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Abstract Focusing on visual perceptual organization, this
article contrasts the free-energy (FE) version of predictive
coding (a recent Bayesian approach) to structural coding
(a long-standing representational approach). Both use free-
energy minimization as metaphor for processing in the
brain, but their formal elaborations of this metaphor are fun-
damentally different. FE predictive coding formalizes it by
minimization of prediction errors, whereas structural coding
formalizes it by minimization of the descriptive complexity
of predictions. Here, both sides are evaluated. A conclu-
sion regarding competence is that FE predictive coding uses
a powerful modeling technique, but that structural coding
has more explanatory power. A conclusion regarding perfor-
mance is that FE predictive coding—though more detailed
in its account of neurophysiological data—provides a less
compelling cognitive architecture than that of structural
coding, which, for instance, supplies formal support for
the computationally powerful role it attributes to neuronal
synchronization.

Keywords Cognitive architecture ·
Free-energy minimization · Neuronal synchronization ·
Perceptual organization · Predictive coding ·
Structural coding

� Peter A. van der Helm
peter.vanderhelm@ppw.kuleuven.be
perswww.kuleuven.be/peter van der helm

1 Laboratory of Experimental Psychology,
University of Leuven (K.U. Leuven), Tiensestraat 102,
Box 3711, Leuven 3000, Belgium

Introduction

The term “predictive coding” is nowadays often used to
refer to a family of models of perceptual inference in the
hierarchically organized visual cortex. It is a diverse family,
with various Bayesian and artificial neural network mod-
els, some of which can process images while others cannot.
It is also a family with a divide regarding the roles of
feedforward and feedback connections. One set of models
assume that feedback connections carry predictions while
feedforward connections carry prediction errors (e.g., Rao
& Ballard, 1999). The other set of models assume that
feedforward connections carry predictions while feedback
connections carry constraints on these predictions (e.g.,
Lee & Mumford, 2003). In this article, I contrast a recent
Bayesian model from the former set of models to a long-
standing representational model close to the latter set of
models.

More specifically, focusing on theoretical aspects, I con-
trast Friston’s (2009, 2010) Bayesian version of predictive
coding to the representational approach called structural
coding (see van der Helm, 2014). Like other predictive cod-
ing models, these two models aim at unifying competence
(i.e., what is a system’s output?) and performance (i.e., how
does the system arrive at this output?). Special is that both
models use free-energy minimization as metaphor for pro-
cessing in the brain, but with totally different elaborations
of this metaphor. One difference is that, in free-energy (FE)
predictive coding, predictions are based on probabilities,
whereas in structural coding, they are based on descrip-
tive complexities.1 This is basically merely a difference

1Descriptive complexities and probabilities represent formal quantifi-
cations of the strength or quality of things, that is, they are not taken to
be represented in the brain as actual numbers.
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in means, but it led, in these two coding approaches, to
fundamentally different views on hierarchical perceptual
inference. The core ideas of the two coding approaches may
be introduced briefly as follows.

FE predictive coding, on the one hand, draws on von
Helmholtz’s (1909/1962) idea, also known as the likeli-
hood principle, that we perceive the most likely objects
or events that would fit the sensory input that we are
trying to interpret (cf. Hochberg, 1978; Gregory, 1973;
Pomerantz & Kubovy, 1986). Strong versions take ”most
likely” to refer to objective probabilities in the world (which
does not seem tenable; Feldman, 2013; van der Helm, 2000,
2011), but Bayesians usually take it to refer to subjective
probabilities, or beliefs. In any case, FE predictive coding
assumes that the visual system tests predictions in a top-
down fashion—along recurrent (or feedback, or reentrant, or
descending) neural connections—against the sensory input.
Prediction errors are returned in a bottom-up fashion—
along feedforward (or ascending) connections—to update
the to-be-recycled predictions (Bastos et al., 2012). This
process is driven by prediction-error reduction, which is
seen as reflecting free-energy minimization (Friston, 2009,
2010) and which is formulated in terms of Shannon’s (1948)
classical information theory.

Structural coding, on the other hand, draws on the
Gestalt law of Prägnanz (Koffka, 1935; Köhler, 1920, 1929;
Wertheimer, 1912, 1923). This law was inspired by the
idea that the brain, like any physical system, tends to set-
tle in relatively stable states defined by a minimum of free
energy. It is generally understood to refer to a tendency
towards regularity, symmetry, and simplicity, or as Koffka
(1935) formulated it for vision: “Of several geometrically
possible organizations that one will actually occur which
possesses the best, the most stable shape” (p. 138). Building
on this Gestaltist idea and on seminal work by, for instance,
MacKay (1950), Hochberg and McAlister (1953), Attneave
(1954), and Garner (1962), structural coding began as a
competence model (Leeuwenberg, 1968), but nowadays,
it also includes performance (van der Helm, 2012, 2014,
2015a).

Structural coding assumes that the perceptual process in
the visual hierarchy in the brain comprises three neurally
intertwined subprocesses, namely, feedforward extraction
of visual features from sensory input, horizontal (or lat-
eral) binding of similar features, and recurrent selection
of different features to be integrated into percepts (cf.
Lamme, Supèr, & Spekreijse, 1998). These three subpro-
cesses, together, are assumed to yield simplest hierarchical
organizations of sensory input—that is, organizations in
terms of wholes and parts, which are formally definable
by a minimum number of descriptive parameters. This
idea—which reflects Occam’s razor—is also known as the

simplicity principle. It is in line with modern information
theory, which may need some further introduction.

Modern information theory arose in reaction to Shan-
non’s (1948) classical information theory. Whereas classical
information theory requires knowledge of actual probabili-
ties to optimize things, modern information theory aims to
do more or less the same without needing to know actual
probabilities. Since the 1960s, it developed into algorith-
mic information theory (AIT) in mathematics (see Li &
Vitányi, 1997), and independently, into structural informa-
tion theory (SIT) in human visual perception research (see
Leeuwenberg & van der Helm, 2013). There are differences
between AIT and SIT, but currently relevant, they share the
Occamian idea that the simplest interpretation of data is the
best one2 (for discussions on these issues, see van der Helm,
2000, 2011, 2014).

Hence, the idea that visual perception is a form of uncon-
scious inference governed by free-energy minimization is
a long-standing Gestaltist idea adopted first by structural
coding and only later by FE predictive coding (which,
to my knowledge, has been silent about these historical
roots). However, the two coding approaches differ funda-
mentally regarding the questions of (a) how this idea is
cast in information-theoretic terms, and (b) what the under-
lying neural mechanisms entail. The former question is a
competence question, which I address first—also because it
provides a leg up to the latter question, which is a perfor-
mance question. To focus on the broader conceptual issues,
I skip technical details of both coding approaches (these can
be found elsewhere). For the same reason, I elaborate nei-
ther on the wealth of neurophysiological data that is claimed
to support FE predictive coding (see Clark, 2013), nor on
the wealth of behavioral data that is claimed to support
structural coding (see Leeuwenberg & van der Helm, 2013).

Competence

As said, whereas predictions in FE predictive coding are
based on probabilities, predictions in structural coding are
based on descriptive complexities. However, a descriptive
complexity C can be converted into the artificial proba-
bility pa = 2−C , which is called an algorithmic proba-
bility in AIT (Li & Vitányi, 1997) and a precisal in SIT
(van der Helm, 2000). It reflects that simpler things are

2Solomonoff (1964a, 1964b) and Kolmogorov (1965) initiated AIT
by proving that simplicity is a fairly stable concept, that is, it does
not matter much which descriptive coding language is used. Indepen-
dently, Simon (1972) observed this in perception, when he compared
six representational coding models.
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assigned higher probabilities, and implies that structural
coding can be given a Bayesian formulation too (see
Fig. 1). Before discussing this further, it is expedient to con-
trast this modern information-theoretic notion of precisal to
the classical information-theoretic notion of surprisal (term
by Tribus, 1961), which plays a role in FE predictive coding
(where it is called “surprise”).

The precisal, on the one hand, is a probability derived
from a descriptive complexity, that is, from an informa-
tion quantification based on a description of an individual
message (e.g., a hypothesis), whose hierarchical internal
structure reflects that of the message. The surprisal, on the
other hand, is Shannon’s (1948) solution to get an optimal
encoding of messages, that is, to minimize the long-term
average burden on communication channels given the trans-
mission probabilities of pre-chosen messages. The surprisal
of a message is the negative logarithm of its transmission
probability relative to those of all other possible messages,
and optimal encoding is achieved by labeling all messages
with arbitrary nominalistic codes the length of their sur-
prisals. Thus, more likely messages are assigned shorter
labels (as, e.g., in the Morse Code). There is some debate
in mathematics whether precisals form a proper probability
distribution, but notice that the surprisal is definitely not a
descriptive complexity: It is an information quantification
based on a message’s probability and is unrelated to the
message’s internal structure. Hence, as van der Helm (2000,
2011) argued earlier, it is factually incorrect to claim that
the two information quantifications are formally equivalent,

Fig. 1 Objective or subjective probabilities p can be used to maxi-
mize Bayesian certainty, and via the surprisal conversion from classical
information theory (classical IT), also to minimize information as
quantified in classical IT. Descriptive complexities C can be used
to minimize information as quantified in modern information theory
(modern IT), and via the precisal conversion from modern IT, also to
maximize Bayesian certainty under these probabilities

as either implicitly or explicitly has been claimed by Chater
(1996), Friston (2010), and Thornton (2014), for instance.

Bayesian modeling

Bayes’ rule (Bayes & Price, 1763) is a powerful mathemat-
ical modeling tool given by:

p(H |D) = p(H) ∗ p(D|H)

p(D)

In words, Bayes’ rule holds that, for data D to be explained,
the posterior probability p(H |D) of hypothesis H is pro-
portional to the prior probability p(H) of H , multiplied by
the conditional probability p(D|H) of D if H were true.
The probability p(D) of D is the normalization factor. In
general, Bayesian approaches aim to establish a posterior
probability distribution over the hypotheses, but a specific
goal is to select the most likely hypothesis, that is, the one
with the highest posterior probability under the employed
prior and conditional probabilities. To formulate this spe-
cific goal, the normalization factor p(D) can be omitted,
yielding:

Select the H that maximizes p(H |D) = p(H) ∗ p(D|H)

In perceptual organization, Bayes’ rule can be applied to
determine the posterior probability p(H |D) of a candidate
interpretation H of sensory data D. Such an interpretation,
or scene model, comprises a hypothesized organization of
the distal stimulus, that is, it comprises hypothesized dis-
tal objects that could fit the sensory data. The prior p(H)

then is the probability of interpretation H independently of
sensory data D, that is, it can be said to indicate how good
hypothesis H is in itself (it is therefore also said to account
for view-independent properties of H ). Furthermore, the
conditional p(D|H) then is the probability of sensory data
D if interpretation H were true, that is, it can be said to indi-
cate how well data D fit hypothesis H (it is therefore also
said to account for view-dependent properties of H ).

In FE predictive coding, hypotheses are assumed to be
given beforehand, and prediction errors are defined by con-
ditional surprisals, that is, by the negative logarithm of
p(D|H). So, in classical information-theoretic terms, it
aims to minimize the surprisal of data D given hypothesis
H . In structural coding, conversely, hypotheses are assumed
to be constructed on the fly from the sensory data, and in
modern information-theoretic terms,3 it aims to minimize
the sum of (a) the prior complexity of hypothesis H , and
(b) the conditional complexity of data D given hypothesis
H (Fig. 2 gives a gist). In Bayesian terms, FE predictive

3As formulated by Rissanen (1978) in AIT, and independently, by van
Lier et al. (1994) in SIT.
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coding aims to maximize conditional probabilities,4 while
structural coding aims to maximize the product of prior and
conditional precisals.

Furthermore, as said, in Bayesian models, probabilities
usually are beliefs, that is, probabilities based on an indi-
vidual’s past experience, or knowledge,5 while in structural
coding, they are precisals, that is, probabilities derived from
descriptive complexities. Notice that precisals can be said to
reflect a belief but that not every belief is reflected by pre-
cisals. This may seem obvious, but as I discuss next, it yet
deserves clarification.

No automatic inclusion of Occam’s razor

Bayes’ rule is a selection method, whereas Occam’s razor,
or the simplicity principle, is a selection criterion—just
as the Helmholtzian likelihood principle. Bayesian models
can accommodate any selection criterion, so, also Occam’s
razor. However, there is a persistent misconception that
every Bayesian model agrees automatically with Occam’s
razor. This misconception seems to have arisen in the early
1990s, when it also got its first refutation by Wolpert
(1995). It reappeared in Chater’s (1996) claim, reiterated
by Feldman (2009), that the simplicity and likelihood
principles are equivalent, which was refuted by van der
Helm (2000, 2011). Nevertheless, invoking Chater (1996)
and Feldman (2009), Thornton (2014) persisted—crucially
flawed in that he ignored the fundamentally different ways
in which classical and modern information theory quantify
information (see the beginning of section “Competence”).
Furthermore, just as Feldman (2009), Thornton (2014)
invoked an argument by MacKay (2003), which van der
Helm (2011) had refuted as follows.

MacKay argued that a category of more complex
instances spreads probability mass over more instances than
a category of simpler instances does, so that such sim-
pler instances tend to get higher probabilities. Notice that
this presupposes (a) a correlation between complexity and
category size, and (b) that every category gets an equal prob-
ability mass. These presuppositions are inherent neither to
Bayes’ rule nor to the Helmholtzian likelihood paradigm.
In fact, they are at the heart of the following, insightful,
reasoning about the reliability of simplicity as predictor.

4FE predictive coding is silent about what the priors (i.e., the prob-
abilities of hypotheses H independently of data D) might be, even
though these too are needed for a full Bayesian account. Friston (2010)
included optimization of what he called empirical priors, but these
empirical priors are not independent of the sensory data (see Section
“Empirical priors”; see also Trappenberg & Hollensen, 2013).
5Neurons responding to only certain stimuli, or features relevant
according to structural coding, do not fall under this definition of
knowledge. They rather fall under the sensitivity of a system to cer-
tain input—just as a sieve is sensitive to (but not knowledgeable about)
things of only certain sizes.

Imagine a world with objects generated by, each time,
first selecting randomly a complexity category, and then
selecting randomly an instance from that category. Thus,
in the first step, all categories have the same probability
of being selected, and in the second step, all instances in
the selected category have the same probability of being
selected. By definition, instances in a category of complex-
ity C are describable by C parameters, so, the category size
is proportional to 2C . This implies that the probability that
a particular instance is selected is proportional to 2−C—
which, notably, is the earlier-mentioned precisal pa . Hence,
in this particular kind of world—which MacKay seemed to
have in mind—the simplicity and likelihood principles are
equivalent, but notice that this says nothing about how these
principles are related in other imagined or actual worlds.

In other words, MacKay’s argument is not an argu-
ment that Bayesians can use to claim automatic inclusion
of Occam’s razor, but it is one that Occamians might use
to promote Occam’s razor as a belief worthy of building
Bayesian models on. In AIT, this belief has been supported
by showing, among other things, that simplest descriptive
codes yield near-optimal encoding if the actual probabil-
ity distribution is one from the infinite set of enumerable
probability distributions (Li & Vitányi, 1997). Thus, sim-
plest descriptive codes can be said to have a general-purpose
nature in that they yield fairly optimal encoding in many
imaginable worlds.6 As I discuss in a moment, something
similar holds for the veridicality of simplest descriptive
codes.

Hence, Bayesian models can comply with Occam’s razor,
but they do not comply automatically with it. To comply
with Occam’s razor, one would have to start from precisals
or, if one prefers to use objective probabilities, one would
have to assume a world like the one MacKay (2003) appar-
ently had in mind. As far as I can tell, this holds for all types
of Bayesian models. That is, it holds for both parametric
Bayesian models (in which predictions depend on chosen
belief parameters, as, e.g., in FE predictive coding) and non-
parametric Bayesian models (where “nonparametric” means
that belief parameters are adjusted on the fly as the incom-
ing data are gathered; for such models of cognition, see, e.g.,
Austerweil & Griffiths, 2013). It also holds for hierarchical
Bayesian inference models, which I discuss in the section
on performance, because they are intimately related to ideas
about neural implementation. By way of prelude to this, but

6Recall that optimal encoding minimizes the long-term average burden
on information channels. Shannon achieved this by an efficient label-
ing of all messages with nominalistic codes, which are unrelated to the
internal structure of individual messages. Here, near-optimal encoding
is achieved by minimal coding of the internal structure of individual
messages, which seems a more appropriate reflection of the way in
which the brain might encode sensory information in an efficient and
parsimonious fashion.
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Fig. 2 Each of these configurations can be interpreted as consisting
of a long segment and a short segment. The prior complexity of this
two-objects hypothesis reflects the effort to construct these segments,
and the conditional complexities reflect the effort to bring the seg-
ments in each of the given positions. For details of the quantification
of conditional complexities, see van Lier et al. (1994), but it corre-
sponds roughly to the intuitively assessed number of positional degrees

of freedom to be removed to arrive at a given position. This implies it
increases gradually in (a)–(d). In (c) and (d), the relatively high condi-
tional complexities imply that the one-object hypothesis is predicted to
prevail, while in (b), the two-objects hypothesis is predicted to prevail
(confirmed by Feldman, 2007). The latter agrees with common ideas
that such T-junctions between the contours of two shapes are cues that
one shape occludes the other

still pertaining to competence, I next discuss plain Bayesian
inference.

Bayesian inference and the role of action in perception

Bayesian inference is basically the recursive application of
Bayes’ rule. In perceptual organization, this general tech-
nique is particularly convenient to model visual updating
by moving observers, as van der Helm (2000) explicated as
follows (see also Fig. 3).

A moving observer usually gets a growing sample D of
different views (i.e., proximal stimuli) of the same distal
scene. Suppose sample D consist, at first, of only one view,
with Hi (i = 1, 2, ...) as candidate interpretations and with
prior and conditional probabilities p(Hi) and p(D|Hi), so
that the posterior probabilities p(Hi |D) can be determined
by applying Bayes’ rule. Then, each time an additional
view enters the sample D, the previously computed poste-
rior probabilities p(Hi |D) can be taken as the new prior
probabilities p(Hi) which, together with the conditional
probabilities p(D|Hi) for the expanded sample D, can
be used to determine new posterior probabilities by again
applying Bayes’ rule. This recursive application of Bayes’
rule is not guaranteed to converge always on one interpre-
tation (cf. Diaconis & Freedman, 1986), but generally, it
converges on one interpretation, which, under the employed
conditionals, will continue to get the highest posterior when
sample D is expanded further (cf. Li & Vitányi, 1997).

Hence, if one has (approximately) the right conditional
probabilities, then several (not too atypical) views of a dis-
tal scene suffice to make a (fairly) reliable inference about
what the distal scene comprises and, thereby, what subse-
quent views will show. That is, the trick of the recursive
application of Bayes’ rule is that, after several recursions,
the effect of the first priors fades away because the priors
are updated continuously on the basis of the conditionals,
which, thereby, become the decisive entities. This useful
trick brings me to the next two observations on the role of
action in perception.

First, AIT found that the margin between precisals and
probabilities from an enumerable probability distribution P

is maximally equal to the complexity of P (Li & Vitányi,
1997)—this complexity corresponds roughly to the number
of categories to which P assigns probabilities. This holds
for priors and conditionals, and again illustrates the general-
purpose nature of simplest descriptive codes, which, by this
finding, can be said to be fairly veridical in many imaginable
worlds. For perception, this can be sharpened as follows.
The number of prior categories in the world is very high,
so that prior precisals are probably not very veridical. How-
ever, the number of conditional categories for a specific
hypothesis is relatively small, that is, there usually are few
qualitatively different views of a scene—this suggests that
conditional precisals are pretty veridical. For instance, if
one throws two sticks on the floor, then the result might be
one of the four configurations in Fig. 2—with, notably, the
same probability for all four if they are taken exactly as they
are depicted. If taken as representatives of classes of similar
configurations, however, their (subjective) probabilities are
indeed inversely correlated to the conditional complexities
for these individual configurations. For Bayesian inference,
this implies that one could just as well use precisals instead
of actual probabilities, because the decisive conditionals
yield about the same predictive power in both cases (van der
Helm, 2000).

Second, FE predictive coding seems to give action prior-
ity over perception, or as Friston (2009) put it: “perception
is an inevitable consequence of active exchange with the
environment” (p. 293) and ”perception is enslaved by action
to provide veridical predictions” (p. 295). However, as
shown above, the role of action in everyday perception (or
”active inference”, as Friston calls it)—though certainly
relevant—is rather simple and straightforward. The forego-
ing also shows that the inclusion of action into the equation
is not helpful in assessing what the first priors in perceptual
organization might be. After all, as long as one has approx-
imately the right conditionals, Bayesian inference works
quite well for a moving observer—no matter which first
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Fig. 3 Everyday perception by moving observers a You take a first glance at a scene b You probably interpret it as a black shape occluding this
grey shape c You move, and what you see then may trigger a visual update leading to a revision of your first interpretation

priors are used. Yet, the question of the first priors is def-
initely relevant in human perception research, which, for
instance, also aims to understand the perception of static
images (which, in this multimedia era, probably are more
abundantly present than in the past). Whereas FE predic-
tive coding is silent about what the first priors might be (see
also Footnote 4 and section “Empirical priors”), structural
coding gives a principled answer by taking the precisal of a
hypothesis as its first prior.

Discussion

As Hoffman (1996) put it in Bayesian terms: We have
direct access to only the posteriors of perception. Hence, to
understand these posteriors, we have to trace back what the
priors and conditionals might have been. Bayes’ rule cap-
tures the interplay between priors and conditionals but does,
of itself, not supply any specification of priors and con-
ditionals. Therefore, standard Bayesian modeling involves
model fitting to tune the parameters of a selection model
such that it yields desired outcomes (this stands apart
from hypothesis selection, i.e., the subsequent application
of such a selection model to find hypotheses that meet
the employed selection criterion). This powerful modeling
method may well reflect learning strategies at higher cogni-
tive levels, but in my view, perception plays a special role,
which is to be distinguished from that of higher cognitive
faculties.

Perception is sort of a communication channel, or inter-
face, between the world and higher cognitive faculties.
Following Leonardo da Vinci’s (1452–1519) motto “All
knowledge has its origins in perception”, structural cod-
ing therefore takes perception as a fairly autonomous,
data-driven, source of knowledge instead of taking knowl-
edge as a resource for perception (cf. Firestone & Scholl,
in press; Gottschaldt, 1926; Hochberg, 1978; Kanizsa, 1985;
Pylyshyn, 1999; Rock, 1985). Furthermore, as said, the
structural coding model aims to minimize the number of
parameters needed to describe hypotheses (this is a form
of hypothesis selection), but the structural coding model
itself is basically parameter-free (so, no tuning of the selec-
tion model to get desired outcomes). In other words, by
its simplicity principle, it gives a principled account of

priors and conditionals, which, as indicated, provides fairly
optimal encoding of data and fairly veridical perception in
daily life.

In perceptual organization, the Bayesian distinction
between view-independent priors and view-dependent con-
ditionals (be they precisals or other probabilities) concurs
with the distinction between the ventral and dorsal streams
in the brain, which seem to be dedicated to object per-
ception and spatial perception, respectively (Ungerleider &
Mishkin, 1982). The Bayesian integration of priors and con-
ditionals can thus be said to model the interaction between
these streams, which leads the visual system from per-
cepts of objects as such to percepts of objects arranged in
space. To structural coding, this is the (obviously grey) area
where perception tends to end and higher cognitive facul-
ties get the opportunity to enrich its output via a gradually
more conscious inference on the basis of internally available
contextual information (say, knowledge).

For instance, disks with shadings at the left-hand or right-
hand side give fairly ambiguous impressions of concavity
and convexity (see Fig. 4a), whereas disks with shadings at
the top or bottom give fairly clear impressions of concav-
ity and convexity, respectively (see Fig. 4b). By structural
coding, all such disks are perceptually ambiguous. Yet, in
some cases, such ambiguities might be resolved at higher
cognitive levels (Rock, 1985)—here, for instance, by the

Fig. 4 Shape from shading. a Shading at the left-hand or right-hand
side is fairly ambiguous regarding the concavity or convexity of the
disks. b Shading at the top or bottom is fairly clear regarding concavity
and convexity, respectively. (After Ramachandran, 1988)
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knowledge that light usually comes from above. Some
Bayesians incorporate such knowledge in models of per-
ception but I do not think this is needed for the main task
of perception, which is to organize incoming (meaningless)
pieces of visual information into (meaningful) wholes and
parts arranged in space.

This main task means that a percept reflects a hierarchical
organization of a scene. In structural coding, candidate per-
cepts (i.e., hypotheses) are assumed to be constructed from
the sensory data and are represented by hierarchical codes,
which impose such hierarchical organizations on the data.
This contrasts with Bayesian approaches (including FE pre-
dictive coding), which are strong in capturing the interplay
between probabilities of given hypotheses but which usu-
ally are silent about how these hypotheses are structured and
represented (be it formally or in the brain).

In sum, regarding competence, FE predictive coding
admittedly uses a powerful modeling technique, but in my
view, structural coding has more explanatory power because
of its principled account of priors and conditionals in terms
of fairly stable descriptive complexities. It is also true, how-
ever, that FE predictive coding’s main claims pertain not
so much to competence but rather to performance. This is
discussed next.

Performance

Traditional ideas about the human visual perceptual orga-
nization process have taken it to be nothing but a unidirec-
tional, feedforward, process from sensory inputs to percepts.
This holds neither for FE predictive coding nor for struc-
tural coding: Both coding approaches rely on recurrent and
horizontal processing too. However, they put forward differ-
ent forms of message passing. To compare them, I take Lee
and Mumford’s (2003) description of hierarchical Bayesian
inference in the visual cortex as reference.

Hierarchical Bayesian inference

Lee and Mumford (2003) proposed a Bayesian predictive
coding model that is not based on minimization of predic-
tion errors. Instead, it takes visual area V1—which, via the
lateral geniculate nucleus, receives input from the retina—
as the first area to construct what they called particles, that
is, preliminary interpretations of input parts. These parti-
cles are assumed to stay alive during a hierarchical inference
process, by which a higher visual area takes particles from
the previous area to construct its own larger particles, whose
strength then is fed back to the previous area to allow for
particle updating—and so on, until the system as a whole
reaches an equilibrium. This process is called particle fil-
tering, and during this process, particle updating is assumed

to be guided by Bayesian belief propagation. The latter
means that the feedback from higher areas provides what
they called contextual priors to shape the inference at lower
areas.

Lee and Mumford allowed knowledge from higher cog-
nitive levels (say, from beyond perception) to provide such
feedback too, but notice that they essentially proposed a
data-driven perceptual inference process, by which par-
tial percepts (i.e., particles) interact and compete to arrive
eventually at a complete percept. They were not specific
about the internal representational structure of particles,
but they did suggest that particles might be represented by
temporarily synchronized neural assemblies.

Neuronal synchronization is the phenomenon that neu-
rons, in transient assemblies, temporarily synchronize their
firing activity. This is a special case of parallel distributed
processing (PDP). That is, standard PDP typically involves
interacting agents who simultaneously do different things,
whereas synchronization involves interacting agents who
simultaneously do the same thing—think of flash mobs or
choirs going from cacophony to harmony. Both theoreti-
cally and empirically, neuronal synchronization has been
associated with various cognitive processes and 30–70 Hz
gamma-band synchronization, in particular, has been asso-
ciated with feature binding in visual perceptual organization
(Eckhorn et al., 1988; Gray & Singer, 1989; Milner 1974;
von der Malsburg, 1981).

As I discuss next, FE predictive coding (which includes
effects of knowledge) proposes hierarchical Bayesian infer-
ence too, but not in the form described by Lee and Mum-
ford. As I discuss subsequently, structural coding (which
excludes effects of knowledge) proposes a particle-filtering
mechanism, but then with particle updating guided by
propagation of the Occamian simplicity belief and with
a computationally powerful specification of the represen-
tational role of neuronal synchronization in the gamma
band.

FE predictive coding’s cognitive architecture

Whereas Lee and Mumford’s (2003) predictive coding
approach holds that “the feedforward input drives the gen-
eration of the hypotheses” (p. 1436), FE predictive coding
argues for more or less the reverse. It explicitly dismisses
particle filtering (Friston, 2008, 2009) and relies instead on
top-down testing of hypotheses against the sensory input
(see Fig. 5). This top-down testing goes, in a hierarchical
fashion, through the successive levels in the cortex—each
level taken to be responsible for specific (intermediate)
aspects. At each level, higher-level predictions are com-
pared with lower-level sensory information to form a pre-
diction error, which is returned to the higher level to enable
it to update its predictions—these updated predictions then
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Fig. 5 FE predictive coding’s view on processing in the brain’s visual
hierarchy. Predictions are tested top-down against the sensory input,
and prediction errors are returned. At each level in the hierarchy, pre-
diction errors are updated by combining messages from the same level
and the level above, and predictions by combining messages from the
same level and the level below

are recycled to reduce prediction errors at lower levels. In
other words, feedforward connections convey information
on prediction errors, while feedback connections convey
information on predictions from higher cortical areas to
suppress prediction errors in lower areas (Bastos et al.,
2012).

Hence, FE predictive coding basically proposes a sort of
glorified template matching. It is true that template match-
ing can be effective in automatic recognition of things
from a limited number of predefined categories, such as
print characters or objects in an assembly line. However,
in human vision research, it has been abandoned long ago
because it is too rigid and limited to deal with ill-defined
categories and novel objects. To be frank, I do not see
how FE predictive coding’s glorified version might turn the
tables.

Empirical priors

As said, in FE predictive coding, feedback connections
convey information on predictions from higher areas to sup-
press prediction errors in lower areas. This feedback is said
to constitute empirical priors, which are claimed to dis-
solve the criticism of Bayesian models that they ignore the
question of how prior beliefs—necessary for inference—
are formed (Friston, 2010). However, notice that these
empirical priors depend on the sensory data, that is, they
actually are posteriors—which is not altered by the fact that
they, just as in plain Bayesian inference (see section
“Bayesian inference and the role of action in perception”),
are fed back to become the new priors for the next inference
cycle. In any case, they do not dissolve the just-mentioned
criticism of Bayesian models, which is about first priors,

that is, about priors that are independent of the sensory data
(see also Trappenberg & Hollensen, 2013). First priors are
relevant, simply because they form the starting point of the
inference process.

To be clear, the foregoing does not question feedback
mechanisms as such. Feedback mechanisms are inherent to
hierarchical inference models. For instance, as discussed
in section “Hierarchical Bayesian inference”, Lee and
Mumford’s (2003) predictive coding model involves feed-
back of what they called contextual priors, that is, strengths
of higher-level particles that had been composed of lower-
level ones. Furthermore, structural coding did not invent
a special name for the feedback information but it incor-
porates basically the same feedback mechanism as that in
Lee andMumford’s model—except that it expresses particle
strength in descriptive complexities instead of probabilities
(see section “Perception”). In other words, I understand the
relevance of the empirical priors in the FE predictive cod-
ing scheme, but I think that FE predictive coding gives them
more credits than they deserve.

Attention and gamma synchronization

According to Friston (2009), attention simply is the process
of optimizing the relative precision of feedforward and feed-
back information during the hierarchical inference process.
Later, Friston (2010) and Bastos et al. (2012) suggested
faintly that neuronal synchronization in the gamma band
has something to do with prediction errors, and after that,
Clark (2013) and Kanai et al. (2015) suggested that gamma
synchronization controls the precision associated with pre-
diction errors at lower levels relative to that at higher levels.
Notice that, unlike what Friston (2009) attributed to atten-
tion, the latter applies to feedforward information only. Be
that as it may, my present point is that there is no direct
evidence, neither neurophysiologically nor otherwise, that
attention or gamma synchronization controls the precision
associated with prediction errors.

In other words, FE predictive coding’s account rather
seems to be a matter of reading into the facts, that is,
of attempting to connect the favored approach to accepted
phenomena—then, gamma synchronization might indeed be
positionable only as being associated somehow with predic-
tion errors. To be clear, I do not object to such attempts,
but in this case, I think it is not convincing without, for
instance, complementary formal support for the proposed
computational role of gamma synchronization.

Structural coding’s cognitive architecture

Compared to FE predictive coding, structural coding
assumes other messages being passed up and down in
the brain’s visual hierarchy. Furthermore, structural coding
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admittedly contains speculative components too, but it does
supply complementary formal support for the computational
role it attributes to gamma synchronization.

Structural coding’s view on processing in the visual
hierarchy includes both perception and (task-driven, top-
down) attention. As discussed in van der Helm (2012,
2015a), it conceives of the perceptual organization process
as comprising three neurally intertwined but functionally
distinguishable subprocesses (see Fig. 6, left-hand panel; cf.
Lamme & Roelfsema 2000; Lamme et al. 1998). These sub-
processes are responsible for (a) feedforward extraction of,
or tuning to, features to which the visual system is sensitive,
(b) horizontal binding of similar features, and (c) recurrent
selection of different features. These subprocesses together
yield integrated percepts given by hierarchical organizations
(i.e., organizations in terms of wholes and parts) of hypoth-
esized distal stimuli that fit the sensory data (see Fig. 6,
right-hand panel). Attentional processes then may scrutinize
these organizations in a top-down fashion, that is, starting
with global structures and, if required by task and allowed
by time, descending to local features (Ahissar & Hochstein,
2004; Collard & Povel, 1982; Hochstein & Ahissar, 2002;
Wolfe 2007). This may be specified further as follows for
attention and perception, respectively.

Attention

Structural coding assumes that, guided by descriptive sim-
plicity, the unconscious perception process arrives at com-
plete percepts (i.e., perceived wholes) via nonlinear inter-
actions between competing partial percepts (I return to

this in a moment). It assumes further a top-down atten-
tional scrutiny of resulting hierarchical organizations, which
implies that wholes are consciously experienced before
parts. This explains the dominance of wholes over parts,
as postulated in early twentieth century Gestalt psychol-
ogy (Koffka, 1935; Köhler, 1920, 1929; Wertheimer, 1912,
1923) and as confirmed later in a range of behavioral studies
(for a review, see Wagemans et al., 2012). This dominance
means, for instance, that humans tend to classify or cate-
gorize things on the basis of their global structures (i.e.,
on the basis of wholes and ignoring minor differences in
parts). Based on empirical data, it has been specified fur-
ther by notions such as global precedence (Navon, 1977),
configural superiority (Pomerantz, Sager, & Stoever, 1977),
primacy of holistic properties (Kimchi, 2003), and super-
structure dominance (Leeuwenberg & van der Helm, 1991;
Leeuwenberg, van der Helm, & van Lier, 1994).

To give an example of the dominance of wholes over
parts, I consider Fig. 7. It shows a stimulus that is typically
perceived as consisting of two triangular parts. These tri-
angular parts therefore are said to be compatible with the
perceived global structure, and they are more easily dis-
cerned than incompatible parts like the diamond in Fig. 7,
bottom right. By Fig. 6, this can be understood as follows
(see also van der Helm, 2015b). The perceptual organization
process yields perceived hierarchical organizations in terms
of global structures and their constituent local features. This
means that it preserves the representations of the compat-
ible constituents, and masks (or suppresses, or eliminates,
or inhibits) those of incompatible parts. Thus, if a to-be-
discerned local feature is compatible, the top-down attention

Fig. 6 Structural coding’s view on processing in the brain’s visual
hierarchy. A stimulus-driven perceptual organization process, compris-
ing three neurally intertwined subprocesses (left-hand panel), yields

hierarchical stimulus organizations (right-hand panel). A task-driven
attention process then may scrutinize these hierarchical organizations
in a top-down fashion
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Fig. 7 Embedded figures. At the top, a stimulus with a typically
perceived organization comprising two triangular shapes, plus one of
these easily discerned compatible parts and an incompatible diamond
part that is less easily discerned. (After Kastens & Ishikawa, 2006)

process may exploit the perceived hierarchical organiza-
tion to descend easily from its global structure to this local
feature. If it is not compatible—as is typical in embedded
figures tasks, for instance—the top-down attention process
first is misled by the perceived global structure and then has
to find a way around it.

Perception

Among the perceptual subprocesses in Fig. 6, the subpro-
cess of feedforward extraction is reminiscent of the neuro-
scientific idea that, going up in the visual hierarchy, neural
cells mediate detection of increasingly complex features
(Hubel & Wiesel, 1968). Furthermore, the subprocess of
recurrent selection is reminiscent of the connectionist idea
that a standard PDP process of activation spreading in the
brain’s neural network yields percepts represented by stable
patterns of activation (Churchland, 1986). In structural cod-
ing, the combination of these two subprocesses is taken to be
like a fountain under increasing water pressure: As the feed-
forward extraction progresses along ascending connections,
each passed level in the visual hierarchy forms the starting
point of integrative recurrent processing along descend-
ing connections. For a similar picture, see VanRullen and
Thorpe (2002), and notice that this mechanism—just as Lee
and Mumford’s (2003) particle filtering— yields a gradual
buildup from percepts of parts at lower levels in the visual
hierarchy to percepts of wholes near its top end.

By nature, this gradual buildup takes time, so, it leaves
room for attention to intrude and to modulate things before
a percept has completed. In this sense, structural coding
does not exclude influences from higher cognitive levels
entirely. However, it also assumes that the perceptual orga-
nization process is very fast and that it, by then, already
has done much of its integrative work (cf. Gray, 1999;
Pylyshyn, 1999). Structural coding attributes this speed to
neuronal synchronization in the gamma band. Notice that
30–70-Hz gamma oscillations are faster than 8–30-Hz alpha
and beta oscillations. The latter usually are associated with
top-down processes, while gamma synchronization occurs

predominantly in horizontal neural assemblies within visual
areas, which have been associated with binding of similar
features (Gilbert, 1992). The latter subprocess may be rel-
atively underexposed in neuroscience, but may well be the
neuronal counterpart of the regularity extraction operations,
which, in representational coding approaches, are proposed
to obtain structured mental representations of incoming
visual information.

In fact, structural coding postulates that gamma synchro-
nization mediates transparallel feature processing, which
means that many similar features are hierarchically recoded
in one go, that is, simultaneously as if only one feature were
concerned (van der Helm, 2012, 2014, 2015a). There is no
direct evidence that the brain indeed performs transparallel
processing, but to my knowledge, it is the first compu-
tational proposal to do justice to the idea that neuronal
synchronization must be a special form of neuro-cognitive
processing. Moreover, this computational proposal is sub-
stantiated formally as follows.

Transparallel processing

In computing, transparallel processing corresponds to the
extraordinarily powerful form of processing promised by
quantum computers (see van der Helm, 2015a). Actually, it
is already feasible on single-processor classical computers,
and structural coding implemented it in PISA, which is a
minimal coding algorithm for strings (van der Helm, 2004,
2015a). Notably, to compute guaranteed simplest codes of
strings, PISA employs formal counterparts of the three per-
ceptual subprocesses in Fig. 6. Through exploiting visual
regularities such as repetition and symmetry, such codes
specify strings by a minimum number of descriptive param-
eters (for formal and empirical underpinnings of the choice
of employed regularities, see van der Helm & Leeuwenberg,
1991, 1996, 1999, 2004). Notice that a string gives rise to a
superexponential number of candidate codes (i.e., hypothe-
ses), so that the simplest one is probably not tractable by
traditional forms of processing.

In PISA, this problem has been solved by employing
special, usually sparse, distributed representations called
hyperstrings. Hyperstrings are superpositions of up to an
exponential number of similar regularities, which can be
hierarchically recoded in a transparallel fashion, that is,
simultaneously as if only one regularity were concerned.7

7The first version of PISA (van der Helm & Leeuwenberg, 1986)
already employed what Lee and Mumford (2003) called particle fil-
tering, but then, with particle updating guided by propagation of the
Occamian simplicity belief. The second version (van der Helm, 1988)
added the basics of what van der Helm (2004) formalized as transpar-
allel processing by hyperstrings. The latter is fully implemented in the
latest version, which is available in the Supplemental Material of van
der Helm (2015a).
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For more details, see van der Helm (2012, 2014, 2015a),
in which hyperstrings are taken as formal counterparts of
transient neural assemblies, while transparallel processing is
proposed to be the special form of neuro-cognitive process-
ing mediated by synchronization in such neural assemblies.
Notice that this is consistent with Lee and Mumford’s
(2003) suggestion that particles might be represented by
temporarily synchronized neural assemblies.

Strings do not, of course, constitute input like that of the
human visual system. Nevertheless, the foregoing provides
formal support for the idea that transparallel processing—
mediated by gamma synchronization—might be the power-
ful form of neuro-cognitive processing needed to solve the
superexponential inverse problem of perception.

Discussion

Neurophysiological evidence, on the one hand, links exper-
imental conditions to brain activity but does, of itself, not
indicate what this brain activity means in terms of cog-
nitive information processing. Behavioral evidence, on the
other hand, links experimental conditions to the outcome
of cognitive information processing but does, of itself, not
indicate how this outcome is arrived at. To dig deeper, one
has to resort to performance models, or cognitive architec-
tures as they are called in artificial intelligence research
(Anderson, 1983; Newell, 1990). The architectures pro-
posed by FE predictive coding and structural coding (see
Figs. 5 and 6, respectively) are examples of such per-
formance models. Clearly, both architectures still have to
be elaborated further. Yet, it seems safe to say that FE
predictive coding is ahead in its account of the neurophys-
iological side (see Clark, 2013), while structural coding is
ahead regarding critical tests at the behavioral side (see
Leeuwenberg & van der Helm, 2013) and regarding for-
mal support for the proposed computational role of gamma
synchronization (see van der Helm, 2012, 2014, 2015a).

Clarity about the role of gamma synchronization is
particularly relevant to understand effects of impaired
gamma synchronization, as found in neurodevelopmental
disorders such as schizophrenia (Uhlhaas, Silverstein, &
Phillips, 2005) and autism spectrum disorders (ASD) (Grice
et al., 2001; Maxwell et al., 2015; Milne et al., 2009; Sun
et al., 2012; Wright et al., 2012). For instance, within FE
predictive coding, Clark (2013) suggested that impaired
gamma synchronization leads to an imbalanced precision
associated with prediction errors, that is, a higher precision
at lower levels relative to that at higher levels (see also Kanai
et al., 2015). Clark (2013) argued that this might explain hal-
lucinations and delusions in schizophrenia (cf. Fletcher &
Frith, 2009), but see also Silverstein (2013) who argued that
these symptoms are more likely to arise at higher cognitive
levels.

Furthermore, Lawson, Rees, and Friston (2014) argued
that the imbalanced precision by impaired gamma syn-
chronization idea explains various perceptual and social-
exchange symptoms in ASD. However, without referring to
gamma synchronization, van de Cruys et al. (2014) argued
that those symptoms can be explained by a high inflexible
precision of prediction errors at both lower and higher lev-
els. As a consequence, van de Cruys et al. argued, ASD
individuals put more value on small errors than typical
individuals do. Whatever the relation between precision
and gamma synchronization may be, putting more value
on small errors agrees with findings that ASD individuals
tend to focus more on local information in visual stimuli
than on global information. For instance, they tend to cat-
egorize things into smaller categories (see, e.g., Klinger &
Dawson, 2001; Newell et al., 2010) and are better in
discerning embedded figures like the diamond in Fig.
7 (Jolliffe & Baron-Cohen, 1997; Shah & Frith, 1983,
1993).

In structural coding, the proposed role of gamma syn-
chronization has nothing to do with prediction errors or their
precision and is not, as in FE predictive coding, associated
post-hoc with empirical data. It is based on formal compu-
tational grounds and implies that gamma synchronization
subserves integration of local features into global structures
(see section “Transparallel processing”). By this account,
impaired gamma synchronization leads to less developed
global structures. Such a reduced perceptual integration
would affect classification abilities, and thereby, general-
ization and learning abilities (as seems to be the case in
schizophrenia; see Doody et al., 1998). By the same token,
it would result in categorization into smaller categories.
Furthermore, linking up with Section “Attention”, it would
also result in weaker masking effects on embedded figures
(i.e., local features that are incompatible with typically per-
ceived global structures), which therefore would be better
discernable (van der Helm, 2015b). The latter agrees with
the weak central coherence theory of ASD (Frith, 1989; see
also Happé & Booth, 2008).

In other words, structural coding holds that, depending
on the severity of the disorder, ASD individuals are left
with something between incoming pieces of visual informa-
tion and typically perceived wholes (think of an unfinished
jigsaw puzzle). Then, top-down attention hardly has any-
thing global to focus on, so, it naturally exhibits a narrowed
focus and its access to embedded figures is hindered less by
global structures. As van der Helm (2015b) argued, this also
means that structural coding predicts that typical individu-
als are not worse than ASD individuals in discerning parts
that are compatible with typically perceived global struc-
tures (like the triangular parts in Fig. 7)—simply because,
in typical individuals, compatible parts are not masked by
perceived global structures (see section “Attention”). As far
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as I can tell, this is not what FE predictive coding would
predict, so, future tests of this prediction may prove to be
critical.

General discussion

FE predictive coding and structural coding both use free-
energy minimization as metaphor for processing in the
brain, but their elaborations of this metaphor are funda-
mentally different. FE predictive coding relies on classical
information theory to minimize prediction errors, using
probabilities to be tuned via model fitting. Structural coding
relies on modern information theory to minimize the infor-
mation load of predictions using fairly stable descriptive
complexities. I am admittedly biased towards structural cod-
ing, but in this article, I have tried to make a fair assessment
of FE predictive coding.

To be frank, I found it hard to deconstruct. For instance,
in section “FE predictive coding’s cognitive architecture”, I
indicated that template matching has been abandoned long
ago in human vision research and that I do not see how FE
predictive coding’s glorified version might turn the tables.
Furthermore, its sometimes grandiloquent statements often
seem to capitalize on intuitive associations in readers. One
example thereof is its usage of the association-laden term
surprise instead of the formal term surprisal from classi-
cal information theory. Another example is Bastos et al.’s
(2012) “through selecting appropriate sensations, the brain
is implicitly maximizing the evidence for its own existence”
(p. 702; see also Friston, 2010). To me, the last part is eso-
terism, and I would not say that the brain selects appropriate
sensations. I simply would say instead that, through action,
it can select different vantage points but will have to do
with whatever sensations it gets. In this sense, as indicated
in section “Bayesian inference and the role of action in per
ception”, I think that FE predictive coding exaggerates the
role of action in perception.

Be that as it may, notice that I sympathize with the more
general Bayesian brain idea—albeit that I make a clear
functional distinction between perception and higher cogni-
tive levels. For instance, I can appreciate that—to increase
practical utility—one might want to include knowledge
(e.g., about the environment) in machine vision systems.
However, I think that—due to transparallel processing—
the human perceptual organization process is so fast that it
hardly leaves room for effects of such knowledge, and that
such apparent effects rather reflect post-perceptual enrich-
ment. I therefore think that knowledge-based Bayesian
approaches might be suited to model inferences at higher
cognitive levels, but that perceptual inferences rather are
guided by the Occamian simplicity belief working on data
to construct, on the fly, hypotheses about these data.

Structural coding pursues the latter, accomplishing much
of what FE predictive coding aims to accomplish—
including links from perception to attention and action.
Structural coding needs further elaboration, particularly at
the neurophysiological side. Yet, as discussed, it is basi-
cally a parameter-free approach, which, by its simplicity
principle, gives a principled account of priors and condi-
tionals, providing fairly optimal encoding of data and fairly
veridical perception in daily life. To this end, it relies on
minimal coding of the internal structure of individual mes-
sages, which seems an appropriate reflection of the way in
which the brain might encode sensory information in an
efficient and parsimonious fashion. Furthermore, it substan-
tiates that transparallel processing—mediated by gamma
synchronization—might be the form of neuro-cognitive pro-
cessing that solves the inverse problem of perception by
way of a flexible, self-organizing, cognitive architecture
implemented in the relatively rigid neural architecture of the
brain.

In structural coding’s minimal-coding algorithm PISA,
transparallel processing is enabled by hyperstrings, which
are distributed representations built on the fly by the sub-
process of horizontal feature binding and operated on by
the subprocess of recurrent feature selection. By these data
structures, structural coding links up with network mod-
els (see van der Helm, 2012). Furthermore, by converting
descriptive complexities into precisals, structural coding
might be given a Bayesian formulation that, in various
respects, would resemble Lee andMumford’s (2003) model.
In other words, structural coding can be said to represent a
separate branch of the diverse family of predictive coding
models.

Finally, my critique of FE predictive coding should not
obscure that I do appreciate that it—just as other predictive
coding approaches and just as structural coding—aims to
unify ideas about competence and performance. The distinc-
tion between these two notions corresponds to the distinc-
tion between what Wertheimer called the molar and molec-
ular levels (see Koffka, 1935) or what Marr (1982/2010)
called the ”what” and ”how” questions. As Marr noted,
answering these questions may be totally different endeav-
ors, but answers to both questions are needed for a full
understanding.

Notes I thank Sander Van de Cruys for helpful discussions. This
research was supported by Methusalem grant METH/08/02 awarded
to Johan Wagemans (www.gestaltrevision.be).
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