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Abstract A basic assumption of Signal Detection Theory is
that decisions are made on the basis of likelihood ratios. In a
preceding paper, Glanzer, Hilford, and Maloney
(Psychonomic Bulletin & Review, 16, 431–455, 2009) showed
that the likelihood ratio assumption implies that three regular-
ities will occur in recognition memory: (1) the Mirror Effect,
(2) the Variance Effect, (3) the normalized Receiver Operating
Characteristic (z-ROC) Length Effect. The paper offered for-
mal proofs and computational demonstrations that decisions
based on likelihood ratios produce the three regularities. A
survey of data based on group ROCs from 36 studies validated
the likelihood ratio assumption by showing that its three im-
plied regularities are ubiquitous. The study noted, however,
that bias, another basic factor in Signal Detection Theory, can
obscure the Mirror Effect. In this paper we examine how bias
affects the regularities at the theoretical level. The theoretical
analysis shows: (1) how bias obscures the Mirror Effect, not
the other two regularities, and (2) four ways to counter that
obscuring. We then report the results of five experiments that
support the theoretical analysis. The analyses and the experi-
mental results also demonstrate: (1) that the three regularities
govern individual, as well as group, performance, (2) alterna-

tive explanations of the regularities are ruled out, and (3) that
Signal Detection Theory, correctly applied, gives a simple and
unified explanation of recognition memory data.
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Introduction

In a preceding paper, Glanzer et al. (2009) demonstrated that
recognition memory performance is consistent with normative
Signal Detection Theory (Green & Swets, 1966/1974)1 based
on likelihood ratios (LR). The demonstration consisted of
three steps:

(1) formal proofs that the LR assumption implies three
regularities. These regularities, defined shortly, are the Mirror
Effect, the Variance Effect, and the normalized Receiver Op-
erating Characteristic (z-ROC) Length Effect, (2) computed
examples showing how LR decisions generate the regularities,
and (3) a survey of recognition memory data establishing the
ubiquity of the three regularities.

The 2009 paper also briefly discussed two other topics:
how bias can obscure the Mirror Effect and also how that
obscuring can be countered. Those two topics are developed
in detail here. We show that the Mirror Effect – measured in
the usual way – is obscured by bias. We then counter the bias
effect in four different ways. (1) by using a more informative
index of the Mirror Effect, (2) by canceling the bias with a
pay-off arrangement, (3) by using a between-list design, and
(4) by increasing the difference in accuracy between the two
experimental conditions (familiar vs. unfamiliar names).

1 For a full account of the intrinsic role of LR in Signal Detection Theory
see also Laming (1973, pp. 73-75).
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With respect to the survey in Glanzer et al. (2009), the
following objection can be made. The surveyed data consisted
of pooled group data. It is possible that group data give a
different picture of the underlying processes than do individ-
ual data. The possible disagreement of group and individual
data is discussed at length by Estes (1956) and Estes and
Maddox (2005). The results reported here answer that objec-
tion by demonstrating that the three regularities govern indi-
viduals’ performance.

In a recognition memory experiment, participants are
shown a study list of items and are later shown a test list
consisting of items from the first list (“old”) and items which
were not (“new”). They are then asked to judge whether each
item is “old” (O) or “new” (N), a YES-NO task. Or they are
asked to rate their confidence that each item is “old” or “new”.

Signal detection theory (SDT) represents such memory
tests as generating two distributions of a univariate random
variable X, the information available on a single trial (see
Fig. 1A). The two distributions are typically assumed to be
normal, differing in mean and possibly standard deviation.
The distribution of X when the item is “old” (O) is fO(x) and
when the item is new (N), fN(x). A distribution of new items,
fN(x), on the left and a distribution of old (studied) items, fO(x),
on the right
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on the left. When σO ¼ σN ¼ σ we refer to the model as
“normal equal variance.” We can set μN=0 and σ=1 with no
loss in generality. The sole remaining parameter μO is typical-
ly denoted d ′.

The individual compares x to a fixed criterion c0
responding “old” if x > c0, otherwise “new.” We label the
outcome of a trial as a “hit” (H) p[Hit|Old]=p[X>c0|Old]
when the item is old (is from fO(x)) and the response is “old.”

The conditional probability of a “hit”, P[Hit|Old]=P[X>
c0|Old] is the area under f O xð Þ to the right of the criterion
c0. The area under fN(x) to the right of the criterion c0 corre-
sponds to “false alarms” (FA) (Green & Swets, 1966/1974). If
the criterion is set at a point where the old and new distribu-
tions intersect, then the choice is called unbiased. It is repre-
sented by the middle vertical line in Fig. 1A.

More information about the individuals’memory is obtain-
ed by asking them how confident they are about their classi-
fication of an item as new or old. They now respond by
selecting a rating response from an ordered set of ratings
{R1<R2<⋯<Rn}. A typical choice of ratings would go from

1 to 6 with 1 representing “most sure the item is old” to 6
“most sure the item is new.” We assume that the rating

Fig. 1 Signal detection theory (SDT) representation of decision for
simple one-condition case. (A) initial new (left) and old (right)
distributions. Vertical lines indicate five criteria. (B) Receiver Operating
Characteristic (ROC) based on the distributions. (C) normalized
ROC, z-ROC
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responses are obtained by setting up n−1 criteria c1 < c2 <
⋯ < cn−1 represented by the dotted vertical lines in Fig. 1A.
The criteria divide the horizontal axis into bins and the ratings
are assumed to correspond to the bin containing the variableX.

A plot of the probability of each response for an old item
versus the probability of the same response to a new item is
called a receiver operating characteristic (ROC):
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is the conditional probability that the rating is Ri or less when
the stimulus is old and
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is the conditional probability that the rating R is Ri or less
when the stimulus is new. The confidence rating ROC for item
recognition is a function relating the ratings of old items to the
ratings of new items. The ROC for the distributions in Fig. 1A
is shown in Fig. 1B.

The ROC is often re-plotted on normalized (double proba-
bility) axes with proportions transformed into z-scores. Each
proportion is transformed to z=Φ−1(p), where Φ(z) is the cu-
mulative distribution function of a normal random variable
with mean 0 and variance 1. When data are plotted on trans-
formed axes, as shown in Fig. 1C, the resulting plot is called a
“z-ROC.” It yields additional information about the two un-
derlying distributions: If the underlying distributions are nor-
mal or near normal the z-ROC will be a straight line with a
slope = σN/σO. The two distributions in Fig. 1A are normal
with the same standard deviation and, therefore, the z-ROC is
a straight line with slope 1.0.

If the underlying distributions are normal or near normal
and have unequal standard deviations, the z-ROC is still a
straight line but slope will not be equal to 1.0. It will instead
be equal to the ratio of the standard deviation of the new
distribution to that of the old, σN/σO.

In the preceding description, for the sake of simplicity,
decisions were described as being made on the basis of X,
some form of mnemonic evidence. A full description of
SDT requires an expanded description of the basis for
decisions. In that description decisions are made on the
basis of likelihood ratios (LR) (see Green & Swets,
1966/1974).

The LR in favor of “old” over “new,”

L Xð Þ ¼ f O Xð Þ
f N Xð Þ:

is a measure of the evidence favoring “old” over “new.” On
each test trial, given X, the individual compares its LR in favor
of old to a fixed LR criterion,

L Xð Þ > β

responding “old” if the LR exceeds β and otherwise responds
“new.” β is the LR equivalent of c0 discussed earlier.

The prior probability that an item is “old” is π. If the crite-
rion β is set to (1−π)/π (the prior odds in favor of “new”), then
the resulting decision rule has the highest expected proportion
of correct responses (Green & Swets, 1966/1974).

If there are more than two response categories then the LR
rule is easily generalized by assuming that there are multiple
criteria (Green & Swets, 1966/1974). For example, if the cat-
egories are “Very Strong No,” “Strong No,” “Weak No,”
“Weak Yes,” “Strong Yes,” and “Very Strong Yes,” then the
individual sets are five criteria β1<β2<β3<β4<β5 that guide
this selection among six categories.

The decision rule assumed in much work on recognition
memory is not LR but simple strength or familiarity. For the
case presented in Fig. 1 it is not obvious how to determine
whether memory decisions are based on LR or on strength. It
is, however, possible to make the determination in the case of
two-condition recognition.

Two-condition recognition

There are many experiments in which individuals are present-
ed with two different kinds of items (e.g., high vs. low fre-
quency words) or two different study conditions (e.g., single
vs. repeated presentation) that produce a difference in accura-
cy. These two-condition experiments are important because
they show three regularities that are produced by LR deci-
sions: (1) the Mirror Effect, (2) the Variance Effect, and (3)
the z-ROC Length Effect.

We describe each regularity in turn.

The mirror effect When there are two sets of items or con-
ditions in a recognition test that produce a difference in accu-
racy and the decisions are based on LR, then the superior
condition (S) will give better recognition of old items as old
and also better recognition of new items as new. In a yes/no
recognition test the effect is seen in the mirror symmetric
pattern of hits (H) and false alarms (FA):

FAS;N < FAW ;N < HW ;O < HS;O
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where the subscript S denotes superior, W, weaker, and N and
O refer to new and old, respectively. We will use a transparent
notation for such inequalities in which each term refers to the
proportion of yes responses:

SN < WN < WO < SO ð1Þ

There is extensive evidence for the mirror effect in the
literature (Glanzer & Adams, 1985; Glanzer et al., 2009).

The variance effect When there are two sets of items or
conditions in a recognition test that produce a difference in
accuracy, decisions based on LR will affect the relative vari-
ances of new distributions. SN, the new distribution of the
superior condition, will have a larger variance than WN, the
new distribution of the weaker, lower accuracy condition. This
is a novel general effect, not previously noted in the literature. It
is measured using the slope of the z-ROC that plots superior (S)
new items ratings against weaker (W) new items ratings, the
new/new z-ROC. If decisions are based on LR, the slope will be
less than 1.0. Decisions based on LR also produce a parallel
effect on the relative variances of the old distributions. SO, old
distribution of the S condition, will have a larger variance than
WO, the old distribution of the W condition. The effect is mea-
sured using the slope of the old/old z-ROC that plots the S old
items ratings against theWold items ratings. Again, if decisions
are based on LR , the slope will be less than 1.0.

The z-ROC length effect When decisions are made on the
basis of LR, the length of the z-ROC contracts as a function of
accuracy. Themore accurate the condition, the shorter the z-ROC.

From this point on we will use the log likelihood ratio,Λ, for
convenience. Its use allows us to present simpler equations. The
log likelihood ratioΛ=λ(X) is a function of a random variableX
and is therefore a random variable itself with its own distribu-
tion, mean, and variance. The distribution ofΛ is determined by
the form of the distribution of X and the function λ().

We note that we used ordinary linear regression to estimate
linear fits and obtain slopes for the computed examples of the
following models. There is no issue with using linear regres-
sion in this way. The ROCs are plots of one theoretical distri-
bution against another theoretical distribution. Neither axis is
affected by random error.

The normal equal variance model and generation
of the three regularities

We now present a simple example, a Normal Equal Variance
Model that shows the regularities and how they are generated. In
the example we assume a model of recognition memory based
on normal equal variance distributions because the equations
that govern the regularities are simple and the displays that

show the regularities are also simple. We demonstrated in
Glanzer et al. (2009) that the unequal variance normal model
(which is a better fit to most recognition memory data) produces
the same regularities as the equal variance case. The regularities
seen in the example hold as well for models of recognitionmem-
ory based on binomial and exponential distributions (see Glanzer
et al., 2009). In this example we also convert LR to log LR, Λ.
The conversion does not change any of the effects discussed but
allows us to present simpler equations and simpler plots.

For the current example, SN and WN are both Normal (0,
1), WO is Normal (1,1) and SO is Normal (1.75,1) (the first
number in the parentheses is the mean, the second number is
the standard deviation). The model also assumes decisions
being made on the basis of LR.

Figures 2A and B describe the model at the theoretical level.
Figures 2C and D represent observable data based on the mod-
el. Figure 2A represents the initial distributions of raw informa-
tion for SN,WN,WO, and SO usually referred to as “strength,”
“familiarity,” or “amount of marking.” SO is placed to the right
of WO, representing greater accuracy. SN and WN are not
separated. It can be argued that new, unstudied items, because
they have not been studied, cannot differ in strength.2We do not
separate the new distributions here; moreover, in order to show
the effects of the LR transformation clearly – namely, that when
SO moves above WO, SN will move in the opposite direction,
below WN, on the LR decision axis.

When the individual decides on the basis of LR, the densi-
ties in Fig. 2A are effectively redistributed on a log likelihood
axis, as in Fig. 2B. The log likelihoods, are random variables
whose distributions are also normal (see Glanzer et al, 2009).
Figures 2B, C, and D illustrate the three regularities.

Themirror effect Figure 2B shows that when the densities of
Fig. 2A are re-plotted on a log likelihood decision axis, the
new distributions SN and WN which were at the same posi-
tion in Fig. 2A are now separated. The Mirror Effect appears
with the distributions ordered

SN < WN < WO < SO:

The effect is obvious in Fig. 2B in the order of the distri-
butions’ modes.

The H/FA mirror index This mirror pattern of the distribu-
tions is usually indicated by inequalities from the hits and false
alarms (H/FA) of a yes/no test

2 Moreover, that there are a number of experiments that show the Mirror
Effect in which the underlying new distributions clearly have the same
location initially. These are experiments with a between-list paradigm
which produces so-called “pure lists” (Ratcliff, McKoon, & Tindall,
1994; Ratcliff, Sheu, & Gronlund, 1992). In these experiments the new
items, SN and WN, are not distinguishable because both are drawn from
the same pool of items
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FASN < FAWN < HWO < HSO

Glanzer et al. (2009), however, demonstrated that H/FA
Mirror Index functions poorly when there are bias effects. In
such cases the index may indicate the absence of a Mirror
Effect even when the underlying distributions are actually in
mirror order. We consider this H/FA Mirror Index at length in
this paper, however, because it is widely used.

The distance mirror index A better index of the Mirror Ef-
fect is obtained with more complete measures of the distance
between the means of SN and WN and the distance between
the means ofWO and SO.When confidence ratings have been
obtained, we can plot two novel z-ROCs that give more com-
plete information on those distances. One z-ROC is the plot of
the normalized SN ratings against the normalized WN ratings
– called the new/new z-ROC. The other z-ROC is the plot of
the normalized SO ratings against the normalized WO ratings
– the old/old z-ROC. These two z-ROCs are presented in
Fig. 2D. The new/new z-ROC falls below the positive diago-
nal, indicating that SN is lower (further to the left) on the
decision axis than WN. The distance below the positive diag-
onal can be measured by fitting the new/new z-ROC with a
linear equation. The equation’s intercept indicates the distance
from SN to WN. Because the intercept is affected by the
slopes of the z-ROC it is recommended that its value be
corrected to take account of that effect, converting the inter-
cept, i, to de= 2 i/(1+s)where s is the slope (Wickens, 2002, p.

65). We use this measure, de, for all the z-ROC distances in
this paper. The distance between SN and WN in the new/new
z-ROC, referred to as dnn, is -0.76, the negative value indicat-
ing that SN<WN.

The old/old z-ROC is predominantly above the positive
diagonal in Fig. 2D, indicating that SO is higher (further to
the right) on the decision axis than WO. Fitting the old/old z-
ROC with a linear equation finds the intercept, i. This is used
to derive the measure of the distance from WO to SO, d∞ = +
0.74, the positive value indicating that WO<SO. Those two
inequalities and the inequalities from the standard z-ROCs of
Fig. 2C, namely WN<WO and SN<SO, give the full order of
the underlying distributions as

SN < WN < WO < SO;

i.e., the mirror order.
We use the distance mirror Indices, dnn and d∞ – the mea-

sures derived from the new/new and old/old z-ROCs – as the
preferred index in analyzing the data of the experiments re-
ported later. The distance index is superior to the H/FA index
because it is based on more information, all criterion positions
on the ROC. The H/FA index, on the other hand, reduces the
positions to two. Cohen (1983) has demonstrated the loss of
power that occurs when multiple-valued scales are reduced to
dichotomies.

The distance index is closely related to two other measures
that have been used to analyze the Mirror Effect. One is the
mean confidence rating. That measure will also reveal an

Fig. 2 Signal detection theory (SDT) normal equal variance model for
two-condition case. (A) Four initial distributions − SN,WN,WO, and SO
on X, an initial information or strength axis. SN and WN are not
separated. (B) The distributions in A re-plotted on a log likelihood

decision axis. (C) Standard normalized Receiver Operating
Characteristics (z-ROCs) for S(+) and W(x) showing the Length Effect.
(D) old/old (o) and new/new (*) z-ROCs showing the Mirror and the
Variance Effect
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underlying mirror order when the H/FA index does not. An-
other related measure is obtained from “null choices” in forced
choice recognition experiments (Glanzer, Adams, & Iverson,
1991; Glanzer, Adams, Iverson, & Kim, 1993; Hilford,
Glanzer, & Kim 1997; Kim & Glanzer, 1995) Null choices
are those between the two new conditions SN versus WN and
between the two old conditions SO versusWO The SN versus
WN choice indicates the distance between the two new distri-
butions. It corresponds to dnn. The SO versus WO choice,
indicates the distance between the two old distributions. It is
equivalent to d∞.

The variance effect Figure 2B also shows the Variance Ef-
fect, a larger variance for the strong condition than the corre-
sponding weak condition. When the distributions in Fig. 2A
are re-plotted on the log likelihood axis in Fig. 2B the variance
of SN which was equal to the variance of WN in Fig. 2A
becomes greater than the variance of WN. This can be seen
in the relative spread of the SN and WN distributions in
Fig. 2B. Similarly, the variance of SO which was equal to that
of WO in Fig. 2A is greater than the variance of WO in
Fig. 2B. This change can be seen in the relative spread of
SO compared with WO in Fig. 2B. To measure these relative
variances we again use the two z-ROCs of Fig. 2D. The new/
new z-ROC plots SN ratings against WN. If decisions are
being made on the basis of LR, slnn, the slope of the new/
new z-ROC, which equals σWN/σSN, denoted slnn, will be less
than 1.0. Linear fitting of the new/new z-ROC gives a slope
for the new/new z-ROC of 0.57 < 1.0.

The parallel effect on the relative variances of the old dis-
tributions, SO and WO effect is measured by the slope of the
old/old z-ROC that plots the SO items’ ratings against theWO
items’ ratings. Again, if the Variance Effect holds, the slope
σWN/σSN – denoted sl∞ – will be less than 1.0. In the example,
the old/old z-ROC has a slope of 0.57 < 1.0. In recognition
memory data, however, the slope of the old/old z-ROC is
affected by another factor that complicates its interpretation.3

We therefore concentrate on the new/new z-ROC but will
document the results for the old/old z-ROC as well.

The z-ROC length effect Figure 2C shows the two standard
z-ROCs for SO/SN and WO/WN with the more accurate the
condition, S, producing the shorter z-ROC. The z-ROC
Length Effect is obtained by computing the Euclidean dis-
tance between the end points of each z-ROC. In the example,
length of S, lenS= 3.24; the length of W, lenW = 5.66. In other
words, when decisions are made on the basis of LR, the length
of the z-ROC contracts as a function of accuracy. This was
first proved for the equal variance normal model by Stretch
and Wixted (1998). It has also been proved to hold as well for

the unequal variance normal, the binomial, and the exponen-
tial models (Glanzer et al. 2009).

Key equations

The reasons why the three regularities hold for the normal
equal variance model presented may be summarized briefly.
See Glanzer et al. (2009) for complete derivations and proofs.

The mirror effect

For this model it is assumed that fN(x) is normal with mean 0,
variance 1 and fO(x) is normal with mean d ′, variance 1. Then
Λ is also normally distributed. The conditional means of theΛ
distributions are then

E Λ
���Old

h i
¼ d02

2

E Λ
���New

h i
¼ −d02

2

Since ds
′ >dw

′ these equations produce the Mirror Effect:

E Λ
���New; S

h i
< E Λ

���New;W
h i

< E Λ
���Old;W

h i
< E Λ

���Old; S
h i

The variance effect

The variances in this model were shown to be

Var Λ
���New

h i
¼ Var Λ

���Old
h i

¼ d02

This equation, making the size of the variances a sim-
ple function of the size of d’, leads to the variance effect.
For example, since ds

′ >dw
′ , the slopes of both the new/new

z-ROC and the old/old z-ROC, equal to ds
′ >dw

′ , are less
than 1.0.

The z-ROC length effect

In recognition memory experiments there are multiple
criteria ci, i=1,nc on the decision axis that correspond to
log likelihood ratios λi, i=1,nc. It was proved in Glanzer
et al. (2009) that the length cn−c1 of the z-ROC decreases
as a function of d’.

Finally, we note that all three regularities depend on the
difference between the values of d’.

Bias effects

The preceding section did not include consideration of bias
effects. In normative signal detection theory for a yes/no task

3 The slopeoo is also a decreasing function of the absolute size of dS and
dW. (Glanzer, Kim, Hilford, & Adams, 1999)
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the setting of the single log likelihood criterion c is the sum of
two terms. The first term is the negative of the log prior odds
that a signal will occur. If π denotes the probability of occur-
rence of the signal on any trial, then the log prior odds that a
signal will occur is log[π/(1−π)] and the term we use is its
negative, log 1−πð Þ½ =π�. Intuitively, if the signal is more likely
to occur in one condition than another then the individual
should have a lower criterion and be more likely to respond
“Yes” in that condition.

The second term reflects the losses and gains associated
with different correct and incorrect responses. If the penalty
for a FA is increased, for example, the individual should in-
crease his log likelihood criterion and be more hesitant to
respond “Yes.”

In recognition memory experiments, bias can result if the
observer misperceives the prior probability that the item pre-
sented on a given trial is old or, for some reason, believes that
different outcomes are not equally rewarded or punished. The
possibility of changes in bias by likelihood ratio observers in
responding to different test conditions has been discussed by
Wickens (2002): “As a psychological model, the likelihood-
ratio procedure gives a simple description of how decisions
are made. From past experience the observer has a feeling for
the distribution of effects produced by stimuli from the two
conditions…Bias can arise in this scheme in several ways....
Alternatives whose likelihoods are overestimated, perhaps be-
cause they are particularly salient, are more often chosen than
those that are not.”

With multiple log likelihood ratio criteria λi; i ¼ 1; nc, the
effect of bias, β, is to rigidly shift all the criteria that partition
the LR distributions by an amount log β. Liberal bias, β< 1.0
or, equivalently, log β < 0, moves the criteria to the left on the
decision axis, increasing both hits and false alarms. Conser-
vative bias, β > 1.0 or, equivalently log β > 0 moves the
criteria to the right on the decision axis, decreasing both hits
and false alarms. The bias evidently cannot affect d’ or the
regularities that are solely functions of d’, e.g., the Variance
Effect and the Length Effect. However, when there is a
marked difference in bias between the S and W conditions
the Mirror Effect can be disrupted. If the conservative bias is
relatively large for the W condition and moves the criteria
sufficiently far to the right in relation to the two distributions
for W, the inequality SN <WN of Eq. 1 will disappear, as will
be shown shortly. If the conservative bias is large for the S
condition with the criteria for the S distributions suffi-
ciently far to the right the inequality WO < SO of Eq. 1
will disappear.

To show the working of bias we take the model examined
earlier with SN and WN Normal (0,1), WO Normal (1,1) and
SO Normal (1.75,1). We now impose a liberal bias, βs = .50
(log βs = -0.69), on the S distribution. The z-ROCs obtained
are shown in Fig. 3A. They show the same Length Effect as
the unbiased case in Fig. 2C, lenW = 5.66, lenS = 3.22. The

slopes of dnn and d∞ are both 0.5, less than 1.0. Both therefore
indicate the Variance Effect.

The bias has, however, shifted the S z-ROC in Fig. 3A and
both z-ROCs in Fig. 3B. The intercepts of Fig. 3B give dnn =
-.20 and d∞ = .98, values that reflect theMirror Effect, but also
values that indicate a shift of the S distributions to the right
relative to the W distributions. Compare them to the corre-
sponding dnn = -.76 and d∞ = .74 in Fig. 2D. The less infor-
mative H/FA measure indicates a complete loss of the Mirror
Effect with

FASN ¼ :32 > FAWN ¼ :31 < HWO ¼ :69 < HSO ¼ :90

The effect of changing the bias on the LR regularities for
the normal equal variance model is shown in Table 1. In it the
bias, βs for S is varied from = 0.25 to 3.00 in steps of .25 (log
βs = -1.39 to +1.10), with W left unbiased, log βw = 0 . With
the H/FA Mirror Index, the Mirror Effect fails at βs of .50 or
less and 2.00 or greater. The Distance Mirror Indices, dnn and
d∞, however, fail only for muchmore extreme bias values, less
than .50 or greater than 2.75. The Length Effect and the Var-
iance Effect remain.

Fig. 3 Signal detection theory (SDT) normal equal variance model with
differential bias on a log likelihood decision axis. (A) Standard
normalized Receiver Operating Characteristics (z-ROCs) for S(+) and
W(x) showing the Length Effect. (B) old/old (o) and new/new (*) z-
ROCs showing the Mirror and the Variance Effect
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We also explored the effect of bias on the normal unequal
variance model. This model is important because most recog-
nition data evidence unequal variance (Egan, 1958, 1975;
Glanzer, Kim, Hilford, & Adams, 1999; Ratcliff, Sheu, &
Gronlund, 1992). It therefore offers a better fit to recognition
memory data than the normal equal variance model (Mickes,
Wixted, & Wais, 2007 )

The parameters selected were SN and WN Normal (0,1),
WONormal (1,1.18), and SO Normal (1.75,1.25). The results
are shown in Table 2.

In this case the H/FA Index of the Mirror Effect fails again
at βs of .50 or less and 2.00 or greater. The Distance Mirror
Index is unaffected. The measures for the Variance Effect vary
but all are less than 1.0 as evidenced of that effect. Both mea-
sures for the Length Effect also vary but at every bias level
lens < lenw

In summary, bias has little or no effect on the LRVariance
and the Length Effects. It can eliminate the Mirror Effect,
particularly when the H/F index is used.

Empirical work

We now report the results of five experiments that show the
three LR regularities and the effects of bias. In the first exper-
iment, normative word frequency is the strength variable. In
the four that follow familiarity of names is the strength
variable

All five experiments’ results show the three regularities.
The second experiment, however, shows that bias can obscure
the Mirror Effect when measured by the H/FA Index. The
Distance Mirror Index, however, reveals the effect. The third,

fourth, and fifth experiments demonstrate three other methods
for countering those bias effects on the H/FA Index.

We report experiment results in four stages. First, we report
group, pooled results. All the individuals' confidence ratings
are pooled to give a single ROC. These give a compact, gen-
eral picture of the regularity results but do not permit standard
statistical analyses. It will be seen, however, that the measures
derived from the group results correspond closely to the mea-
sures obtained from the standard analyses that follow. Second,
we give the H/FA Index of the Mirror Effect, the conventional
analysis of the effect. Third, we report the three LR regulari-
ties based on ROCs computed for each individual. These give
distributions of measures that can be subjected to statistical
analysis. Fourth, we report a more detailed analysis of each
individual's performance.

Experiment 1. The three LR regularities and no bias
effect

To show the three LR regularities in a simple case without the
complications of bias we review and reanalyze the data from a
recognition experiment with normative word frequency as the
variable: high frequency (H) versus low frequency (L)
(Glanzer & Adams, 1990). Here L is the more accurate or
strong (S) condition and H is the less accurate or weak (W)
condition.

The 16 undergraduate participants were first given a lexical
decision task with 248 words, half H, half L, and 248 non-
words. They were then given an eight-level confidence rating
recognition test with the 248 old words and 248 new (half H

Table 1 Effect of bias on the H/FA Index and the three regularities, equal variance normal model with bias, βs , varied in the strong condition (SO),
weak condition (WO) held constant, unbiased

LR regularities

H/FA index Mirror effect Variance effect Length effect

βs SN WN WO SO dNN dOO slNN slOO lenW lenS

0.25 0.46 0.31 0.69 0.95 0.20 1.38 0.57 0.57 5.66 3.22

0.50 0.32 0.31 0.69 0.90 −0.20 0.98 0.57 0.57 5.66 3.22

0.75 0.24 0.31 0.69 0.85 −0.43 0.75 0.57 0.57 5.66 3.22

1.00 0.19 0.31 0.69 0.81 −0.59 0.58 0.57 0.57 5.66 3.24

1.25 0.16 0.31 0.69 0.77 −0.72 0.46 0.57 0.57 5.66 3.22

1.50 0.13 0.31 0.69 0.74 −0.82 0.35 0.57 0.57 5.66 3.24

1.75 0.12 0.31 0.69 0.71 −0.91 0.26 0.57 0.57 5.66 3.24

2.00 0.10 0.31 0.69 0.68 −0.99 0.19 0.57 0.57 5.66 3.22

2.25 0.09 0.31 0.69 0.66 −1.06 0.12 0.57 0.57 5.66 3.24

2.50 0.08 0.31 0.69 0.64 −1.12 0.06 0.57 0.57 5.66 3.22

2.75 0.07 0.31 0.69 0.61 −1.17 0.01 0.57 0.57 5.66 3.24

3.00 0.07 0.31 0.69 0.60 −1.22 −0.04 0.57 0.57 5.66 3.22

Violations of the Mirror Effect underlined
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and half L). Further details on the procedure and method are
given in the original publication.

Results

Group

The four group z-ROCs, based on the pooled confidence rat-
ings of all 16 participants, are shown in Fig. 4A and B. The
regularities can be seen in the four z-ROCs as in the z-ROCs
for the theoretical model discussed earlier (e.g., Fig. 2C and
D). The examination is supplemented by sets of measures
based on those z-ROCs. For the Mirror Effect, we measure
the distances between the four underlying distributions. Those
are obtained from the intercepts of the two z-ROCs in Fig. 4A
and the two z-ROCs in Fig. 4B. For the Variance Effect, we
measure the slopes of the old/old and new/new z-ROCs (see
Fig. 4B). Here and in all subsequent analyses of group and
individuals’ z-ROCs those measures are obtained by fitting
each z-ROC with a linear function using the Wickens maxi-
mum likelihood program (Wickens, 2002) which furnishes
intercepts and slopes. For the z-ROC Length Effect we com-
pute the Euclidean distance between the end points of the
standard z-ROCs in Fig. 4A.

Figure 4A shows the standard z-ROCs for L and H. The
greater accuracy of L over H is seen in the superior position of
the L z-ROC and its greater (positive) distance from the main
diagonal. Fitting the two z-ROCs with linear functions and
obtaining the intercepts gives us accuracy measures, the nu-
merical distances between LN and LO (dL) and between HN
and HO (dH). With dL = .91> dH = .56. The z-ROC Length

Effect is evident. Computation gives us lenL = 2.48 < lenH =
2.99.

Figure 4B shows the new/new and old/old z-ROCs. The
new/new z-ROC is below the main diagonal, indicating that
LN is belowHN on the decision axis as required for theMirror
Effect, with a distance measure dnn = -0.22: that is, LN < HN.
The old/old z-ROC is above the main diagonal, indicating that
LO is above HO on the decision axis as required for theMirror

Table 2 Effect of bias on the H/FA index and the three regularities, normal unequal variance model with bias, βs , varied in the strong condition (SO),
weak condition (WO) held constant, unbiased

LR regularities

H/FA index Mirror effect Variance effect Length effect

βs SN WN WO SO dNN dOO slNN slOO lenW lenS

0.25 0.56 0.26 0.62 0.94 −0.60 0.46 0.57 0.54 5.77 4.24

0.50 0.33 0.26 0.62 0.86 −0.75 0.43 0.46 0.43 6.53 3.36

0.75 0.23 0.26 0.62 0.79 −0.78 0.41 0.46 0.43 6.93 3.09

1.00 0.17 0.26 0.62 0.74 −0.67 0.40 0.58 0.54 5.24 2.92

1.25 0.14 0.26 0.62 0.70 −0.61 0.42 0.62 0.58 4.67 2.81

1.50 0.11 0.26 0.62 0.67 −0.57 0.43 0.65 0.61 4.35 2.74

1.75 0.10 0.26 0.62 0.64 −0.55 0.43 0.66 0.63 4.16 2.68

2.00 0.08 0.26 0.62 0.61 −0.53 0.44 0.67 0.64 4.00 2.63

2.25 0.07 0.26 0.62 0.59 −0.51 0.45 0.68 0.64 3.89 2.59

2.50 0.06 0.26 0.62 0.57 −0.50 0.45 0.69 0.65 3.79 2.55

2.75 0.06 0.26 0.62 0.55 −0.48 0.46 0.70 0.66 3.71 2.52

3.00 0.05 0.26 0.62 0.54 −0.47 0.46 0.70 0.66 3.64 2.48

Violations of the Mirror Effect underlined

Fig. 4 Normalized Receiver Operating Characteristics (z-ROCs) for
Experiment 1, low (L) versus high (H) frequency words. (A) Standard
z-ROCs for L(+) and H(x) showing the Length Effect. (B) old/old (o) and
new/new (*) z-ROCs showing the Mirror and the Variance Effect
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Effect, with a distance measure of d∞ = 0.28: that is, HO<LO.
The slope of the new/new z-ROC = 0.89, less than 1.0, as
required for the Variance Effect: variance LN > variance
HN. The slope of the old/old z-ROC = 0 .74, less than 1.0,
as again required for the Variance Effect: the variance of LO is
greater than the variance of HO.

Statistical analyses

We now report the results of the statistical analyses of the
participants’ responses in three stages. First, the conven-
tional analysis of the H/FA Index of the Mirror Effect.
Second, the analysis of the three LR regularities. Finally,
a third analysis of individual responses with respect to the
three LR regularities.

Conventional analysis The standard analysis of the Mirror
Effect consists of a comparison of the accuracy of the two
conditions (a difference is necessary for the effect to occur),
and comparison of the hit and FA rate for each condition. The
measures of interest are presented in Table 3. The table also
includes measures of bias.

In the first row of Table 3 entries one and two are the d’s for
the Strong condition (dS) and for the Weak condition (dW): dS
= 0.96 and dW = 0.60. They show that L words (S) are recog-
nized significantly better than H words (W): F(1,15) = 45.31,
MSE = 0.02 . This is a pre-condition for theMirror Effect. The
next two entries present the mean bias indices, c = .5x[ z(H) +
z(FA) ] (Wickens, 2002, p. 28), for the L and the H condition.4

The means are +0.06 for L and +0.07 for H, indicating mini-
mal bias and minimal bias difference. The two do not differ
significantly, F(1, 15) = 0.18, MSE = 0.01. Since there are
accuracy differences but no differential bias effects we expect
the H/FA Mirror Index to indicate the mirror pattern, and it
does. The next four columns give the H/FA Index: FASN =.30
< FAWN=.36 < HWO= .59 < HSO = .66. Statistical evaluation is
done by testing the differences, FASN vs FAWN and HWO vs
HSO. Those tests find each difference significant, t(15) = 3.72,
SE = 0.02, and t(15) = 4.52, SE = 0.02. Therefore, with this
index the mirror regularity holds. (Here and for the tests that
follow we will use the words “significant” or “significantly”
without the preceding “statistically”).

LR regularity analysis For this analysis we fitted each
individual’s confidence ratings with linear functions using
the Wickens (2002) maximum likelihood program as was
done for the pooled group data. For each individual we
obtained two standard z-ROCs (Weak and Strong), an old/

old z-ROC, and a new/new z-ROC. For each z-ROC we
then obtained a de and slope.5 The lengths of each indi-
vidual’s standard z-ROCs were computed using the Eu-
clidean distance formula

Table 4 presents the mean measures of the three regularities
based on the individuals' z-ROCs. The first two columns give
the DistanceMirror Index: the mean distance between the two
new distributions, dnn, and the mean distance between two old
distributions, d∞. These means are obtained from the inter-
cepts of the individual new/new z-ROCs and the individual
old/old z-ROCs. The mean dnn = -0.26 is negative and with
t(15) = 5.20, SE = 0.05 is significantly below zero: SN <WN.
The mean d∞ = 0.29 is positive and with t(15) = 6.03, SE =
0.05 is significantly above zero: SO > WO. Again, the Mirror
Effect holds.

The next two columns, giving the mean slopes of the
new/new and old/old z-ROCs (slnn and sloo), indicate the
Variance Effect. They should be less than 1.0 for the ef-
fect to hold. The mean slnn = 0.88 with t(15) = 5.18 , SE =
0.02 is significantly below 1.0. The mean sloo = 0.73 with
t(15) = 7.54, SE = 0.04 is also significantly below 1.0.
The Variance Effect holds.

The next two columns, lenS and lenW, list the mean lengths
of the standard z-ROCs for L =2.74 and H = 3.32. lenS is less
than lenW with the difference significant, F(1, 15 ) = 35.37,
MSE = 0.08. The z-ROC Length Effect holds.

In summary, all analyses find significant effects of all three
LR regularities.

Table 3 Experimental results: accuracy, bias and H/FA mirror

Accuracy Bias H/FA

Exp. ds dw cs cw SN WN WO SO

1. Freq 0.96 > 0.60 0.06 0.07 0.30 < 0.36 < 0.59 < 0.66

2. Fam. 2.11 > 1.04 −0.03 < 0.38 0.18 0.20 < 0.55 < 0.85

3. FamP 1.80 > 0.91 0.04 0.08 0.20 < 0.30 < 0.64 < 0.78

4. FamB 2.49 > 1.21 0.11 0.15 0.11 < 0.26 < 0.65 < 0.87

5. FamR 2.76 > 1.10 −0.14 < 0.42 0.16 < 0.20 < 0.56 < 0.89

Coding of experiment superscripts (FamP , FamB , FamR ) : P = payoff
schedule; R = reduced list; B = between group paradigm

Coding between paired values: > signifies Bstatistically greater than^ e.g.,
ds vs. dw;

< signifies Bstatistically less than^ e.g., cs vs. cw

4 Hit rates of 1.0 and FA rates of 0.0 cannot be computed with the c index.
Values of 0.999 and 0.001 were substituted for those to permit computa-
tion. The responses of one participant in Experiment 3, two in Experiment
4, and two in Experiment 5 required this adjustment

5 Fitting the z-ROCs of individual participants generates two problems.
One is that some participants do not use all of the rating categories. Such
cases are dealt with by collapsing neighboring categories, handling the
responses as if they were on a seven or six category scale in this exper-
iment. The other problem is that for some individuals the maximum
likelihood program does not converge within 500 iterations. We use the
values of that final iterationwhich are almost identical with the values that
are obtained from linear regression of the z-ROCs
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Further analysis of individual responses We raised earlier
the question of whether the regularities hold for individuals as
well as for the pooled, group data. To answer that question we
tabulated the presence of the regularities in each individual's
data. The proportions of the 16 participants that show each of
the three regularities are shown as ratios in the first row of
Table 5. For example, all 16 participants showed SN < WN
(dnn negative). All the regularities are evident and differ sig-
nificantly from chance (.50) by a binomial test. These results
fully support the analyses of the corresponding statistics in
Table 4.

We next report four studies in which, instead of word fre-
quency, familiarity of names is the variable. We switch to this
variable primarily to document further the three regularities.
The use of familiarity will, furthermore, permit us to evaluate
an alternative explanation of the Mirror Effect, the two-
process explanation, considered later. All four experiments
evidence the three LR regularities. They show, moreover,
how the bias effects that conceal the mirror effect as measured
by the H/FA Index can be countered.

Experiment 2. The three LR regularities and a bias
effect

In the preceding experiment we observed the three regulari-
ties, no differential bias effects, and the Mirror Effect as mea-
sured by both the Distance Index and the H/FA Index. In this
experiment, we see the effect of differential bias.

Method

The participants viewed a study list of 60 familiar (F) and 60
unfamiliar names (U) on a computer monitor. F is the strong
condition, U the weak condition. Following the study list, they
completed a confidence rating recognition test. The recogni-
tion test consisted of the names on the study list, and an equal
number of 60 F and 60 U new names. The selection of study
list names and test list names, and their order of presentation
were randomized individually for each participant.

Materials

Two main lists, one of F and one of U names, were used to
construct the study and test list for each participant. The F list
consisted of 120 names ofwell-known actors, actresses, athletes,
and politicians. The U list consisted of names from a local tele-
phone book. Examples of the F names were Drew Barrymore,
Edward Koch, and Tom Hanks. Examples of the U names were
Aaron Hutchings, Basil Madsen, and Dawn Wise. Preliminary
testing was carried out with a group of 15 undergraduates who
rated each of the names on a 6-point scale with 1 being “very
familiar” and 6 being “very unfamiliar.” The F names had a
mean rating of 1.14, σ = 0.15, with 98 % judged familiar. The
U names had amean rating of 4.83,σ = 1.01, with 21% deemed
familiar. An additional 18 U names were selected and used as
practice and filler items. Twelve were used for a practice study
and test list. Six were used as unscored filler items: two, at the
beginning and two at the end of each study list, and two at the
beginning of each test list. The filler names served to eliminate
primacy and recency effects. List names were randomly selected
and individually randomized for each participant.

Procedure During study and test each name appeared in the
center of the screen, in capital letters. During study each name
appeared for 1250 ms, with a blank screen for 750 ms, sepa-
rating successive items. The test list was presented immedi-
ately after the completion of the study list. The test list
consisted of 120 F names and 120 U names, half of each
studied and half new. The test was self-paced, each name
remaining on the screen until the participant responded.

Participants were instructed to decide, for each name, whe-
ther the itemwas “old” (had appeared in the study list) or “new”
(had not) using a 6-point confidence rating scale. The confi-
dence ratings were: (1) very sure old; (2) moderately sure old;

Table 5 Proportion of participants showing each Λ regularity

Mirror effect Variance effect Length effect

Exp. dnn− doo+ slnn < 1 sloo < 1 lenS < lenW

1. Freq. 16/16 15/16 15/16 16/16 16/16

2. Fam 38/38 38/38 36/37 36/38 35/38

3. FamP 25/25 27/28 21/27 26/28 26/30

4. FamB 30/33 32/35 30/33 29/35 29/34

5. FamR 32/41 35/35 41/41 35/35 42/43

Denominators vary because the data of some participants did not permit
the generating of the relevant ROCs. All entries are significantly different
from chance, by binomial test. Coding of superscripts: P = payoff sched-
ule; B = between-list paradigm; R = reduced list

Table 4 LR regularities

Mirror effect Variance effect Length effect

Exp. dnn− doo+ slnn sloo lenS lenW

1. Freq −0.260 0.290 0.881 0.731 2.74 < 3.32

2. Fam −0.570 1.280 0.641 0.591 2.39 < 3.68

3. FamP −0.460 0.710 0.751 0.761 2.75 < 3.60

4. FamB −0.800 1.310 0.771 0.541 2.55 < 4.07

5. FamR −0.220 1.140 0.551 0.441 1.97 < 3.81

Coding of experiment superscripts (FamP , FamB , FamR ): P = payoff
schedule; B = between-list paradigm; R = reduced list

Coding of results superscripts: 0 = Bstatistically significant, different from
0;^ 1 = Bstatistically significant, below 1^

Coding between paired values, e.g., lenS vs. lenW: < indicates
Bstatistically significant, less^
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(3) slightly sure old; (4) slightly sure new; (5) moderately sure
new; and (6) very sure new. The numbers and their descriptions
stayed on the monitor so that participants did not have to com-
mit the scale to memory. The experiment began with a short
practice session which consisted of a 6-item study list followed
by a 12-item test list, six studied and six new items.

Participants The data for 38 undergraduates are reported
(one individual’s data whose responses were below chance
are not). The participants had all been speaking English since
the age of 10 years or earlier. They participated to fulfill a class
requirement. This description also holds for the participants in
Experiments 3, 4, and 5.

Results

Group The group z-ROCs are presented in Fig. 5. All three
LR regularities can be seen. Analysis of d’ (in Fig. 5A the
strong condition is F) shows dF = 1.93 > dU = 0.93. The z-
ROC length of F = 2.27 is less than the length of U = 3.83: the
Length Effect. In Fig. 5B the old/old z-ROC lies above the
main diagonal, with doo = 1.12: FO is above UO on the deci-
sion axis. The new/new z-ROC lies below the main diagonal,
with dnn = -0.50: FN is below UN on the decision axis. The
Distance Index evidences the Mirror Effect. This is a striking
effect of LR decisions since FN is greater thanUN in the initial
familiarity ratings cited earlier in the section onMaterials. The
Distance Index does, however, show the effect of bias in that
dnn is a much smaller distance than doo. Finally, the slopes of
both those z-ROCs are less than 1.0, sloo =.0.57 and slnn =

0.61: the Variance Effect. This is another striking effect of LR
decisions. The Variance Effect means that variance of the fa-
miliar names is greater than that of the unfamiliar names. But
the initial ratings of those names, cited earlier in Materials,
show the unfamiliar names starting with the greater variance.

Statistical analyses

Conventional analysis The second row of Table 3 displays
some of the results for the experiment. The first two entries
show dF = 2.11 > dU = 1.04, t(37) = 77.69, MSE = 0.28. The
significant difference in accuracy indicates that the Mirror Ef-
fect should be present. The next two entries are the bias indices.
Themean bias index cU = +0.38 (a strong conservative bias) for
the unfamiliar items and cF -0.03 (a slight liberal bias) for the
familiar names. They differ significantly, F( 1, 37)= 20.93,
MSE= 0.15 .The difference reflects the fact that participants
tended to say “yes” less often to the unfamiliar names, both
new and old, than to the familiar names. This differential bias
moves the two false alarm rates together. The pattern of hits and
false alarms shows the effect of the differential bias, with FAFN

and FAUN barely separate. The effect of the bias is severe on the
H/FA Mirror Index. The statistical analysis of that index is the
test of FAFN versus FAUN and HUO versus HFO. That statistical
evaluation finds only HWO versus HSO significantly different,
t(37) = 9.30, SE=0.03. The difference between FAFN versus
FAUN, however, is not, t(37) = 0.45, SE = 0.03. If the H/FA
Index was the only measure available, the conclusion would be
that there was a failure of the Mirror Effect.

LR regularity analysis The second row of Table 4, shows,
however, that the Mirror Effect is present as shown by the
significant dnn and doo Distance Index (entries 1 and 2). The
mean distance between to two new distributions is negative,
dnn = −0.57, and with t(37) = −4.41, SE = 0.13 is significantly
below zero: FN < UN. The mean distance between two old
distributions, doo = 1.28, is positive and with t(37) = 16.73,
SE= 0.08 is significantly above zero: FO > UO. In sum, the
Distance Index finds that the Mirror Effect holds. The distri-
butions are in the order FN < UN < UO < FO. When there is
differential bias, the H/FA Index, based on minimal distance
information, fails to show the mirror pattern while the Dis-
tance Index reveals the pattern’s presence.

The next two entries, the mean slopes of the new/new and
old/old z-ROCs, indicate the Variance Effect. Both are less
than 1.0. The mean of the new/new slope = 0.64, with t(37)
= 7.55, SE = 0.05 is significantly below 1.0. The mean of the
old/old slope = 0.59, with t(37) = 10.28 is also significantly
below 1. The Variance Effect holds. The presence of the Var-
iance Effect, that the L conversion makes the σ for the F
names greater than that for the U names, is particularly strik-
ing since the initial measures of familiarity indicated the re-
verse. As noted in the section on Materials above the initial

Fig. 5 Normalized Receiver Operating Characteristics (z-ROCs) for
Experiment 2, familiar (F) versus unfamiliar (U) names. (A) Standard z-
ROCs for F(+) and U(x) showing the Length Effect. (B) old/old (o) and
new/new (*) z-ROCs showing the Mirror and the Variance Effect
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variance of the familiarity ratings of F names were less than
that of the ratings of the U names.

The last two entries, the mean lengths of the standard z-
ROCs for F = 2.39 and U = 3.68, are significantly different,
F(1, 37) = 90.08, MSE= 0.35. The Length Effect holds.

In summary, all three LR regularities hold, including the
Mirror Effect. The H/FA Mirror Index, however, is strongly
affected by the bias difference and indicates, incorrectly, the
absence of a Mirror Effect.

Further analysis of individual responses The proportions of
individual participants that show each of the three regularities
are presented in the second row of Table 5. All the regularities
are again evident and statistically significant by a binomial
test. These data fully support the analyses of the correspond-
ing statistics in Table 4. The denominators of the ratios vary
because the data of two participants did not permit the com-
putation of all four z-ROCs (they did not use a sufficient
number of confidence categories). For the following experi-
ments this variation in the Table 5 denominators occurs for the
same reason: participants' responses that do not permit com-
putation of particular z-ROCs.

In summary, we have again demonstrated the presence of the
three regularities in the performance of individuals, this time for
familiarity of names as the variable. We have furthermore
demonstrated that the conventional H/FA Index for the Mirror
Effect is inadequate when there is differential bias. In that case,
the more informative Distance Index based on dnn and doo
should be used. We develop this point further by showing
how to cope with differential bias when the H/FA Index is used.

Experiment 3. Bias removed with payoff schedule

In the preceding experiment the participants showed a differ-
ential bias. They tended to say “yes” less often to unfamiliar
names than to familiar names. This bias concealed the Mirror
Effect when measured by the H/FA Index. We now remove
the differential bias directly by arranging differential payoffs
for responses to the two classes of names. If our reasoning is
correct then all three regularities should appear including a
mirror pattern for the H/FA Index. We use the payoffs to
induce a counter-bias canceling the observed bias. This exper-
iment is particularly important because any apparent failure of
the Mirror Effect is necessarily accompanied by differential
bias. This accompaniment is seen in the data of Experiment 2
when the H/FA Index is used. Our interpretation of the relation
between bias and Mirror Effect is that the bias conceals the
effect, particularly with the H/FA Index. An alternative inter-
pretation is that the differential bias is a by-product of the
intrinsic failure of the Mirror Effect with the materials of
Experiment 2. To test which interpretation is correct, we
now repeat Experiment 2 but with a feedback operation,

pay-offs, to remove the differential bias of Experiment 2. If
our interpretation is correct, then the Mirror Effect should be
evident, full-blown, even for the H/FA Index.

Method

The materials, procedure, and characteristics of participants
were the same as in Experiment 2, except that, before the test,
the participants were told that their responses would be scored
with the following schedule: For each old, unfamiliar name
correctly identified as “old”, +50 points would be assigned.
For each old, unfamiliar name incorrectly identified as “new”,
−50 would be assigned. For all other correct responses, +10
and all other incorrect responses, −10 would be assigned. To-
tal scores were reported to the participants at the end of the
test.

Participants Forty-two undergraduates.

Results

Group The group z-ROCs are presented in Fig. 6. All three
LR regularities can be seen. In Fig. 6A the z-ROC for F is
above that for U with dF = 1.45 and dU = 0.77. The length of
the F z-ROC, 1.60, is less than the length of U, 2.13: the z-
ROC Length Effect. In Fig. 6B the old/old z-ROC lies above
the main diagonal, with doo = 0.61: FO is above UO on the
decision axis. The new/new z-ROC lies below the main diag-
onal, with dnn = -0.40: FN is below UN on the decision axis.
Those two z-ROCs indicate the Mirror Effect. Also the slopes

Fig. 6 Normalized Receiver Operating Characteristics (z-ROCs) for
Experiment 3, familiar (F) versus unfamiliar (U) names. (A) Standard z-
ROCs for F(+) and U(x) showing the Length Effect. (B) old/old (o) and
new/new (*) z-ROCs showing the Mirror and the Variance Effect
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of both those z-ROCs are less than 1.0, slnn= 0.67 and sloo=
0.83: the Variance Effect.

Statistical analyses

Conventional analysis The third row of Table 3 presents the
mean accuracy, bias, and H/FA index. The accuracy d’s are
based on 34 of the 42 participants tested.With the introduction
of payoff instructions, eight of the participants used too few
categories to permit construction of some z-ROCs, e.g.,
using only two confidence ratings: very sure old and very
sure new.

The first two entries are dF = 1.80 and dU = 0.91. These
measures of sensitivity differ significantly, with F(1,33) =
109.06, MSE = 0.12. With a difference in accuracies across
the two conditions, the regularities appear. The next two en-
tries present the mean bias indices, cF = +0.04 and cU =
+0.08. These indices do not differ, F(1, 41) = 0.58, MSE =
0.07. No disruption of the mirror regularity should be expect-
ed. The next four entries show the mirror pattern in the H/FA
data: FAFN= 0.20 < FAUN= 0.30 < HUO = 0.64 < HFO = 0.78.
Statistical evaluation of FAFN versus FAUN and HUO versus
HFO find the values in each pair significantly different, t( 41) =
7.65, SE = 0.01, and t(41 ) = 9.29, SE = 0.01. The argument
presented in the introduction to this experiment is sup-
ported. Differential bias in Experiment 2 caused the ob-
scuring of the Mirror Effect as measured by the H/FA
Index. Removal of that differential bias with a payoff
schedule revealed the effect even when measured by the
weaker H/FA index.

LR regularity analysis Table 4 contains the z-ROC-based
regularity measures. The first two means for the DistanceMir-
ror Index, are dnn = −0.46 and doo = 0.71. Both differ signif-
icantly from zero. The mean dnn is negative with t(33) =
−5.15, SE = 0.09: SN < WN. The mean doo is positive with
t(33)= 7.14 , SE = 0.10 : WO < SO. The next two entries, the
mean slopes of the new/new and old/old z-ROCs, indicate the
Variance Effect regularity. Both are significantly less than 1.0.
The mean of dnn = 0.75 with t(33) = 3.93, SE = 0.06. The
mean of doo = 0.76 with t(33) = 3.00, SE = 0.08. The Variance
Effect holds.

The next two entries, the mean lengths of the standard z-
ROCs for F = 2.75 and U = 3.60 are significantly different,
F(1, 33 ) = 12.32, MSE = 0.60. The z-ROC Length Effect
holds.

Further analysis of individual responses The proportions of
individual participants that show each of the three regularities
are presented as ratios in the third row of Table 5. All the
regularities are evident and statistically significant by a bino-
mial test. These data fully support the analyses of the corre-
sponding statistics in Table 4.

Experiment 4. Bias removed with between-list
paradigm

All three preceding experiments displayed the three regulari-
ties. In Experiment 2, however, sizable bias difference effects
removed the Mirror Effect according to the H/FA Index. In
Experiment 3 we removed that bias with a payoff schedule
and recovered the H/FAMirror Effect. Another way to accom-
plish that removal and thereby recover the H/FAMirror Effect
is by moving to a between-list rather than a within-list para-
digm. In a within-list paradigm, the two conditions, e.g., F and
U, are both present in a single study and a single test list as in
the preceding experiments. In a between-list paradigm, the
two conditions appear in separate study-test sequences.

The effect of separate test lists on bias was discovered by
Hoshino (1991). In a series of experiments, he tried to repli-
cate the word frequency Mirror Effect using Japanese kanji
(ideograms) with a yes/no procedure and the H/FA Mirror
Index. His first two experiments failed to show the effect, with
P(HO) > P(LO). He ascribed the failure to a differential bias, a
difference in the tendency to say “old” more frequently to H
versus L words. The c bias indices are significantly different.
In a third experiment he tested two groups in different condi-
tions. One was tested as in his Experiments 1 and 2, with a test
list consisting of a mixture of L and H words. That group
showed the same pattern of results as his preceding two ex-
periments, differential bias and violation of the Mirror Effect
with the H/FA Index.

FALN ¼ 0:10 < FAHN ¼ 0:27 < HHO ¼ 0:76 > HLO

¼ 0:75:

The other group, with separate H and L test lists, obtained
the Mirror Effect with the H/FA Index.

FALN ¼ 0:14 < FAHN ¼ 0:24 < HHO ¼ 0:68 < HLO

¼ 0 :71

(Hoshino presented and analyzed his data in a more com-
plex form, separating results from the first half and second half
of the test list. We have presented the combined results.)

We aimed, therefore, in this experiment, to accomplish two
things: (1) replicate evidence of the three regularities, and (2)
remove the difference in bias by using a between-list design
and thereby allow the H/FA Index to show the Mirror Effect.

Method

Experiment 4 was similar to Experiment 2 except that each
participant studied and was then tested on two separate lists,
one of F names, the other of U names. Order was
counterbalanced across participants. Half the participants
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studied and were tested on the F lists (120 names) first; the
other half of the participants had the U lists (120 names) first.

Participants Thirty undergraduates were tested.

Results

Group The group z-ROCs are presented in Fig. 7. All three
LR regularities can be seen again. The standard z-ROCs in
Fig. 7A have dF = 2.26 and dU = 1.02. They show the z-ROC
Length Effect, with length F = 2.12, and length U = 3.26. In
Fig. 7B the old/old z-ROC lies above the main diagonal with
doo = 1.16 and the new/new z-ROC, lies below the main
diagonal, dnn = - 0.80: the Mirror Effect. Also the slopes of
both those z-ROCs are less than 1.0, 0.54 and 0.75, respec-
tively: the Variance Effect.

Statistical analyses

Conventional analysis The first two entries in row 4 of
Table 3, the accuracy means, are dF = 2.49 and dU = 1.21.
They differ significantly, F(1,29) = 112.96, MSE = 0.21. The
next two entries the mean bias indices, cF = +0.11, cU = +0.15
do not differ, F(1,29) = 0.21, MSE = 0.10. The bias difference
seen in mixed-list Experiment 2 has disappeared. Moving to a
between-list paradigm removes the bias difference. With the
elimination of differential bias the H/FA Index again shows a
clear Mirror Effect.

FAFN ¼ :11 < FAUN ¼ :26 < HUO ¼ :65 < HFO ¼ :87

The difference in the false alarms for F and U is significant,
t( 29) = 6.61, SE = 0.02. The difference in the hit rates is also
significant, t(29) = 9.62, SE = 0.02.

LR regularity analysis The fourth row of Table 4 lists the
regularity measures. The first two entries for the Distance
Mirror Index, dnn = −0.80 and doo = 1.31, show a significant
Mirror Effect with mean dnn < zero, t( 29 ) = −6.24, SE = 0.13
and mean doo > zero, t( 29 ) = 9.75, SE = 0.13. The next two
entries, the slopes of the new/new and old/old z-ROCs show a
significant Variance Effect. Both are less than 1.0: slnn= 0.77,
t(29 ) = 3.18, SE = 0.07 and sloo= 0.54, t( 29 ) = 9.25, SE =
0.05. The next two entries, mean length F = 2.55 < mean length
U = 4.07 show a significant length difference, F(1, 29) = 40.51,
MSE = 0.85. The z-ROC Length Effect holds.

Further analysis of individual responses The proportions of
individual participants that show each of the three regularities
are presented in the fourth row of Table 5. All the regularities
are evident and significant by a binomial test. These data fully
support the analysis of the corresponding statistics in Table 4.

Experiment 5. Bias removed by increased accuracy
difference

In Glanzer et al. (2009), we showed, by computation, that bias
effects that conceal the Mirror Effect with the H/FA Index are
countered by increasing the accuracy difference between the S
andW conditions. To show this countering of bias we take the
model examined earlier with SN and WN Normal(0,1), WO
Normal(1,1), and SO Normal(1.75,1) and impose a liberal
bias, βs = .50 on the S distribution. The H/FA measure, based
on those parameters, shows a complete loss of the Mirror
Effect with

FASN ¼ :32 > FAWN ¼ :31 < HWO ¼ :69 < HSO ¼ :89

If we increase the difference between WO and SO to WO
Normal(1,1) and SO Normal(1.85,1) in this model, the Mirror
Effect as measured by the H/FA Mirror Index reappears.

FASN ¼ :29 > FAWN ¼ :31 < HWO ¼ :69 < HSO ¼ :90

We will now counter the bias effect of Experiment 2 by
increasing the accuracy for the familiar names vis-à-vis the
unfamiliar names. We do that by decreasing the number of
familiar names in the study and test lists. Experiments on list
composition in which study lists are composed of items from
different sub-lists (Dorfman & Glanzer, 1988; Malmberg &
Murnane, 2002; Shiffrin, Huber, & Marinelli, 1995) have
shown that decreasing the number of items drawn from one
of the sub-lists increases recognition accuracy for those items.

Fig. 7 Normalized Receiver Operating Characteristics (z-ROCs) for
Experiment 4, familiar (F) versus unfamiliar (U) names. (A) Standard z-
ROCs for F(+)and U(x) showing the Length Effect. (B) old/old (o) and
new/new (*) z-ROCs showing the Mirror and the Variance Effect
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Method

Experiment 5 was identical with Experiment 2 except that the
number of familiar names was reduced by half in the study
and test lists. The study lists consisted of 30 familiar and 60
unfamiliar names. The test lists consisted of 30 familiar old,
30 familiar new, 60 unfamiliar old, and 60 unfamiliar new.
Except for the change in number of items the procedure in
this experiment was the same as Experiment 2: construction
of lists, presentation, and characteristics of participants.

Participants Forty-five undergraduates were tested.

Results

Group The group z-ROCs are presented in Fig. 8. All three
LR regularities can be seen again. The standard z-ROCs in
Fig. 8A have dF = 2.18 and dU = 0.83. They show the z-ROC
Length Effect, with length F = 1.78, and length U = .3.55. In
Fig. 8B, the old/old z-ROC lies above the Main Diagonal with
doo = 1.61, and the new/new z-ROC, lies below the main
diagonal, dnn = -1.12: the Mirror Effect holds. Also the slopes
of both those z-ROCs are less than 1.0, 0.41 and 0.55, respec-
tively: the Variance Effect holds.

Statistical analyses

Conventional analysis Themeans in row 5 of Table 3 show a
significant accuracy difference. The first two entries for dF =
2.76 and dU = 1.10 differ significantly, F(1,44) = 282.37, MSE

= 0.22. The next two entries the mean bias indices, cF = -0.14,
cU = +0.42, do differ significantly, F(1,44) = 44.83 , MSE =
0.15. Despite the increased difference in bias (compared to
that in Experiment 2) the H/FA Index shows a clear H/FA
Mirror Effect.

FAFN ¼ :16 < FAUN ¼ :20 < HUO ¼ :56 < HFO ¼ :89

The difference in the false alarms for F and U is significant,
F(1, 44) = 5.59, MSE = .0.01 The difference in the hit rates is
also significant, F(1,44) = 343.83, MSE = .01.

LR regularity analysis Row 5 of Table 4 gives the regularity
means. The first two entries for the Distance Mirror Index,
dnn = -0.22 and doo = +1.14, show a significant Mirror Effect
with mean dnn < zero, t(40) = 14.93, SE = 0.09, and mean doo
> zero, t(34) = 18.37, SE = 0.06. The next two entries, the
slopes of the new/new, and old/old, z-ROCs show a signifi-
cant Variance Effect with both slopes less than 1.0. For slnn =
0.55 t(40) = 3.18, SE = 0.07. For sloo = 0.44, t(34) = 13.75, SE
= 0.04 are less than 1.0. The next two entries, mean length F =
1.97< mean length U = 3.81, show a significant length differ-
ence, F(1, 42) = 76.47,MSE = 0.76. The z-ROC Length Effect
holds.

Reducing the number of familiar names increased the
accuracy of recognition for those items from d' = 2.11
in Experiment 2 to d' = 2.76 here. It thereby increased the
difference in accuracy between the familiar and unfamiliar
items. This had the expected effect of recovering the Mirror
Effect according to the H/FA Index (see line 2 of Table 3.) It
had the unexpected effect, however, of also increasing the bias
difference by making the responses to the familiar names
more liberal. This effect is of considerable interest. It indicated
that an experimental operation may have a double effect: a
change in accuracy and a change in bias. The reason for the
bias change may be that familiar names generate relatively
liberal responses initially (as in Experiment 2) because they
are more salient for participants. When we reduced the num-
ber of familiar names in the present experiment, we increased
their salience further and thus increased further the tendency
for liberal responses (see Wickens, 2002, on the relation of
salience to bias).

Further analysis of individual responses The proportions of
individuals that show each of the three regularities are present-
ed in the fifth row of Table 4. All the regularities are evident
and significant by a binomial test.

Discussion

One goal of the preceding experiments was to demonstrate the
three LR regularities for individual as well as group data. This
has been done. We also developed further information

Fig. 8 Normalized Receiver Operating Characteristics (z-ROCs) for
Experiment 5, familiar (F) versus unfamiliar (U) names. (A) Standard z-
ROCs for F(+) and U(x) showing the Length Effect. (B) old/old (o) and
new/new (u) z-ROCs showing the Mirror and the Variance Effect
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concerning the Mirror Effect, the regularity that has been most
extensively studied, and how it may be concealed by
bias. We have shown that the concealing can be countered
in four ways:

1) Use of a more informative index of the effect, the Dis-
tance Index instead of the H/FA Index (Experiment 2).

2) Use of a payoff schedule to eliminate bias differences
(Experiment 3).

3) Use of a between-list paradigm that separates the two
conditions (Experiment 4).

4) Increase of the accuracy difference between the weak and
strong conditions (Experiment 5).

Our contention is that SDT with its three basic concepts –
sensitivity, bias, and LR decision axis explains the three reg-
ularities. It also explains when the mirror regularity does not
appear. There are process models of recognition memory that
incorporate SDT and its LR component (McClelland &
Chappell, 1998; Shiffrin & Steyvers, 1997). There is no con-
flict between such models and the more general SDT model
considered here. What is involved are two different levels of
theory (Marr, 1982).

Alternative explanations and criticisms

Strength versus LR decisions LR decisions need not be in-
voked to explain the data of a simple one-condition memory
experiment such as the one represented in Fig. 1. The assump-
tion that decisions are made on the basis of unprocessed
“strength” will do. When we move to two-condition experi-
ments such as the one represented in Fig. 2 simple strength-
based decisions fail. This can be seen by taking the same
parameters used there: SN and WN are Normal(μ=0,σ=1),
WO is Normal(μ=1,σ=1) and SO is Normal(μ=1.75,σ=1).
If we omit the LR conversion from the computations then
none of the regularities appear. The initial new distributions
do not move: doo = .75 but dnn = 0, noMirror Effect. The slopeoo
= slopenn = 1.0: no Variance Effect. And lenW = lenS = 5.66: no
Length Effect.

It is, of course, possible to hold on to strength decisions by
adopting additional, ad hoc assumptions, to explain a regular-
ity. To date, two such proposals have been made to explain the
Mirror Effect: Criterion Shift and Two-Process. Their ad hoc
assumptions are indicated below.

Criterion shift The criterion shift explanation, e.g., Cary &
Reder (2003), assumes the following.

1) The decision axis is an unconverted strength axis.
2) WN and SN stay fixed, as in Fig. 2A, while WO and SO

separate, producing HWO < HSO.

3) The criterion for the S distributions moves to follow SO.
(ad hoc assumption) This criterion movement reduces
the FASN so that FASN < FAWN.

The last two steps produce the full Mirror Effect FASN <
FAWN < HWO < HSO.

There is ample evidence, however, that WN and SN do not
stay fixed. Experiments on forced choice in which participants
were required to choose WN versus SN items, called null
choices, showed that the two new distributions are separated,
SN < WN ( Glanzer et al., 1991, 1993; Hilford et al., 1997;
Kim & Glanzer, 1995). In all five experiments reported here
dnn is negative (see Table 3), indicating again that the two new
distributions are separated, SN < WN with distance -dnn.

Two-process A popular explanation of the Mirror Effect, is
the two-process explanation, e.g., Balota, Burgess, Cortese,
and Adams (2002). This explanation is limited to the word
frequency Mirror Effect (seen in Experiment 1). It makes the
following assumptions: (1) Individuals use a familiarity/
strength decision axis, unconverted; (2) process one: Low
frequency new (LN) words start out situated lower on the
familiarity/strength decision axis than high frequency new
(HN) words because they are less familiar (ad hoc assump-
tion). This gives one of the inequalities that define the Mirror
Effect, LN <HN; (3) process two: Low frequency words are
learned and recollected much more effectively than high fre-
quency words, overcoming the initial position difference (ad
hoc assumption). This gives the second inequality, HO < LO,
of the Mirror Effect. The three assumptions in combination
produce the Mirror Effect, LN < HN < HO < LO.

To support the explanation, the Mirror Effect is first shown
in a baseline condition. Then an operation is carried out, e.g.,
speeded presentation, that disrupts the Mirror Effect (using the
H/FA Index). This is interpreted as a result of disruption of
recollection. The two-process explanation is limited in two
ways: (1) It explains only the word-frequency mirror effect,
not, as will be shown, the name familiarity mirror effect
(Experiments 2, 3, 4 and 5), and (2) it does not cover the
other two regularities, the Variance Effect and the Length Effect.

The LR SDT interpretation of the mirror disruption as a
result of speeding differs. L words require more processing
time than H words (Glanzer & Adams, 1990; Wright, 1979).
Speeding therefore has a differential effect on L versus H
words. It decreases the accuracy for both L and H words but
more so for L words. It therefore decreases the difference in
accuracy, d’, between the two conditions. In Glanzer et al.
(2009) and in Experiment 5 we showed that the size of the
accuracy difference between conditions was critical for the H/
FA Index of the mirror effect. If there is any differential bias,
the smaller the d’ difference, the less likely the H/FA Index
(used in the two-factor mirror disruption studies) will show the
mirror effect.
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SDTwith its LR decision axis handles the data summoned
to support the two-process explanation without postulating
any additional processes such as familiarity and recollection.
It is not, moreover restricted to the explanation of word fre-
quency effects as is the two-process explanation.

Finally and more generally, Experiments 2, 3, 4, and 5 rule
out a two-process explanation and, more generally, any expla-
nation that assumes a strength/familiarity decision axis. Such
explanations require that the unfamiliar new names (UN)
should be lower than familiar new names (FN) on the decision
axis, UN < FN. Therefore no mirror effect should occur. SDT
with its LR decision axis predicts the reverse order, FN < UN,
and a full Mirror Effect. All three preceding experiments on
familiarity produce the LR SDT mirror inequalities

FN < UN < UO < FO;

not the strength/familiarity inequalities:

UN < FN < UO < FO:

Our finding that familiarity produces a Mirror Effect is
supported by evidence from five other studies on recognition
that have varied familiarity of words, names, faces, and tunes
(Bäckman 1991; Bäckman & Herlitz, 1990; Bartlett, Halpern,
& Dowling, 1995; Brown, Lewis, & Monk, 1977; Schulman,
1976). Those investigators use different names for the famil-
iarity variable, e.g., prior knowledge, but it is clear that the two
sets of items used in each study differ in initial familiarity.

Other criticisms

Rouder and his co-authors have raised questions about the
legitimacy of statements about the relation of asymmetry of
ROCs (slopes other than 1.0 of z-ROCs) to the variance of the
underlying distributions. Rouder, Pratte, and Morey (2010)
challenged results presented by Mickes, Wixted, and Wais
(2007) in support of the relation between slopes and variance
in the normal unequal variance SDT model. Rouder et al.
presented z-ROCs from other models (e.g., log normal, in-
verse probit transforms of normal) with other variances that
mimic the Mickes et al. findings. They concluded that “there
is no principled method for assessing the relative variability of
latent mnemonic strength distributions” (p. 427). The argu-
ment has, however, been rebutted in detail by Wixted and
Mickes (2010). The controversy cannot be resolved here. It
requires, at a minimum, a demonstration by Rouder et al. that
the alternative models proposed do as good a job as the stan-
dard SDT normal models with a range of data. Wixted and
Mickes (2010) present analyses that they do not.

Pratte, Rouder, and Morey (2010) are concerned with a
different presumed problem in interpreting ROC asymmetries
(z-ROC slopes less than 1.0). Their concern is whether they
are an artifact of “distortions due to averaging data over items”

(p. 224). They conclude, however, that “Application of a hi-
erarchical unequal-variance signal detection model reveals
that asymmetries are in fact a real phenomenon and do not
reflect distortions from averaging data” (p. 224).

Neither paper requires change in our theoretical or data
analyses.

Final summary

1) All five experiments show the three LR regularities for
both group and individuals’ data.

2) Only the Mirror Effect regularity is affected by bias. Even
in that case, the bias effect is mitigated when the better
Mirror Distance Index is used.

3) Experiments 2, 3, 4, and 5 show Mirror Effects obtained
by varying familiarity. Those Mirror Effects cannot be
predicted by the two-process explanation or any explana-
tion based on a strength/familiarity decision axis.

4) The five experiments, in combination, show systematic
changes in bias as a function of experimental paradigm.

5) SDT with its LR decision axis and factor of bias offers
simple explanations of the regularities. It does not require
assumption of additional processes, e.g., familiarity and
recollection, to explain the Mirror Effect regularity. It
does not require postulation of different kinds of Mirror
Effects to explain the fact that H/FA Index does not find a
Mirror Effect when differential bias has been induced.

6) Green and Swets (1966/1974) have demonstrated that LR
decisions are optimal. In these days when many investi-
gations find cognitive functions inefficient, it is good to
find that individuals – at least in the experiments reported
here – carry out a key function, recognitionmemory, close
to optimally.
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