making.

Preferential decision making

Preferential decision making is an important topic of study
in both psychology and economics. Studies on preferen-
tial decision making aim at understanding how people trade
off the different attributes of choice options to come to a
decision. For example, in research on consumer behavior,
participants are asked to choose between different prod-
ucts in order to identify the importance they give to the
different attributes (e.g., Pettibone & Wedell, 2000). To
study preferential decision making under risk, participants
are often confronted with choices between monetary gam-
bles (e.g., Holt & Laury, 2002). Monetary gambles are well
specified by a set of potential outcomes and the respec-
tive probabilities with which these occur. When choosing
between gambles, people trade–off the expected value of the
gambles’ potential outcomes and the gambles’ risk, which

is often characterized by the variance of the outcomes.
The way people trade–off risk and expected value reflects
their risk attitude; When choosing between two gambles
with equal expected value, a risk–averse decision maker
chooses the option with the lower variance, whereas a risk
loving decision maker prefers the option with the higher
variance.

In some risky choice situations, the probabilities with which
outcomes occur are not specified. These situations are
often labeled as decisions under uncertainty (Busemeyer,
1985). In such situations, decision makers’ preferences also
depend on their attitude towards ambiguity (Ellsberg, 1961).
People are considered ambiguity–averse when they prefer a
gamble about which the outcome distribution is known over
a gamble with an unknown outcome distribution.

To predict people’s decisions under risk, various mod-
els have been suggested. The standard economic modeling
approach assumes that people’s choices are consistent with
normative choice principles. If people obey these principles,
it is possible to construct a utility function, so that people
always choose the option with the maximum expected util-
ity (von Neumann & Morgenstern, 1945; Savage, 1954).
Such expected utility theories were shown to have prob-
lems predicting some key phenomena in risky decision
making. To offer a more flexible account for preferences
under uncertainty, revised utility models were proposed,
most importantly prospect theory (Kahneman & Tversky,
1979; Tversky & Kahneman, 1992).

Besides these descriptive approaches, researchers have
worked on approaches that describe the cognitive process
that leads to a decision (e.g., Weber & Johnson, 2009).
Among those process models, sequential sampling models
play a prominent role (for an overview, see Rieskamp et al.,
2006).

Sequential sampling model for preferential decision
making

Following the work of Ratcliff (1978) and Busemeyer &
Townsend (1993) developed a sequential sampling model
for preferential decisions under risk called decision field
theory (DFT). DFT assumes that a decision maker integrates
relative preference for choice alternatives until a decision
threshold is reached. In contrast to the diffusion model,
which is silent about the origin of the information that is
accumulated over time, DFT specifies how the properties of
choice options define the evidence that enters the preference
integration process. The process is assumed to be fed by
sequential samples from the different outcomes of the differ-
ent choice options. The sampled outcomes are integrated in
a momentary preference state. During the decision process,
the attention of the decision maker alternates stochasti-
cally between the different outcomes of all choice options.
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Therefore, the preference information fed to the diffusion
process differs over time; At one time point during a deci-
sion the decision maker focuses on potential losses of the
choice options whereas at another time point the poten-
tial gains are considered (Diederich & Busemeyer, 2003).
The probability that each outcome is attended to is propor-
tional to the probability with which the outcome occurs.
A similar sequential sampling model was proposed by
Usher & McClelland (2004), who suggested an accumulator
model of decision making: the leaky, competing accumula-
tor (LCA) model. The most important theoretical difference
with DFT is that LCA allows disadvantages of an alternative
to loom larger than advantages. Despite their differences,
both models predict that people’s choices are in nature prob-
abilistic. Furthermore, both models explain various choice
phenomena such as preference reversals and dependence
on irrelevant choice alternatives (e.g., Rieskamp et al.,
2006). Recent research in neuroscience indicates that the
assumption of sequential integration of value information is
neurologically plausible (e.g., Gold & Shadlen, 2007; Gluth
et al., 2012).

Differences between perceptual and preferential
decision making

The discussion above shows that both in the perceptual and pref-
erential decision making literature, sequential sampling models
have been proven successful in accounting for important empir-
ical phenomena. The shared basic assumption of sequen-
tial information integration supports the intuition that
perceptual and preferential decision making beha-
vior have a lot in common. Beside these similarities however,
there are also important differences between both domains.

Criterion for the quality of a response

The foremost difference between perceptual and preferen-
tial decisions lies in how the quality of a decision is defined.
In perceptual decision situations, the accuracy of a choice
can be determined by an outside criterion. For example, in
a random dot motion task, the direction of the movement of
the dots is objectively left or right. Although there might be
some noise in the information perceived from the stimulus,
there is only one correct response to each stimulus. In con-
trast, in a preferential choice situation, no external criterion
exists that defines which response is correct. For example, in
a gamble choice task, some participants prefer to play safe
and go for a sure gain of $10, whereas others like to gam-
ble with a 10 % probability to win $100. Thus, the criterion
is defined by the decision maker’s subjective goals and only
in the light of these goals can the accuracy of decisions be
evaluated.

Outcome of decisions

A second property that often differs between perceptual
and preferential decision making is the level of certainty
of the outcomes. In most perceptual choice situations that
have been studied in the literature, the outcome of a
decision is determined by the choice: a correct response
yields a reward and an incorrect response yields a penalty
(for an exception, see Ratcliff & Rouder, 1998). In con-
trast, in preferential choice situations under risk, the out-
come of a decision depends on chance: the outcome of
playing a gamble that leads to a gain of $100 with a prob-
ability of $90 % (zero otherwise) might turn out better or
worse than a sure $10. Thus, in these risky preferential
choice situations, the choice alternatives differ by the cer-
tainty with which the outcomes occur, i.e., the amount of
risk involved.

Aims of this study

Despite these differences, the success of the same type
of models to describe people’s behavior in two different
domains, suggests an elemental similarity between percep-
tual and preferential decisions. In line with this observation,
Gold & Shadlen (2007) suggest that the same underlying
mechanisms govern decisions in the two different domains
of decision making. Following this suggestion we aim to
describe both types of decision making with one single
model, namely the diffusion model. By doing so, we will
be able to identify the crucial differences between percep-
tual and preferential decision making. To be able to apply
the diffusion model to both types of decision making, we
develop a paradigm that allows us to elicit both percep-
tual and preferential decision making by using identical task
material.

In the following, we will first introduce this “marbles
task” and explore various hypotheses about the behavior on
the task. Subsequently, we present a study in which partici-
pants perform on the perceptual and preferential version of
this task. We show the results in terms of RT and accuracy,
but also apply the diffusion model to participants’ data in
both instances of the task. This analysis allows us to lay
bare the components of the decision process that underlie
the differences between perceptual and preferential decision
making.

A unifying paradigm for perceptual
and preferential decision making

The choice paradigm we develop here aims at eliciting both
types of decisions by manipulating only those features of
a task that are specific for either perceptual or preferential
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decision making. These features are 1) the objective vs.
subjective outside criterion and 2) the deterministic vs.
probabilistic nature of the outcome. Besides these crucial
differences the paradigm should be identical with respect to
all other choice and context characteristics.

Principles of the paradigm

Our paradigm uses the same stimulus to present either a
perceptual or a preferential choice: a matrix of 100 black
and white dots (Fig. 2a–c). When presented in the percep-
tual version of the task, participants have to decide whether
the matrix contains more black or more white dots. This
task is very similar to, e.g., the brightness discrimination
task used by Ratcliff & Rouder (1998). When presented in
the preferential version of the task, participants are told that
the matrix represents an urn with a total of 100 black and
white marbles — each of which has an associated monetary
payoff. If the participant chooses to play this urn, a mar-
ble will be drawn and the associated payoff is paid out to
the participant. Urn paradigms like this have a long tradition
in research on decision making under risk (e.g., Phillips &
Edwards, 1966). In our marbles task, participants are asked
whether they want to draw from the urn that is represented
by the stimulus matrix (target gamble), or prefer playing the
reference gamble, which is an urn consisting of 50 black and
50 white marbles (Fig. 2d). When the reference gamble has
the same positive and negative payoffs as the presented tar-
get gamble, the only difference between the target and the
standard gamble is the probability to win and the ambiguity
about this probability. However, the payoffs associated with
the marbles in the target gamble can be increased, which
increases the involved risk. In sum, this marbles task allows
us to elicit both perceptual and preferential choice behavior
and to manipulate the ambiguity and risk of the presented
choice options.

Predictions

The marbles task allows us to collect both perceptual and
preferential choice data to which we can fit the diffusion
model. Therefore, we can now explore predictions about
how the domain of decision making (perceptual vs. pref-
erential) and the risk of the decisions in the preferential
version influence the components of decision making that
are postulated by the diffusion model.

Perceptual vs. preferential information

In the perceptual task, a correct response yields a sure
gain and an error yields a sure loss. Thus, the expected
reward difference in reward between two response options
is the difference between the maximal gain and loss. In the

preferential case, a choice for the gamble with the higher
expected value not always yields a gain; a choice for the
gamble with the lower expected value not always yields
a loss. Thus, the expected reward difference between the
two preferential choice options is smaller than between
the perceptual choice options, making for higher monetary
incentives in the perceptual task. The question is which
decision component will be affected by this difference. The
higher monetary incentives might on the one hand increase
response caution as reflected in boundary separation. On the
other hand, they might increase participants attention and
therefore cause higher drift rates in the perceptual task.

Risk level

Changing the possible wins and losses of the target gamble
in the preferential task allows us to manipulate the risk level
of this target gamble. Risk averse participants will dislike
the “target” option more and more when its risk is increased
relative to the “reference” option’s risk level. In terms of
the diffusion model, participant’s response to increasing
risk could be reflected in a bias parameter that shifts more
and more towards the “reference gamble” boundary when
risk is increased. However, it might as well be the case
that the risk level biases the decision process at the input
side, i.e., influence the drift rate. This idea is in line with
Zeigenfuse, Pleskac & Liu (2014), who found that risk–
averse participants show a lower drift rate for the risky
choice option than for the safe choice option. From that,
they conclude that risk averse participants weigh infor-
mation in favor of riskier options as less valuable than
information in favor of the safer option.

Ambiguity

In the experiment, we do not manipulate ambiguity. How-
ever, in the preferential task, one crucial factor that discrimi-
nates the reference gamble from the target gamble is that for
the reference gamble, the probabilities of the outcomes are
known (no ambiguity) whereas for the target gamble these
probabilities are unknown (ambiguous). This means that, if
participants are ambiguity averse, they should have a bias
towards the reference gamble when the risk of the reference
and the target gamble are equal. This bias might be reflected
in the starting point or in the drift rate.

Method

Participants

43 participants (35 female) with mean age of 22.9 (SD =
5.2) participated in this study. Participation was rewarded
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(a) (b) (c) (d)

Fig. 2 a, b, c Stimuli of increasing ratio of white vs. black mar-
bles (40–60, 45–55. 50–50). In the perceptual task, stimuli (a) and (b)
require participants to press the button associated with black. In the
preferential task, white marbles have a positive value and black mar-
bles have a negative value. Here, a participant who wants to achieve

the highest expected value should choose the target gamble over the
reference gamble (containing 50 % white and 50 % black marbles)
whenever the target gamble contains more than 50 % white marbles (a
and b). d The 50–50 reference stimulus shown to participants before
each block in the preferential task

with either course credit or a monetary show up fee. On top
of this base reward, participants got CHF 5 playing money
(5 Swiss franc corresponds to roughly $5). Depending on
performance, they could earn up to CHF 5 extra or lose CHF
5. The complete data set is available at the first author’s
website and at dataverse.org: doi:10.7910/DVN/AOQUAD.

Stimuli

The stimuli in the preferential and perceptual version of
the task were equal. Each stimulus was a square (sides of
86 mm) containing 10 × 10 = 100 dots (diameter of 5
mm) in black and white on a grey background. Towards the
participants, these dots were referred to as marbles. Five
different ratios of black and white marbles were presented
to the participants (black – white ratios: 40–60, 45–55, 50–
50, 55–45, and 60–40). The grid of black and white dots
was shuffled for each stimulus (see example stimuli in
Fig. 2a–c)

Procedure

The perceptual and preferential versions of the task were
administered within participants and the order of the two
conditions was counterbalanced.

Preferential task

In the preferential task, the five different proportions of
white (win) and black (lose) marbles represented the prob-
ability of winning the current payoff. Participants chose at
each trial whether they wanted to play the target gamble rep-
resented by the marble matrix (and press left) or the 50/50
reference gamble (and press right). This reference gamble
(Fig. 2d) was shown to them on an instruction screen that
preceded each block, but not during the trials. They were
instructed that once they had chosen one of the two gam-
bles, one marble were sampled from it. If this marble were
white, this yielded a win of the size of the chosen gamble’s

payoff. If this marble were black, this yielded a loss of the
size of the gamble’s payoff.

Trials were presented in 12 blocks of 50 trials, each block
containing 10 trials of each black/white ratio. The payoff
associated with the white and black marbles of the refer-
ence gamble were always plus and minus CHF .50. The
payoffs of the target gamble were plus and minus CHF .50
on the first four blocks, 1.50 on the second four blocks, and
2.50 on the last four blocks. The current payoff attached to
black and white marbles of the target gamble was shown
on the block instruction screen. The payoffs were visualized
as one, three or five yellow coins for the white (winning)
marbles and one, three or five red coins for the black (loss)
marbles. The number of coins thus represented the risk level
of the currently presented target gamble relative to the ref-
erence gamble. We chose to have a fixed order of risk levels
for all participants, so that they first got familiarized with
the simplest case, where the payoffs of the target and refer-
ence gamble were equal. Below, we refer to the three risk
levels as risk level 1, 3, and 5, referring to 1, 3, and 5 times
the basic amount of CHF .50.

There was no direct feedback, but at the end of each
50 trial block, one of the choices was selected at random.
This gamble was then played and the resulting reward was
presented to the participant.

Perceptual task

In the perceptual task, participants judged at each trial
whether the stimulus contained more black marbles (and
press right) or white marbles (and press left). They were
instructed to respond as quickly and accurately as possible.
The five ratios of black and white marbles yielded three
difficulty levels (“easy”, “hard” and “impossible”, com-
pare Fig. 2a–c). Trials were administered in 4 blocks with
each block containing 10 trials of each difficulty level, thus
resulting in 200 trials.

Again, no direct feedback was supplied to the participant,
but correct responses were silently rewarded a “gain” ticket

http://dx.doi.org/10.7910/DVN/AOQUAD
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Fig. 3 Mean over participants’ median response times and choice
proportions for the three main conditions of the experiment (percep-
tual task and preferential task with three different risk levels). In the

perceptual version of the task, participants respond a bit slower than in
the preferential version. The choice proportions are more extreme in
the perceptual version of the task

and incorrect responses “loss” ticket. After each block, one
of the collected gain and loss tickets was sampled and pre-
sented as reward to the participant. The payoff for correct
and error responses were CHF .50 and -CHF .50 respec-
tively, matching the potential outcomes in the risk level 1 of
the preferential version of the task.

Results

Below, we first show the descriptive results on RT and
choice followed by the results of the diffusion model
analyses.

Descriptive results

Figure 3 shows mean choice probabilities and means
over participants’ median response times for each cell in
the design. Error bars represent standard errors of over–
participant means. The leftmost panels of the figure show
data of the perceptual version of the task, the other three
panels show the preferential task in which the risk level of
the target gamble was 1, 3, and 5 respectively. In the upper

figures, white lines present RT for trials where participants
pressed the button associated with “more white” or “choose
target gamble”. Black lines represent mean RT for trials
where participants pressed the button associated with “more
black” or “choose reference gamble”. Solid points indicate
majority responses (correct in the perceptual or expected
value maximizing in the preferential task). Crosses indicate
minority responses (incorrect/expected value minimizing).

Response times

To analyze which factors influence RT, we performed a
comparison of ANOVA models1 in which participants’
median RTs where regressed on all different combina-
tions of the following factors: (1) condition; perceptual vs.
preferential task (2) condition + risk; the factor condition
including the three risk levels and (3) stimulus type; the pro-
portion of white marbles in the stimulus, with participants
as a random factor. The best performing model was a model
including condition and stimulus and their interaction. This

1The ANOVA models were calculated using the BayesFactor package
for R (Morey, Rouder & Jamil, 2014).
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model outperformed models in which the interaction was
excluded (BF = 3.10) or in which the condition + risk
factor was included (BF = 1.569 × 103), or in which the
main effects condition and stimulus were excluded (BF =
9.430 × 1027). This model comparison supports the inter-
pretation that participants are slower in the perceptual than
in the preferential task and respond slower to more ambigu-
ous stimuli. The latter effect is more pronounced within the
perceptual condition.

Choice proportions

To analyze which factors influence the choice proportions,
we fitted a simple psychometric function (logit) on the
choice proportions as a function of the stimuli. We applied
a Bayesian Hierarchical method to model the condition
effects (the differences between the four panels of the Fig. 3)
on the slope (sensitivity) and shift (bias) parameters at the
overarching group level. Below, we base our conclusions on
the posterior distributions of these overarching parameters.

The figure shows a more pronounced S-shape for the
choices in the perceptual than in the preferential task. This
finding is supported by 99.9 % of the posterior distribution
for the effect slopeperc. − slopepref.risk1 lying above zero.
This shows that participants respond more deterministically
in the perceptual than in the preferential task. Furthermore,
the figure suggests that in the preferential task, participants
choose the reference stimulus more often for all stimuli.
This is supported by 97.4 % of the posterior distribution
for the effect shif tperc. − shif tpref.risk1 lying above zero.
This shift of bias increases when the risk level is increased
to 3, supported by 99.9 % of the posterior for the effect
shif tpref.risk3 − shif tpref.risk1 lying above zero. No other
contrast on slope or shift showed evidence for effects on any
of the two parameters.

We want to note here that practice effects might be a
confounding factor in our design, in particular since the
order of the different risk levels was not counterbalanced.
Practice effects could cause more deterministic responding
(higher slopes) later in the session and therefore mask even-
tual effects of risk level. The current design in which the
order of the different risk levels was not counterbalanced
does not allow to rule out this possibility.

Diffusion model results

For a better understanding of the descriptive results, we
now turn to the diffusion model analysis. We fitted the
diffusion model using the DMAT package for MATLAB
(Vandekerckhove & Tuerlinckx, 2007). We applied the chi–
square method (Ratcliff & Tuerlinckx, 2002) using the
default fixed bin edges implemented in DMAT. This meth-
ods optimizes the match between observed and predicted

frequencies in each of the RT bins for correct and error
responses.

Model comparison

To identify the components of the diffusion model that dis-
criminate perceptual from preferential decision making, and
to describe how participants’ behavior is influenced by dif-
ferent levels of risk, we performed an extensive comparison
of diffusion models. In each of these models, we allowed
different subsets of parameters to account for the effects
of the experimental factors. These models do not represent
all possible constellations of parameter restrictions across
conditions (this would yield an unfeasible long list of mod-
els). Instead, we fit a list of 20 variants that were plausible,
in the sense that non–decision time (Ter ) and parameters
that are assumed to be pre–set before the decision process
(a, z, and sz) do not depend on stimulus type. We fitted
the full model (model 16 in Table 1) where all plausible
effects on parameters were allowed and 19 other models
where we constrained parameters across conditions where
they did not show consistent effects in the full model. The
models that we fitted differ with respect to the parameters
that are allowed to vary across the levels of the following
factors:

• Condition: Perceptual vs. preferential decisions.
• Risk: The three risk levels for the preferential decisions.
• Stimulus: Proportion of white vs. black marbles in the

stimulus matrix.

Note that factor risk level is nested within the second
level of factor condition. Table 1 shows which parameters
were free to vary with each of the factors listed above.
In Table 1, the contrast p means that the parameter was
allowed to vary between the perceptual and preferential
task, r means that the parameter was free to vary across
the risk levels, s means that the parameter was free to
vary across stimulus types (proportion of white/black mar-
bles), and s:sym represents a constrain on drift rates to be
symmetrical across stimuli. This constrains drift rates for
stimuli that are related to a “left” response to have the same
absolute magnitude as drift rates for stimuli related to a
“right” response. Under this constraint, there are 3 mag-
nitudes allowed: one for the 40/60 and 60/40 stimuli and
one for the 45/55 and 55/45 stimuli and one for the 50/50
stimuli.

To compare the models, we calculated each model’s
Bayesian Information Criterion (BIC), which takes into
account both model fit and complexity. We determined,
for each participant, a ranking of all 20 models based on
the BIC. The three rightmost columns of Table 1 show for
each model: the number of participants for which the model
was preferred over other models, the average BIC ranking
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Table 1 Model Comparison

Model a B v Ter n BIC Best av. BIC rank av. model weight

1 (Winner) p p, r p, s - 26 2.16 0.62

2 p p p, r, s p, r 3 6.47 0.06

3 p p p, r, s - 0 10.49 0

4 p p p, s - 2 5.95 0.05

5 p p, r p, r, s p, r 0 17.09 0

6 p p, r p, r, s - 0 16.44 0

7 p p, r p, r, s - 0 14 0

8 p p, r p, s - 0 8.6 0

9 p p, r p, s:sym - 3 8.74 0.04

10 p p, r s - 3 9.51 0.07

11 p, r p p - 1 7.73 0.01

12 p, r p p, r, s p, r 0 14.93 0

13 p, r p p, r, s - 0 11.74 0.01

14 p, r p p, s - 0 7.92 0

15 p, r p, r p, r, s p, r 0 18.63 0

16 p, r p, r p, s - 0 10.34 0

17 p, r p, r p, s - 0 10.67 0.01

18 p, r p, r p, s - 0 10.31 0

19 p, r p, r p, s:sym - 5 8.09 0.1

20 p, r p, r s - 0 10.16 0.01

Note. Comparison of models with different parameter constellations. Each column shows the effects of the different models allowed on parameters
a = boundary separation, B = response Bias, v = drift rate, and Ter = non–decision time. Effects: p: perceptual-preferential, r: risk level, s: stimulus
type, s:sym: symmetric effect of stimuli. Rightmost columns show the number of participants for which the model was preferred over other
models, the average BIC ranking across participants, and the average model weight over participants

across participants, and the average Bayesian model weight
over participants. These model weights can be interpreted
as posterior probabilities for all models (given equal prior
probabilities, Raftery, 1999).

The model that performed best in describing the behavior
in all conditions is model 1 (Winner model) of Table 1. This
model outperformed the other models that we fitted for 26
out of 43 participants and ended within the first three ranked
models for 35 out of 43 participants. For the eight partici-
pants for which the winner model had a lower rank, the best
fitting models were model 4 (2 pp), model 9 (3 pp), model
10 (1 pp) and model 20 (2 pp). These results show that the
consistency of the model comparison across participants is
rather strong. Therefore, we discuss the effects of the rele-
vant factors on the diffusion model parameters as captured
by the Winner model.

Model fit

Figure 4 shows the predictions of the Winner model plot-
ted against the observed data. The upper panels show the
fit of the RT quantiles (.1, .3, .5, .7, and .9) for majority
responses (correct/EV–maximizing). The grey areas repre-
sent the observed RT quantiles (medians over participants),

where the width of the area represents +/- one standard error.
In the background, the white area and black lines represent
the median of observed and predicted minority responses
(errors/EV-minimizing). Similarly, in the lower panels, the
grey areas represent the median response proportions +/-
one standard error. The white lines show the median model
predictions, with error bars representing +/- one standard
error. Overall, we observe a rather good fit of both the
choice proportions and the 5 RT quantiles. However, the .9
quantile of RT is rather strongly overestimated by the model
for the 50 % stimuli, in particular in the perceptual task. We
inspected the fit of more flexible models and found similar
misfits. A very plausible explanation for this misfit is the
fact that in the perceptual task, the 50 % stimuli contain no
information about the correct answer, because there is no
correct answer. This yields guessing choice accuracy, which
is captured by the diffusion model by a zero drift rate. A
zero drift rate results in very slow predicted RTs. However,
participants might feel the urgency to respond and might
therefore decide to guess when they realize that there is no
evidence in the stimulus. This leads to responses that are
faster than predicted. Currently, several models are devel-
oped that include an urgency mechanism to account for this
phenomenon (Cisek, Puskas & El-Murr, 2009; Gluth et al.,
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Fig. 4 Observed and predicted .1, .3, .5, .7, .9 RT quantiles and
choice proportions. Majority (correct, EV–optimizing) responses: The
white lines show model predictions with error bars containing ± one
SE, grey areas show observed data ± one SE. Minority (error, EV-
minimizing) responses: The black line shows model predictions with

error bars containing ± one SE, white areas show observed data ±
one SE. Note that for these minority responses, only the .5 quantile is
shown. Because for 50/50 stimuli there is no majority response, both
responses are displayed

2012). The application of such models is beyond the scope
of this paper.

Diffusion model inference: perceptual versus preferential
choices

In the Winner model, the difference between perceptual and
preferential decision making was accounted for by leaving
drift rate, boundary separation and response bias free to vary
between the two conditions. The leftmost panels of Fig. 5
show that the boundary separation parameter was for most
participants estimated to be lower in the preferential than
the perceptual condition. This effect on boundary separa-
tion shows that most participants responded more cautiously
making perceptual than making preferential decisions. Note,
however, that the distribution of this effect, as plotted in the

lower left panel, has a peak close to zero, but a large tail to
the left. This suggests that most participants made percep-
tual decisions slightly more cautiously, whereas a minority
showed more dramatic effects.

The middle two panels of Fig. 5 show that participants
had on average no response bias in the perceptual task. How-
ever, in the preferential version of the task, participants had
on average a slight a priori preference for the presented,
ambiguous gamble. This shift in bias could be interpreted
as an indication of an a priori ambiguity–loving attitude. An
alternative explanation, however, is offered in the discussion
section.

Finally, the average drift rate appeared lower in the pref-
erential than in the perceptual task, most strongly expressed
when the evidence in favor of the ambiguous gamble was
at its strongest, i.e., at the 60/40 stimulus. This effect
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suggests that participants processed the stimulus informa-
tion in a more deterministic way when forming a perceptual
judgement than when making a preferential judgement.

This combination of parameter effects accounts for the
differences on choice proportion and RT between the per-
ceptual task and the preferential task. Note that, although
participants accumulated evidence at a higher rate in the
perceptual task (as expressed in the drift rate), participants
did not respond quicker in this task. The fact that partici-
pants respond slower in the perceptual version of the task
is entirely due to an increased boundary separation, that is,
they responded more cautiously.

Diffusion model inference: effects of risk level

The Winner model further shows an effect of the different
risk levels on behavior: increasing the risk level shifts partic-
ipants’ response bias. The middle panels of Fig. 5 show that,
relative to the equal risk condition, the average response bias
shifts toward the 50/50–reference gamble when risk level is
increased. Note however that the distributional plots in the
lower panel of Fig. 5 shows a sizable spread for both effects
(Risk 1 vs. Risk 3, and Risk 3 vs. Risk 5) that entails zero.
These observations suggest that most but not all participants

responded in a way consistent with risk aversion rather than
risk seeking in this task.

Diffusion model inference: effects of the proportion
of white and black marbles

The Winner model captures the effect of different propor-
tions of white and black marbles by the drift rate. The upper
right panel of Fig. 5 shows an asymmetric effect of the
proportion of white and black marbles. Indeed, the model
allowing for such an asymmetric effect outperformed mod-
els that restricted the stimulus effect to be symmetric. This
result shows that stimulus information disadvantageous for
the target gamble on average leads to a stronger drift rate
than stimulus information favoring the target gamble. This
effect implies that participants value negative information
about a gamble more heavily than positive information.

So, the difference between perceptual and preferential
choice was captured by the boundary separation param-
eter of the diffusion model, suggesting that participants
responded more cautiously in the perceptual task. In addi-
tion, in the preferential task, negative information about a
gamble led to stronger drift rates than positive informa-
tion, suggesting that participants value negative information
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more strongly than positive information. Further, increasing
the risk level of the target gamble made participants shift
their response bias toward the reference gamble, indicating
risk aversion.

Discussion

In this paper, we described perceptual and preferential deci-
sions with the same sequential sampling model. By doing
so we could identify the crucial differences between the two
types of decision making. First, we discussed the similarities
and differences between perceptual and preferential deci-
sions on theoretical grounds. Second, we developed a new
choice paradigm which uses the same stimulus material for
perceptual and preferential decisions. The experiment using
this marbles task showed that in the perceptual task, peo-
ple process information more deterministically and behaved
more cautiously than in the preferential task. Finally, we
found that participants’ risk aversion was reflected in a shift
of response bias.

Our findings in theoretical perspective

First, our results show that, although the exact same stimuli
were used in the two versions of the task, slower evidence
accumulation took place in the preferential as compared to
the perceptual task. This finding might reflect the fact that
in the perceptual task, where the outcomes are deterministic,
the relative choice preference resulting from samples from
the stimulus is stronger than in the preferential case, where
outcomes are variable in nature. In particular, we found that
positive information in the target gamble (more than 50 %
white) led to lower rates of information accumulation than
negative information. This effect seems to be in line with
the way in which loss aversion is built into the leaky com-
peting accumulator model by Usher & McClelland (2004).
This model describes loss aversion as inherent in the valua-
tion process, as opposed to a prior bias against options with
potential losses.

Second, our results show that participants responded with
more caution in the perceptual than in the risky preferential
task. At first sight, this seems an unexpected finding, since
the intuition is that a decision maker needs time to elab-
orate about the potential risks and benefits of preferential
choice options over and above the time needed for percep-
tual processing. However, there is a clear explanation for
this finding. In the perceptual version of our task, a cor-
rect answer always yields a gain of one unit of money; an
error yields a loss of one unit. So, the difference in expected
payoff for choosing one or the other option is two units of
money. In the preferential version of the task, the biggest
difference in expected payoff happens in the case of a 60/40

target gamble. The average payoff when choosing this target
gamble is .6×1+.4×−1 is .2 units of money (minus .2 for a
40/60 gamble). The other option, the reference gamble, has
an average payoff of zero. Thus, the difference in expected
payoff for choosing the target or reference gamble is only .2
units here, that is 10 times as little as in the perceptual case.
Given this difference in incentive, it is plausible that partic-
ipants respond more carefully in the perceptual version of
the task. In other words, when people are forced to choose
between decision options that contain some inevitable risk
they make their decisions less carefully. An interesting ques-
tion for future research is whether participants would also
respond less carefully in a perceptual task when the payoff
is defined probabilistically. In sum, these results seem con-
sistent with past research showing that increased monetary
incentives motivate people to make decision more carefully
in the preferential choice situations (Smith & Walker, 1993)
as well as in cases where an objective criterion for choice
accuracy is present (Touron, Swaim & Hertzog, 2007).

There is, however, an alternative explanation for lower
response caution in the preferential task. When participants
aim at responding at a similar pace during both tasks and
their rate of information processing is lower in the prefer-
ential task (as we find), similar pace can be accomplished
by setting less conservative response boundaries (Bogacz,
Brown, Moehlis, Holmes & Cohen, 2006).

Third, participants behaved on average risk–averse:
When the risk of the target gamble was increased relative to
the reference gamble, participants shifted their a priori bias
in the direction of the reference gamble.

Fourth, participants were on average ambiguity–seeking;
When deciding between two gambles with equal outcomes
(risk level 1) participants had on average a bias towards the
unknown reference gamble. Possibly, the low amounts one
could win or lose in this task made participants particularly
willing to go for the unknown. Note that another interpreta-
tion of this effect is that participants prefer the target gamble
because they see it on each trial and do not need to be
remember it like they have to remember the 50/50 refer-
ence gamble. Interestingly, the effect was not detected in the
analyses of choice proportions. This illustrates the ability of
the diffusion model to detect effects that are not manifest in
the raw data (White, Ratcliff, Vasey & McKoon, 2010). It
should be noted here that we did not counterbalance the but-
ton mapping, so that this effect could also result from an a
priori tendency to press right over left.

The model that performed best did not include an effect
on the non–decision time parameter. We inspected the
parameter estimates of the full model (model 16) and found
no consistent difference in non–decision time between the
perceptual and preferential task. This is interesting, since
non–decision time is assumed to capture the encoding of
information. In the preferential task, participants need to
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encode additional information, i.e., the payoffs. The fact
that we do not find an effect on non–decision time suggests
that participants encoded this payoff information when it
was presented at the start of the trial blocks and not during
each individual trial.

Limitations of this study

We find that people respond slightly quicker in the pref-
erential as compared to the perceptual task. This finding
might appear counter–intuitive: in real life, people presum-
ably spend more time on making preferential decisions (e.g.,
choosing a vacation destination) than on perceptual deci-
sions (e.g., judging the color of a traffic light). However,
many less important preferential decisions such as choos-
ing an ice cream do not require much time either. Thus,
the time spent on deliberation depends on the type of pref-
erential decision. When the goals are complex (e.g., when
choosing between vacation destinations) people spend more
time than when the goals are clear (e.g., when choosing
between gambles). The preferential version of our marbles
task is situated at the latter extreme. In this task, we made
the preferential decision situation so simple, that we mini-
mized the difference between the two types of decision
making. The question remains how well our results gener-
alize towards more complex preferential decision making
situations.

Future work should build upon the current findings to
study preferential decisions that go beyond the simple risky
gamble choices that we studied here. One such attempt is
made in the work by Polanı́a, Krajbich, Grueschow & Ruff
(2014). In their study, participants were presented with two
pictures of food items. In the preferential choice condition,
participants choose which item they preferred. In the per-
ceptual choice condition, participants were to judge which
of two items covered more of the background of the display.
This procedure offers a preferential choice situation that
goes beyond a simple risky choice situation requiring partic-
ipants to trade–off the different attributes of the food items
(i.e., tastiness vs. healthiness). It lacks however the quality
of the marbles task that the exact same stimulus property
(the relative proportion of black and white marbles) is used
to make either a preferential or a perceptual decision.

Current perspectives on perceptual and preferential
decision making

We are certainly not the first to shed light on the com-
monalities of perceptual and preferential decision making.
The study we report here should be seen in perspective of
rather diverse endeavors that have recently been made on
this topic. For example, the existence of shared underly-
ing physiological principles for both types of decisions has

been studied theoretically and empirically by Summerfield
& Tsetsos (2012) and Polanı́a et al. (2014). More directly,
our results relate to studies by Busemeyer (1985), Tsetsos,
Chater & Usher (2012) and Zeigenfuse et al. (2014). In con-
trast to our method, in which participants have to infer from
the stimuli the probability of each of two possible outcomes,
these studies presented participants with samples of a con-
tinuous distribution.2 In particular, Zeigenfuse et al. (2014)
compared perceptual and preferential choices in a similar
way as we do here. However, they presented an outcome
distribution as a flashing aperture in which the number of
dots in each flash represented a sample from that distribu-
tion. Participants had to choose between a draw from this
distribution or a sure number. Choice behavior on this task
was compared to behavior of participants when they were
asked to decide whether the average of the flashing dis-
tribution was higher or lower than a presented number. In
line with our results, Zeigenfuse et al. (2014) found that
behavior is more directly determined by the stimulus in the
perceptual version of the task. However, in their diffusion
model analyses, this was accounted for by just a higher
rate of information accumulation for perceptual choices. In
contrast, we find not only an increased rate of information
accumulation but also an increased boundary separation.
More crucially, Zeigenfuse et al. (2014, page 185) conclude
that participants “appear to weigh experienced events in
an optimistic manner”, whereas in our study, it seems that
participants value negative information more strongly than
positive information. Future research should address the
question as to what factors yield pessimistic or optimistic
information integration.

Towards an integrated account of perceptual
and preferential choice

Sequential sampling models were originally introduced
to describe the processes underlying perceptual decision
making (Link and Heath, 1975; Ratcliff, 1978). More
recently, sequential sampling models have received increas-
ing attention in the preferential decision making literature
(Busemeyer & Townsend, 1993; Roe, Busemeyer &
Townsend, 2001; Gluth et al., 2012; Usher & McClelland,
2001). These models for perceptual and preferential deci-
sion making share the assumption of sequential sampling.
In both the perceptual and preferential domain, this sim-
ple principle accounts for important empirical phenomena
described in the literature. The question rises to what degree
the two types of decision making actually rely on the same
processes. As Gold & Shadlen (2007) argue, the noise of

2In fact, the distributions of outcomes in these studies were approxi-
mately continuous.
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information accumulation that is central to perceptual deci-
sion making might very well yield the probabilistic nature
of preferential choice. At the same time they argue that
the judgment of value that is central to preferential deci-
sion making plays a role as well in perceptual choice, for
example when a decision maker values speed vs. accuracy
incentives.

We view the study that we present here as a step up to
further integrate our knowledge about perceptual and prefer-
ential choice. The fact that both domains of decision making
have been modeled with very similar models, suggests the
possibility to describe both types of behavior within one
model. Our conclusions set out criteria that an integrated
model should comply with. Current work focuses on explic-
itly implementing a valuation function at the input side of
the diffusion process in order to explain perceptual and
preferential choice within the same framework.
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