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Abstract Effective use of working memory (WM) for
high-level cognitive tasks requires coordinating two conflict-
ing requirements: robust maintenance and rapid updating.
Models of WM suggest that these demands are coordinated
by a gate between perceptual input and WM. Previous work
with a letter-updating paradigm (Kessler & Oberauer, Journal
of Experimental Psychology: Learning, Memory, and
Cognition, 40, 738-754, 2014) supported a scanning and
gate-switching (SGS) model of WM updating. The present
work provides further evidence for the SGS model.
Participants were required to keep track of the last letter that
appeared in each of a row of frames on the screen. On each
updating step, a variable subset of letters in varying positions
in the row had to be updated. The SGS model assumes that on
each updating step, participants scan through the memory set
sequentially, opening the gate when a letter requires updating,
and closing the gate when the next letter needs to be main-
tained. As is predicted by the SGS model, the reaction times
for each updating step increased with the number of updated
items and with the number of gate switches. In addition, the
present experiment provides direct evidence supporting the
scanning assumption of the model. Hebrew-speaking partici-
pants performed the task with either Hebrew or English letter
stimuli, in different blocks. As was predicted, the scanning
direction of the stimulus set was from left to right in English
and from right to left in Hebrew. The SGS model fit the data
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only when the scanning direction was taken into account,
establishing the role of item-based forward scanning during
WM updating.

Keywords Working memory - Updating - Forward scanning -
Gating

Working memory (WM) provides the ability to robustly main-
tain task-relevant information in mind, as well as to update it
with new information when needed. These two functions,
maintenance and updating, are needed in a host of high-level
cognitive tasks, such as mental arithmetic and reasoning.
Recent empirical and modeling work has emphasized the con-
flict between the maintenance and updating functions of WM
and focused on the mechanisms by which this conflict is re-
solved. Specifically, WM enables robust maintenance of in-
formation even in the face of interference from the inner or
outer environment. Computational models, based on neuro-
physiological data, suggest that shielding WM representations
from interference is achieved by controlled gating of the WM
input (e.g., Braver & Cohen, 2000; Frank, Loughry, &
O’Reilly, 2001; O’Reilly & Frank, 2006). This is implement-
ed by a gate that separates the perceptual input from WM
representations and by recurrent activation within WM. The
gate to WM is closed by default, and updating is achieved by a
transient opening of this gate when relevant information is
available.

The idea of WM gating is supported by a large body of
neurophysiological evidence and computational modeling.
However, the behavioral costs of gate opening and closing
have only recently been observed. In a previous work
(Kessler & Oberauer, 2014), we examined the time course of
updating verbal information in WM. We used a letter-updating
paradigm devised by Kessler and Meiran (2008; see also
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Ecker, Lewandowsky, & Oberauer, 2014). Participants had to
keep track of the last letter that appeared inside each of a row
of frames on the screen. The number of frames (and, hence,
the memory set size) varied between two and four in separate
runs. Each run of trials began with the presentation of the
frames, with a letter inside each of them. Then, a sequence
of trials began. In each trial, new letters appeared inside some,
all, or none of the frames. The participants were instructed to
update their memory with the new letters, so that they only
remembered the last letter that had appeared in each frame. A
keypress was required in each trial in order to move to the next
trial. The reaction time (RT) for this response was the depen-
dent measure, reflecting the time taken to update WM in each
trial. The number of updated items in each trial was manipu-
lated, as well as the sequence of updated and repeated items.
For example, updating two out of four letters could involve
updating the two leftmost letters (Condition UURR; U = up-
date, R =repeat), the two rightmost letters (RRUU)), the letters
in Positions 1 and 3 (URUR), and several other patterns. Thus,
most trials would involve the updating of some items in the
current memory set while maintaining the others, and the dif-
ferent patterns of U and R would impose different demands on
the control of updating and maintenance by opening and clos-
ing the gate into WM, as we detail below.

Two versions of the paradigm were examined in separate
experiments. In the partial-display paradigm, only updated
letters were presented in each trial; an asterisk was instead
presented inside frames in which the maintained letter was
not updated. For example, assume that the maintained letters
are L, G, P, and Z, and that the last letter had to be updated to
B. In this case, asterisks would appear inside the three leftmost
frames, to denote that their corresponding letters did not
change, and B would appear in the rightmost frame. In the
full-display paradigm, all of the letters appeared in each trial.
Continuing the example above, in this case the letters L, G, P,
and B would be presented within Frames 1-4, respectively.

The results of both paradigms showed that RTs depended
on two factors. First, the RT increased with the number of
updated items. For example, condition URRR was faster than
UUUR. On the basis of the idea that WM consists of associ-
ations between items and their serial positions (e.g.,
Lewandowsky & Farrell, 2008), we suggested that updating
is carried out serially, with a cost for establishing each associ-
ation between a new (updated) item and its position (see also
Kessler & Meiran, 2008, for a similar assumption). The sec-
ond factor was the exact order of updated and repeated items.
For example, condition URUR was slower than RRUU, al-
though having the same set-size and the same number of up-
dated items.

We developed a “scanning and gate-switching” (SGS)
model in order to explain the complex pattern of RTs over
the entire set of U-R patterns. According to the model, partic-
ipants process each updating trial by scanning the stimuli from

left to right, one item at a time, consistent with their habitual
reading direction of reading the letters, while scanning their
representation of the current list in WM in parallel. When
encountering a stimulus that does not require updating (i.e.,
an asterisk or a letter identical to the letter held in the same
frame in WM)), they maintain the memory item in that frame.
When encountering a stimulus that requires updating (i.e., a
new letter not matching the one held in the same frame in
WM), they update that item in memory. Updating involves
removing the association of the old item to its context (viz.
the specific frame it had appeared in) and establishing an
association between the new stimulus and that context. The
time for this updating process is reflected in the item-specific
updating cost (captured by the item—position parameter of the
model). Because scanning is serial, RTs are predicted to in-
crease linearly with the number of item—position associations
that need to be updated. In addition, when shifting the focus of
attention from one item to the next while scanning the frames,
participants switch between updated and repeated items. For
example, in condition RRUU, Position 3 (“U”) involves
switching between repetition and updating, whereas
Positions 2 and 4 involve repeating the same condition that
was applied to the previous letter (i.e., “R” after “R” or “U”
after “U,” assuming scanning from left to right). We found
that switching from updated to repeated items, or vice versa,
was associated with a large RT cost, relative to repeating the
same condition: The RT for a trial increased with the number
of update switches to be carried out during scanning the list
from left to right.

We interpreted the cost of switching between U and R
positions as the time taken to open or close the gate to WM.
In other words, this is the time required to switch between two
states of the WM system—maintenance, as is required by
repetition steps, and updating. Because the gate is closed by
default, WM is in a maintenance state at the beginning of each
trial. Accordingly, for example, Condition UURR involves
two switches: from maintenance to updating in Position 1,
and from updating to maintenance in Position 3. Condition
URUR involves four switches: from maintenance to updating
in Positions 1 and 3, and from updating to maintenance in
Positions 2 and 4.

Kessler and Oberauer’s (2014) SGS model provided the
best fit to the data of four experiments, as well as to a reanal-
ysis of Kessler and Meiran’s (2008) Experiment 3 results,
among several theoretical models that were tested. However,
a good fit is a necessary but not a sufficient condition for
confirming a theory (Roberts & Pashler, 2000). Whereas no
other known theory of WM updating can explain the depen-
dence of RTs on the specific order of updated and repeated
items, it is still possible—although unlikely—that other pro-
cesses than SGS might govern WM updating, and the fit of the
model’s predictions to the pattern of RTs across conditions
could be merely accidental. To address this concern, more
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direct evidence for forward scanning during WM updating is
needed. Obtaining such evidence was the goal of the present
study.

Participants performed the partial-display paradigm with a
set size of four items. Table 1 presents the conditions and
parameter values. Critically, the stimuli were either English
or Hebrew letters, presented in different blocks. We hypothe-
sized that participants would scan the stimulus sets according
to the typical reading direction in the relevant language.
Accordingly, English letters would be scanned from left to
right, and Hebrew from right to left. If so, then the number
of gate switches to be carried out for a given U-R pattern
should depend on the language. For example, condition
UURR would require two gate switches in English (in
Positions 1 and 3), but only one in Hebrew (switching from
maintenance to updating at the third item from the right). If,
however, our model fit the data for some reason other than
forward scanning, the pattern of RTs over the different U-R
patterns should not differ between the languages.

Method
Participants

Twenty undergraduate students (11 females, nine males; age:
M =25.00 years, SD = 1.92) from Ben-Gurion University of
the Negev participated in the experiment in return for mone-
tary compensation. The participants reported having no learn-
ing disabilities or neuropsychological dysfunction.

Stimuli
The stimuli were 18 uppercase English consonants and 18

Hebrew consonants. The letters were presented in white
against a black background, within four frames that were

Table 1  Parameter values by conditions
Condition Item—Position Gate Switch Gate Switch
(English) (Hebrew)

RUUU 3 1 2

RRUU 2 1 2

RRRU 1 1 2

UUUR 3 2 1

UURR 2 2 1

URRR 1 2 1

RURU 2 3 4

URUR 2 4 3

uuuu 4 1 1

RRRR 0 0 0

The gate switch predictor values are presented for English and Hebrew
separately. The number of new item—position associations is not affected
by the scanning direction.

@ Springer

positioned horizontally at the center of the screen. Letters were
not allowed to repeat in different positions within the same set.

Procedure

The experiment consisted of two blocks, one for each lan-
guage. The order of blocks was counterbalanced across par-
ticipants. Each block included 60 runs of trials, preceded by
five practice runs. Each run started with the presentation of
four frames with letters inside (see Fig. 1). The participants
were instructed to memorize the letters and to press the
spacebar to continue. Then, a sequence of trials began. The
number of trials was varied randomly between one and five,
so that the end of the run was unexpected. Each trial involved
updating all, some, or none of the items in WM. The condition
of each trial was selected randomly from the following condi-
tions: RRRR (full repetition), UUUU (full update), RUUU,
RRUU, RRRU, UUUR, UURR, URRR, RURU, and URUR.
In each trial, only the updated letters were presented on the
screen. An asterisk was presented in nonupdated frames, to
denote that the letters in those frames did not change. The
participants were instructed to remember the last letter that
appeared in each frame. Accordingly, they had to update their
WM whenever new letters appeared. They were then required
to press the spacebar after updating the items to continue to the

Fig. 1 Schematic depiction of the paradigm. Each run of trials begins
with the presentation of four letters inside frames. The participants are
required to memorize the letters and to press a key to continue. Then a
sequence of one to five trials begins, each involving updating of none,
some, or all of the letters (see the conditions in Table 1). An asterisk inside
a frame indicates that the letter that corresponds to that frame does not
update. A keypress is required to move to the next trial. This response
serves to measure the RT for the updating trials. At the end of the run, the
participants are asked to recall the last letter that had appeared in each
frame; the frames are cued for recall in a random order
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next trial. RTs for these keypress responses were measured.
An intertrial interval of 1,000 ms followed the response, dur-
ing which empty frames were presented. After one to five
updating trials, the participants were required to recall the last
letter in each frame. To probe the recall, a question mark
appeared in each frame, one frame at a time and in a random
order, and the participants had to type in the last letter that had
appeared in that frame.

Results

Recall accuracies—namely the proportion of runs in which
the participants recalled all of the letters correctly—were
83 % in the English block and 85 % in the Hebrew block
[#(38) = 0.60, p = .55]. Only the trials from runs in which
recall was correct were included in the RT analysis. The RT
trimming was done in two steps. First, RTs longer than 15 s
were removed. Second, RTs that deviated by more than three
standard deviations from the mean for each participant in each
condition were considered outliers and removed. In total,
1.1 % of the trials were removed as outliers. Figure 2 presents
the mean RTs by condition in each language.

We started by performing an analysis of variance
(ANOVA) on the mean RTs, with language and condition as
within-subjects variables. We predicted that language and
condition would be additive when the conditions were coded
according to the specific reading direction of the language
used (e.g., UURREyg1ish = RRUUpeprew). An interaction was
predicted when the reading direction was not taken into ac-
count (e.g., UURRgg1ish = UURReprew). The results con-
firmed our hypothesis (see Fig. 2). The main effect of lan-
guage was significant, F(1, 19) =6.34, p = .02, np2 = .25, as
well as the main effect of condition, F(9, 171) = 63.93,
p <.001, np2 = .77, when recoded according to the reading
direction, and F(9, 171)=61.36, p <.001, 77P2 = .76, when not
recoded. As predicted, the two-way interaction was significant
only when the conditions were not recoded, F(9, 171)=14.70,
p <.001, np2 = .44, but not when the reading direction was
taken into account, F(9, 171) = 0.98, p = .46, np2 =.05. This
finding confirms our hypothesis that the scanning direction
plays an important role in WM updating.

We next moved to implementing the SGS model. We im-
plemented the model as a multilevel linear regression model
(Pinheiro & Bates, 2000) for RTs as the dependent variable, as
was done by Kessler and Oberauer (2014). In this analysis, the
number of gate switches and the number of item—position
associations served as within-subjects predictors for RT in
the various conditions. For example, Condition UURRgpgjish
involves updating two item—position associations and two
gate switches. The model assumes that RT is a linear function
of the number of item—position associations and of gate
switches, each with a separate regression weight that served

to estimates the duration of each process. For instance, a gate-
switching slope of 200 implies that the average gate switch
cost was 200 ms.

The advantages of multilevel linear regression is that it
allows the regression coefficients to vary between subjects,
hence taking into account between-subjects variability in the
durations of these processes, and enables a direct comparison
between nonnested models, due to its reliance on maximum
likelihood estimators. To this end, the model included subjects
as a random effect on the intercept and on all slopes (i.e., on
the effects of all predictors). Model comparison and selection
were based on the Bayesian information criterion (BIC) statis-
tic, which penalizes for free parameters and thereby rewards
parsimony. In addition, Bayes factors (BF) were calculated on
the basis of the BIC differences between models, using the
formula BF = exp(ABIC/2) (Wagenmakers, 2007). The BF
value is interpreted as the factor by which the evidence favors
the selected model as compared to the nonselected one. The
models were implemented using the Ime function of the nlme
package in R (Pinheiro, Bates, DebRoy, Sarkar, & the R
Development Core Team, 2012). A diagonal random-effect
variance—covariance matrix was used, assuming that the ran-
dom effects were independent.

Analogous to the ANOVA, we fitted the model to the data
in two ways. First, we modeled the data in which the condi-
tions were recoded according to the reading condition. On the
basis of the ANOVA results, no interactions between the pa-
rameter values and language were expected. We started by
fitting the full model, including item—position, gate switch,
language, and all of the interactions among these predictors
(see Table 2 for the parameter values and model fit statistics
for all models). As predicted, none of the interactions with
language was significant. We continued by removing nonsig-
nificant predictors until we converged on the best-fitting mod-
el (for which further omitting any of the predictors led to a
decrease in fit). This model included all of the main effects,
plus the interaction between gate switch and item—position.
Second, we fit the model to the data, this time without
recoding the conditions according to the reading direction.
The best-fitting model only included the interaction between
gate switch and language, with a larger gate-switching cost in
English than in Hebrew. Note that such a model is implausible
theoretically, even before testing for model fit, because there is
no reason to assume that the duration of gate switching
would be language-specific or stimulus-specific. When
comparing the fits of the best-fitting models, compelling
evidence was observed favoring the model fit to the
reading-direction-recoded data, BF = 1.14 x 10°°. In
other words, the SGS model fits the data significantly
better when taking into account the reading direction
(see Fig. 2 for the model predictions). As can be seen in
Fig. 2b, the best-fitting model of the nonrecoded data fails to
fit the Hebrew conditions.

@ Springer
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Fig. 2 Bars represent the mean RT (and 95 % confidence intervals) for
each condition in each language. The square and triangle symbols
represent the model predictions for English and Hebrew, respectively.
(a) Observed data and model predictions when the conditions are
recoded according to the reading (scanning) direction (e.g.,
URURgpgiish = RURUgeprew). Additive effects of language and
condition are observed. The model predictions fit the data in both

Discussion

Our modeling results replicate and extend our previous find-
ing that the SGS model provides an adequate fit to WM-
updating latencies. The multilevel modeling framework en-
ables testing the contribution of each predictor to explaining
the data. Accordingly, even before turning to analyzing the
effects of language and scanning direction, the fact that the
best-fitting model included gate switch and item—position as
predictors provides strong evidence for their roles in under-
standing WM-updating latencies, in accordance with the SGS
model. More generally, the SGS model was selected by
Kessler and Oberauer (2014) from a large class of theoretical-
ly inspired models that differed in their assumptions regarding
the architecture of WM. These included item—position associ-
ations (as reflected by the item—position parameter in SGS),
interitem associations, chaining, gate switching, and all

@ Springer

languages. (b) Observed data and model predictions when the reading
direction is not taken into account (e.g., URUREpgiish = URUR peprew). An
interaction is observed between language and condition, reflecting the
fact that the patterns of RTs across the conditions differ in the two
languages. The model fails to fit this interaction, as can be observed in
the lack of fit to the Hebrew conditions

possible combinations of these models. The results ruled out
a role for interitem associations (including chaining), and
therefore here we did not test models that included that
predictor.

Our findings further corroborate the scanning assumption
of the SGS model. Although the participants were not
instructed regarding the required reading direction in each
language, the results demonstrate equivalent effects of condi-
tion on updating RTs if, and only if, the conditions are coded
according to the language-specific reading direction. The ef-
fects of language and condition were additive when the latter
was coded according to the scanning direction. This is also
reflected in the modeling results, in which the parameter
values did not vary across the languages. When the direction
of scanning was assumed to be the same for both languages—
namely left to right—an interaction between gate switch and
language arose. Such an interaction could not be explained by
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Table 2 Model fit statistics and predictor estimates
Predictor Estimate (ms) Std. Error df t p
Full model (conditions recoded according to (Intercept) 2,077 181 373 11.50 <.001
reading direction) ItPos 434 89 373 4.90 <.001
BIC = 6,680.66 GateSw 1,035 125 373 8.26 <.001
AIC =6,612.80 Lang 583 156 373 -3.73 <.001
Log likelihood = —3,289.40 ItPos x GateSw —289 83 373 -3.49 <.001
ItPos x Lang -169 116 373 —-1.45 15
GateSw x Lang -13 129 373 -0.10 92
ItPos x GateSw x Lang 69 108 373 0.63 .53
Best-fitting model (conditions recoded according (Intercept) 2,081 233 376 8.93 <.001
to reading direction) ItPos 350 70 376 5.00 <.001
BIC =6,670.70 GateSw 1,028 92 376 11.21 <.001
AIC = 6,626.78 Lang -592 220 376 -2.69 .008
Log likelihood = -3,302.40 ItPos x GateSw 255 63 376 -4.04 <.001
BFcompared to Ful = 145.47
Full model (conditions not recoded according (Intercept) 2,077 213 373 9.74 <.001
to reading direction) 1tPos 434 115 373 3.78 <.001
BIC = 6,880.09 GateSw 1,035 125 373 8.25 <.001
AIC =6,812.23 Lang =35 208 373 -0.17 .87
Log likelihood = -3,389.12 ItPos x GateSw —289 107 373 -2.71 .007
ItPos x Lang =70 159 373 -0.44 .66
GateSw x Lang -329 145 373 -2.27 .02
ItPos x GateSw x Lang 14 149 373 0.09 93
Best-fitting model (conditions not recoded according (intercept) 1,836 188 378 9.79 <.001
to reading direction) GateSw (English) 1,142 120 378 9.49 <.001
BIC = 6,832.15 GateSw (Hebrew) 796 84 378 9.49 <.001
AIC =6,804.21

Log likelihood =-3,395.11
BFcomparcd to Full = 2.57 % 10'0

ItPos = item—position; GateSw = gate switch, Lang = language. Language is coded as the difference between Hebrew and English (i.e., negative values
indicate faster RTs for Hebrew). The ItPos predictor was centered at zero in the analysis to ensure that its main effect was not generated through its
interaction terms. This was done by subtracting the mean predictor value from the predictor value in each condition.

any model of WM updating, because the cost of gating should
not depend on the specific stimuli. Furthermore, even when
equipped with different parameter estimates for the two lan-
guages, this model fell short of fitting the data.

The best-fitting model explained RTs using four predictors.
The item—position and gate switch predictors had been includ-
ed in the best-fitting models in our previous work. The con-
tributions of these parameters were additive to that of lan-
guage, asserting that the processes that they reflect are inde-
pendent of the specific stimuli. The negative interaction coef-
ficient between item—position and gate switch, although
unpredicted, indicates that the additional cost of updating an
item—position association is not independent of gate switches.
We suggest that some aspects of the item—position association
updating take place in parallel to gate switching, so that the
cost of updating the first item in a row is smaller than the cost
of updating the next ones. Specifically, recent findings have
demonstrated the role of removal in WM updating. According
to this idea, old information must be removed from WM prior
to its substitution with new input. Ecker and colleagues

(Ecker, Lewandowsky, & Oberauer, 2014; Ecker, Oberauer,
& Lewandowsky, 2014) have shown that removal can be done
in advance, even before the new information is presented.
Although our model does not estimate the duration of removal
independently, this duration is part of the item—position pa-
rameter. Unlike the creation of new item—position associa-
tions, which is only possible after opening the gate, removal
could be done while the gate was being opened, leading to a
smaller item—position cost for updating in combination with
gate switching than for updating without gate switching.

Our results provide direct evidence of two specific assump-
tions of the SGS model. The first, as we explained in the
introduction, is that the stimulus set is scanned in each trial
from start to end. As we showed here, the direction of scan-
ning depends on the specific stimuli that are presented. The
second assumption is that each trial starts with WM in main-
tenance mode. Two alternative assumptions could have been
conceived. One possibility is that each trial starts in updating
mode. However, this is incompatible with the theoretical gat-
ing model upon which the SGS is based, which assumes that
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maintenance (rather than updating) is the default mode of WM
operation (Frank et al., 2001). Furthermore, it is not supported
by the data. For example, such an assumption would lead to
the wrong prediction that the RTs for Condition URUR (three
gate switches when starting in U mode) should be shorter than
those for RURU (four switches when starting in U mode). The
second alternative assumption is that the state in which each
trial starts depends on the operation required for the first stim-
ulus. This alternative is ruled out by the present results, be-
cause it cannot explain the differences between the two lan-
guages: The number of gate switches would be independent of
reading direction. Hence, our results support the assumption
of starting each trial in a default maintenance mode.

To conclude, whereas a forward-scan mechanism had been
suggested to take place in various aspects of WM processing
(starting from Sternberg, 1966), the SGS model is the first to
incorporate this process in order to understand updating laten-
cies. Our results demonstrate that forward scanning is involved
in updating verbal lists in WM. Understanding WM updating is
highly important due to its role in high-level cognitive function-
ing, as well as in individual differences in executive functioning
and intelligence. Establishing the central role of forward scan-
ning and gate switching in this ability is a necessary step toward
detailed process models of other WM-updating tasks.
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