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Abstract Model comparisons are a vital tool for disentangling
which of several strategies a decisionmakermay have used—that
is, which cognitive processes may have governed observable
choice behavior. However, previous methodological approaches
have been limited to models (i.e., decision strategies) with deter-
ministic choice rules. As such, psychologically plausible choice
models—such as evidence-accumulation and connectionist
models—that entail probabilistic choice predictions could not be
considered appropriately. To overcome this limitation,we propose
a generalization of Bröder and Schiffer’s (Journal of Behavioral
DecisionMaking, 19, 361–380, 2003) choice-based classification
method, relying on (1) parametric order constraints in the multi-
nomial processing tree framework to implement probabilistic
models and (2) minimum description length for model compari-
son. The advantages of the generalized approach are demonstrat-
ed through recovery simulations and an experiment. In explaining
previous methods and our generalization, we maintain a nontech-
nical focus—so as to provide a practical guide for comparing both
deterministic and probabilistic choice models.

Keywords Judgment and decisionmaking .Model
comparison . Strategy classification .Multinomial processing
treemodels . Minimum description length

Introduction

One prominent viewpoint in judgment and decision making is
based on the notion that individuals have various decision

strategies at their disposal and that they will—more or less
deliberately—select one or several for any given task and
environment (e.g., Beach & Mitchell, 1978; Gigerenzer &
Selten, 2001; Payne, Bettman, & Johnson, 1993; Weber &
Johnson, 2009). More generally speaking, different underly-
ing cognitive processes might govern observable judgments
and decisions, and it is therefore vital to somehow identify
these processes. To the degree that methods are capable of
pinpointing how judgments and decisions are made, progress
can be made in identifying determinants and bounding condi-
tions of certain models or strategies—for example, in terms of
the influence of different environmental structures (Bröder,
2003; Rieskamp & Otto, 2006), varying degrees of time
pressure (Glöckner & Betsch, 2008c; Hilbig, Erdfelder, &
Pohl, 2012; Payne, Bettman, & Luce, 1996; Rieskamp &
Hoffrage, 2008), monetary information costs (Bröder, 2000;
Newell & Shanks, 2003; Newell, Weston, & Shanks, 2003),
different learning tasks and information formats (Bröder,
Newell, & Platzer, 2010; Bröder & Schiffer, 2006; Pachur &
Olsson, 2012; Söllner, Bröder, & Hilbig, 2013), the amount
versus consistency of evidence (Glöckner & Betsch, 2012),
and many more.

Despite the many extant investigations and important find-
ings, identifying underlying decision strategies—or, more
generally speaking, comparing process models of decision
making—remains a challenge. Indeed “Behavioral Decision
Research . . . is plagued with the problem of drawing infer-
ences from behavioral data on cognitive strategies” (Bröder &
Schiffer, 2003, p. 193). One approach is to focus on patterns of
information acquisition (for an overview, see Schulte-
Mecklenbeck, Kuhberger, & Ranyard, 2011) to infer which
decision strategies were more or less likely to be applied
(Glöckner, Fiedler, Hochman, Ayal, & Hilbig, 2012;
Glöckner & Herbold, 2011; Johnson, Schulte-Mecklenbeck,
& Willemsen, 2008; Payne, Bettman, & Johnson, 1988).
However, information acquisition is not equivalent to
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information integration (Glöckner & Betsch, 2008c). For in-
stance, a decision maker may search through all the informa-
tion available but then integrate only a small subset of it. Thus,
as a more common approach, the degree to which choice data
are aligned with choice models or strategies is taken as an
indicator of strategy use. However, the mere accordance be-
tween choices and predictions (commonly termed adherence
rate) is often entirely uninformative in terms of underlying
strategies (Bröder & Schiffer, 2003; Hilbig, Erdfelder, & Pohl,
2011)—mostly due to prediction overlap between competing
models (Broomell, Budescu, & Por, 2011; Hilbig, 2010b) as a
result of undiagnostic items (Glöckner & Betsch, 2008a;
Jekel, Fiedler, & Glöckner, 2011).

An elegant solution to this “strategy classification prob-
lem” was proposed by Bröder and Schiffer (2003). Their
outcome-based strategy classification method compares
models (representing decision strategies) in terms of how well
they account for choice vectors across a set of diagnostic item
types that allow for discriminating between competing
models. However, a limitation of the method is that it only
allows for the inclusion of models with deterministic choice
predictions. In the present work, we show how to overcome
this limitation so as to include probabilistic predictions that are
often made by psychologically plausible process models of
decision making. To this end, we will explain Bröder and
Schiffer’s (2003) approach in some detail below, demonstrate
the currently existing limitations, and propose a generalization
that remedies the latter. In all of the following, we will delib-
erately maintain a practical—rather than a technical—focus in
the hope that it will be instructive for researchers aiming to
apply the method proposed.

Outcome-based strategy classification

The outcome-based strategy classification method proposed
by Bröder and Schiffer (2003) rests on the general idea of
comparing all models (in their case, decision strategies for
multicue inferences) in terms of how well each accounts for
choice data, while allowing only for random strategy execu-
tion errors and penalizing model flexibility (cf. Bröder, 2010).
The strategy with the largest a posteriori likelihood, as com-
pared with all other models, is then inferred to be the one that
(most likely) produced the observed choices. This approach
has recently been extended to multiple dependent measures
beyond choices (Glöckner, 2009; Jekel, Nicklisch, &
Glöckner, 2010) and the possibility of strategy mixtures
(Davis-Stober & Brown, 2011), thus solving the problem of
complete choice prediction overlap between models and the
questionable assumption of perfect strategy consistency,
respectively.

The method proposed by Bröder and Schiffer (2003) is best
understood in the context of an example. For this purpose,

Table 1 depicts a set of materials for a multicue inferences
task: Participants infer which of two choice options (e.g.,
cities), A or B, scores higher on some criterion (e.g., popula-
tion). They are provided with (or learn) the value of four cues
that are probabilistically related to the criterion (e.g., whether
or not a city has an international airport, is a state capital, has a
university, and/or a major league football team). In the sim-
plest task version, cues are present (1) or absent (0), and the
degree to which each predicts the criterion (i.e., the predictive
validity; e.g., Gigerenzer & Goldstein, 1996) is known to the
decision maker or learned through feedback. For our example,
assume that cue validities1 are .90, .80, .70, and .60 for cues 1–
4, respectively.

In the example depicted in Table 1, there are three item
types that are defined by different cue patterns; importantly,
the decision strategies under consideration make different
choice predictions across these item types. A weighted
additive strategy (WADD; choose the option with the
higher sum of cue values weighted by their validities)
would predict choice of options A, B, and A, respectively.
By comparison, an equal weights strategy (EQW; choose
the option with the higher sum of cue values, ignoring cue
validities) would predict A, B, and guessing. A lexico-
graphic take-the-best strategy (TTB; consider cues in order
of their validity; choose according to first discriminating
cue) would predict choice of option A across all three item
types. Finally, a guessing strategy (GUESS) would choose
options A or B with 50 % probability in each of the three
item types. As such, each strategy yields a distinct choice
vector, as shown in Table 1.

Choice items from each item type are presented repeatedly
(say, 100 times each), such that the observable choice data for

Table 1 Cue patterns for three item types and choice predictions of
strategies taken from Bröder and Schiffer (2003)

Item Type 1 Item Type 2 Item Type 3

A1 B1 A2 B2 A3 B3

Cue 1 1 0 1 0 1 0

Cue 2 1 1 0 1 1 1

Cue 3 1 0 0 1 1 1

Cue 4 0 1 0 0 0 1

Predictions:

WADD A B A

EQW A B Guess

TTB A A A

GUESS Guess Guess Guess

1 These are defined as the proportion of paired comparisons in which a
cue points to the option with the higher criterion value—out of all
comparisons in which the cue discriminates between choice options
(Gigerenzer, Hoffrage, & Kleinbölting, 1991).
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each individual consist of the frequency of A- vs. B-choices per
item type. This situation can be understood in terms of a simple
multinomial processing tree model2 (Batchelder & Riefer,
1999; Erdfelder et al., 2009) such as the one depicted in
Fig. 1: In each of the three item types, an individual will choose
in line with a model’s prediction (with probability 1 − e)
or commit a strategy execution error (probability e), thus
choosing the option not predicted by the strategy. Whenever
a strategy predicts guessing (e.g., EQW in item type 3), the
error probability in the corresponding item type for this strat-
egy is fixed at .50. For example, WADD would be represented
by the model equations

p “A”jItem type 1ð Þ ¼ 1−e1ð Þ
p “B”jItem type 1ð Þ ¼ e1
p “A”jItem type 2ð Þ¼ e2
p “B”jItem type 2ð Þ ¼ 1−e2ð Þ
p “A”jItem type 3ð Þ ¼ 1−e3ð Þ
p “B”jItem type 3ð Þ ¼ e3

However, little is gained by estimating these models with-
out any further restrictions on the parameters, since the uncon-
strained error probabilities merely represent (item-specific)
adherence rates. Moreover, the models are saturated and,
therefore, do not allow for performing tests of goodness of
fit. To overcome these problems, the strategy classification
method draws on the key assumption that strategy execution
errors—that is, choices not in line with a model’s predictions—
are constant across the item types, such that e1 = e2 = e3. By
adding this restriction, the model becomes overidentified and,
thus, testable.

For example, TTB predicts choice of option A in all three
item types (see Table 1). Thus, the probability of choosing
option A—which cannot be expected to be equal to one, since
decision makers will make occasional random errors—should
be constant across all three item types. A strategy is therefore
only “allowed” random errors, whereas systematic errors (i.e.,
different probabilities of choosing in line with the model’s
predictions across item types) lead tomodel misfit. The idea of
allowing for random errors while penalizing systematic error
(which contradicts a model or strategy) is the core advantage
of this approach, as compared with simply counting the num-
ber of strategy-consistent choices (which suffers from
inherently ignoring systematic error, cf. Bröder & Schiffer,
2003; Hilbig, 2010a). So, in the present example, the fit of
TTB is determined after constraining e1 = e2 = e3, where e
denotes the probability of choosing option B in each of the
three item types in Table 1, respectively.

In multinomial modeling, parameter estimates are sought
that minimize the distance between observed and predicted
choice proportions. Say each item type is presented 100 times,
and let an individual’s frequency of choosing option A be 80,
70, and 60 across items types 1–3, respectively. Then, for
TTB, e1 = e2 = e3 = .30 will minimize the difference between
observed and predicted choices (the predicted frequency of
choosing option A is 70 out of 100 in each item type). The
most common (to-be-minimized) distance measure used in
multinomial modeling is the log-likelihood ratio statistic G2

which is asymptotically χ2-distributed under H0 (i.e., the
model holds). Minimization proceeds by means of the EM
algorithm (Hu & Batchelder, 1994), as implemented, for
example, in the multiTree freeware tool (Moshagen, 2010).

To actually use this approach for the purpose of strategy
classification, eachmodel under consideration is consecutively
fitted to the data, so that the fit of each model or strategy is
assessed separately per individual data set. To compare models
or strategies in terms of fit while penalizing flexibility, Bröder
and Schiffer (2003) and Glöckner (2009) relied on the
Bayesian information criterion (BIC; e.g., Wasserman, 2000),
which can be computed from G2, the total number of choices,
and the model’s degrees of freedom. The degrees of freedom
are the number of free parameters subtracted from the number
of free category frequencies. In the present example, both
WADD and TTB have one free parameter (because the three
error parameters are constrained to be equal), and thus df = 2
(since there are three free category frequencies—one for each
item type). EQW also has one free parameter (because e1 and
e2 are constrained to be equal and e3 is fixed at .50), and thus
df = 2. GUESS has no free parameters (all error parameters are
fixed at .50), and thus df = 3. Note that freeware such as
multiTree automatically computes both G2 and information
criteria such as BIC, along with the error parameter estimates
and their standard errors.

2 Neither Bröder and Schiffer’s (2003) method nor the extension present-
ed herein necessarily has to be understood in the multinomial framework;
however, this framework provides many advantages, especially since
freeware is available and all analytical procedures proposed herein are
fully developed.

Item Type 1

e1

1 – e1

Item Type 2

e2

1 – e2

Item Type 3

e3

1 – e3

Fig. 1 Multinomial processing tree representation of the task structure in
Table 1
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For strategy classification, the model with the smallest
BIC is regarded as the data-generating strategy (i.e., the one
“used” by the decision maker). In addition, an upper bound
of .30 or .40 for e (excluding item types where e is fixed at
.50 to represent guessing) is usually implemented; that is,
only models are considered to which decisions conform at
least somewhat better than chance (Bröder & Schiffer, 2003;
Glöckner, 2009)—although it remains a matter of idiosyn-
crasies how much better than chance a model is required to
perform. In addition, it is necessary to test the absolute fit of
each model (as outlined above, G2 is χ2-distributed under
H0), retaining only models that fit the data for classification,
thus ensuring that phantom data sets (i.e., data sets generated
by a model outside the consideration set) are not falsely
classified (Moshagen & Hilbig, 2011). Otherwise, classifi-
cation results may be severely biased in unknown ways.

Limitations

As was described above, the outcome-based strategy classifi-
cation method proposed by Bröder and colleagues can be
applied to any set of strategies, so long as item types can be
found across which models make qualitatively distinct predic-
tions (Jekel et al., 2011).3 However, as it is, the method also
imposes certain limitations in terms of the models that can be
considered and, thus, compared. Specifically, models cannot
be implemented with probabilistic choice rules (thus,
predicting different choice probabilities across item types),
because error probabilities are necessarily constrained to
equality across item types (or fixed at .50). In Bröder and
Schiffer’s (2003) approach, error probabilities are conceptual-
ized to reflect mere execution errors (resulting from slips of
the finger, fatigue, etc.) that should be independent of item
type. Whenever no such execution error occurs, the probabil-
ity that choices are in line with a model’s predictions—if the
model holds—is assumed to be equal to one, thereby implying
a deterministic association. However, if the data-generating
process predicts varying choice probabilities across item
types, the approach cannot distinguish whether observed
choices vary (1) due to varying execution errors or (2) due
to different predicted choice probabilities per se. As a result,
model misfit will occur, in turn leading tomisclassifications or
nonclassifications—even if the process is actually compatible
with one of the strategies under consideration.

For example, WADD is implemented such that it predicts
choice of option A in item type 1, B in item type 2, and A in
item type 3—all with the same probability. In other words, this

implementation of WADD requires that choosing option A in
item type 1 is just as likely as choosing B in item type 2, and so
forth. Whereas a WADD strategy that is meant to reflect
strictly deliberate serial calculation of the difference between
choice options in weighted sums (of cues) would potentially
make this prediction, practically all psychologically plausible
process implementations ofWADD are incompatible with this
requirement. For example, both evidence-accumulation
models (Busemeyer & Townsend, 1993; Ratcliff &
McKoon, 2008; Ratcliff & Smith, 2004; Roe, Busemeyer, &
Townsend, 2001) and connectionist models (e.g., Glöckner &
Betsch, 2008b; Glöckner & Herbold, 2011)—both of which,
roughly speaking, approximate WADD—inherently predict
that choice probability is a function of the difference in
evidence between options (cf. Luce’s choice rule; e.g., Luce,
1977). The more strongly weighted sums speak for one option
relative to the other, the higher choice probability should be.
By implication, error probabilities cannot be equal across item
types.

Indeed, the notion that choice probability is a function of
the difference between choice options has a long tradition.
Mosteller and Nogee (1951) showed for monetary gambles
that choice probability was an increasing S-shaped function of
the amount to win (resembling psychometric functions typi-
cally found in psychophysics). Correspondingly, Dashiell
(1937) reported that mean choice times decreased with in-
creasing preference strength (see also Petrusic & Jamieson,
1978). Overall, it is well-established that choice probability,
choice consistency, and response time typically depend on the
difference between choice options (Birnbaum & Jou, 1990).
This is also in line with linear order research (Moyer & Bayer,
1976; Parkman, 1971), which has long shown that the larger
the symbolic “distance” between two choice options, the
shorter response times, the fewer errors, and the more choice
consistency (for recent extensions to multicue inferences, see
Brown & Tan, 2011; Pohl & Hilbig, 2012). The same pattern
also held in the data reported by Platzer and Bröder (2012)
and, thus, a setup closely resembling the one exemplified in
Table 1: In a reanalyses of their data,4 we found that the choice
probability (albeit aggregated over participants) across the 45
trials was a function of the difference in weighted sums of cue
values per trial with R2 = .55.

As a consequence of constraining error probabilities to be
equal across item types in Bröder and Schiffer’s (2003) ap-
proach, the relationship between the difference in evidence
and choice probability is artificially reduced to a step function
centered at .50. Specifically, the deterministic variant of
WADD is merely a special case of the probabilistic version:
Both the deterministic implementation of WADD and any
probabilistic variant would predict that choice between

3 In case of complete prediction overlap, the extension to various depen-
dent measures such as response times or confidence ratings, as proposed
by Glöckner and colleagues (Glöckner, 2009; Jekel et al., 2010), may
provide a viable alternative.

4 We thank Christine Platzer and Arndt Bröder for granting us access to
their data set.
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options with exactly the same weighted sums would be a
guess—that is, to fix the error at .50. However, the deterministic
WADD further implies that the choice probability is 0 or 1 as
soon as there is even a miniscule difference in evidence be-
tween the options. By contrast, models with probabilistic choice
rules imply an increase of choice probability with increasing
evidence-difference, which may, in the extreme, be a step
function (as assumed by the deterministic WADD) but could
also and will more commonly show a gradual increase.

Importantly, a process producing such a gradual increase in
choice probability with growing evidence-difference will pro-
duce misfit in the above classification method because choice
probabilities (and thus errors) will vary across item types. Put
another way, the requirement of constraining error parameters
to equality in the classification method rules out consideration
of process models, such as evidence-accumulation models,
that may be considered psychologically plausible
implementations of WADD. Of course, this problem is not
limited to the WADD strategy: For example, one may also
think of a probabilistic TTB-version, assuming that choice
probability is a decreasing function of the number of cues
that must be considered before a discriminating one is found.
The more steps TTB requires before a choice can be made, the
larger the probability of a strategy execution error.

To demonstrate this limitation, we ran a recovery simula-
tion similar to the one reported by Bröder and Schiffer (2003;
see also Glöckner, 2009; Moshagen & Hilbig, 2011): We
generated 1,000 data sets, each with 30 simulated choices
for each of the three item types in Table 1. However, unlike
in the original simulation by Bröder and Schiffer, 2003), in
which the deterministic form of WADD was used to generate
data (showing close to perfect recovery rates of 99 % in the
case of 10 % random strategy execution errors; see also
Moshagen & Hilbig, 2011), the data-generating strategy was
a probabilistic WADD strategy (henceforth, WADDprob) de-
scribed by the function

p Að Þ ¼ 1

1þ e −4�δð Þ ;

where p(A) is the probability of choosing option A and δ is the
difference between option A and option B in the sum of cue
values weighted by their validities. This strategy predicts
choice of option A with probabilities .88, .40, and .77 across
the three item types in Table 1.5 Correspondingly, the average

probabilities of strategy execution errors (for choosing A, B,
and A, respectively) in the simulated data sets were e1 = .12,
e2 = .40, and e3 = .33 for the three item types, respectively.
Next, we applied the standard classification method as de-
scribed above to these data sets, thus determining the error
parameter estimates, model fit, and BIC for WADD, EQW,
TTB, and GUESS (for model equations and an exemplary
model file for use in themultiTree freeware, see the Appendix).
Results were clear-cut: Less than 30 % of simulated data sets
were indeed classified as WADD, whereas most (67 %) were
left unclassified due to absolute model misfit (with a type I
error of .05) or an average error larger than .30. The remaining
3.5 % were misclassified as EQW or TTB. Clearly, it seems
unsatisfactory to classify so few data sets as WADD when it
actually is the underlying (data-generating) strategy, albeit in
the form of a psychologically more plausible implementation
that corresponds to a naïve evidence-accumulation model.

Generalized outcome-based strategy classification

The limitation as explained and demonstrated above calls for a
simple extension of Bröder and Schiffer’s (2003) approach.
Ideally, it should be possible to include models that predict
varying error probabilities across item types—although with a
specific rank order of error probabilities. Indeed, the
WADDprob model specified above could easily be imple-
mented simply by fixing e1 = .12, e2 = .40, and e3 = .33 in
the originalWADDmodel (rather than e1 = e2 = e3). However,
doing this implies the strong assumption of a strictly linear
one-to-one relationship between the weighted sums of cue
values and choice probability and, thereby, would lead to
misfit of a data pattern yielding, say, e1 = .02, e2 = .31, and
e3 = .08, even though this pattern is produced by a highly
similar WADDprob model specified as

p Að Þ ¼ 1

1þ e −10�δð Þ :

Since the assumption of a one-to-one relationship is overly
restrictive, a more viable approach is to assume a monotoni-
cally increasing mapping function between evidence-
difference and choice probability. Such a sufficiently general
form of WADDprob can be obtained by applying order con-
straints on the error probabilities. Thus, an appropriate ap-
proach is to apply the constraints e1 ≤ e3 ≤ e2, rather than
constraining all error parameters to be equal (as in the deter-
ministic WADD) or to fixed values (representing only one
particular specification of WADDprob). Note that the differ-
ence in weighted sums of cue values is .50 (for option A) in
item type 1, .10 (for option B) in item type 2, and .30 (for
option A) in item type 3 (see Table 1). So, anyWADD model

5 Note that, in computing the weighted sum of cue values, one must
control for chance level (since this is the lower bound for cue validities)
to avoid irrational predictions (Jekel & Glöckner, 2014; Lee & Cummins,
2004). That is, for example, the weighted sum for option A1 in Table 1 is
(.90 − .50) × 1 + (.80 − .50) × 1 + (.70 − .50) × 1 + (.60 − .50) × 0 = .90.
The weighted sum for option B1 is (.90 − .50) × 0 + (.80 − .50) × 1 + (.70 −
.50) × 0 + (.60 − .50) × 1 = .40. Thus, the difference δ in weighted sums in
item type 1 is .90 − .40 = .50.
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with a probabilistic choice rule (and thus, choice probability
increasing monotonically with the difference in weighted
sums) must predict that model-consistent choices are most
likely in item type 1 and least likely in item type 2, and thus
e1 ≤ e3 ≤ e2.

Fortunately, the constraint e1 ≤ e3 ≤ e2 can easily be
implemented in the multinomial processing tree framework
by means of parametric order constraints (Knapp &
Batchelder, 2004). In the present example, the constraint e3
≤ e2 can be implemented by replacing e3 by e3 = p2 × e2, which
essentially forces e3 to be smaller than or equal to e2 (any
parameter in a multinomial model represents a probability, so
p2 cannot exceed 1). Likewise, the constraint e1 ≤ e3 is
introduced by replacing e1 by e1 = p1 × e3 = p1 × p2 × e2.
The complete general WADDprob model with e1 ≤ e3 ≤ e2 is
thus represented by the model equations

p “A”jItem type 1ð Þ ¼ 1−e2ð Þ þ e2 � 1−p2ð Þ þ e2 � p2 � 1−p1ð Þ
p “B”jItem type 1ð Þ ¼ e2 � p2 � p1
p “A”jItem type 2ð Þ ¼ e2
p “B”jItem type 2ð Þ ¼ 1−e2ð Þ
p “A”jItem type 3ð Þ ¼ 1−e2ð Þ þ e2 � 1−p2ð Þ
p “B”jItem type 3ð Þ ¼ e2 � p2;

wherein e3 from the original model equations has been
replaced by p2 × e2 and e1 replaced by p1 × p2 × e2. Say
each item type is presented 100 times, and let the frequency
of choosing option A be 80, 40, and 70 across items types 1–
3, respectively. Then, the parameter estimates of the above
model are e2 = .40, p1 = .667, and p2 = .75. Consequently,
e3 = p2 × e2 = .75 × .40 = .30 and e1 = p1 × e3 = .667 × .30 =
.20, thus matching exactly the to-be-expected error parameter
estimates given the data. Although this reparameterization
does not change the dimensionality of the parameter space
(since the two unknown parameters e1 and e3 are replaced by
the two unknowns p1 and p2), the admissible parameter space
is reduced to those patterns compatible with the order restric-
tions on the parameters. In other words, a data pattern incom-
patible with the order constraint (e.g., one implying e3 = .40
and e2 = .30) would produce misfit. A peculiarity in this
context is that the WADDprob is a saturated model (with zero
df), yet unable to fit arbitrary data patterns. This is because the
parameters are bounded by [0…1], so that misfit will occur
whenever the data would imply parameter estimates outside
the admissible interval. For example, if e3 is actually greater
than e2, the reparameterization e3 = p2 × e2 could be satisfied
only by p2 > 1.We return to the issue of how to assess the fit of
the WADDprob below.

By the same logic, parametric order constraints allow for
implementing an upper bound for strategy execution errors.
As was outlined above, it is common—and, as shown by
Bröder and Schiffer (2003), indeed necessary—to set such
an upper bound, since any model should predict choices better

than chance level. Whereas in the original method (and ex-
tensions such as Glöckner’s, 2009) models were excluded
post hoc if the average error estimate exceeded a certain
threshold, a more elegant solution is available within the
present extension. We can require that all error probabilities
are smaller than or equal to some constant representing chance
level (.50 in the case of binary choices). This, too, is a simple
parametric order constraint in the multinomial framework and
can thus be implemented in the same way. Specifically, in the
example of the WADDprob model above, we can implement
e1 ≤ e3 ≤ e2 ≤ .50 by replacing e2 by e2 = c × e2′, where c is a
constant fixed at .50. The corresponding model equations are

p “A”jItem type 1ð Þ ¼ 1−cð Þ þ c � 1−e20ð Þ þ c � e2
0

� 1−p2ð Þ þ c � e2
0 � p2 � 1−p1ð Þ

p “B”jItem type 1ð Þ ¼ c � e2
0 � p2 � p1

p “A”jItem type 2ð Þ ¼ c � e2
0

p “B”jItem type 2ð Þ ¼ c � 1−e20ð Þ þ 1−cð Þ
p “A”jItem type 3ð Þ ¼ 1−cð Þ þ c� 1−e20ð Þ þ c� e2

0 � 1−p2ð Þ
p “B”jItem type 3ð Þ ¼ c � e2

0 � p2:

Fixing c = .50 thus ensures that e2 cannot exceed .50; or, in
turn, if choice data imply e2 > .50, this will induce misfit. Of
course, the constraint that all error parameters (except those
fixed at .50 to predict guessing) should be smaller than a
constant representing chance level should be implemented
for all to-be-compared models. Then, as another key advan-
tage, one does not need to exclude models post hoc on the
basis of some upper bound for the average error (set somewhat
arbitrarily). Instead, all models are required to account for
choices at least as good as chance.

Model selection criterion

As was described above, the original method proposed by
Bröder and Schiffer (2003) and Glöckner’s (2009) exten-
sion rely on information criteria such as BIC for strategy
classification: For each model (strategy) and data set, the
fit is determined while penalizing model flexibility in
terms of free parameters. Penalizing for flexibility is a
desirable attribute, since a highly flexible model adjusts
not only to systematic patterns, but also to random noise
in the data. However, BIC only roughly corrects for model
flexibility by taking into account the number of free
parameters, while ignoring functional complexity—that is,
how much of the data space a model can account for
(Myung, Navarro, & Pitt, 2006). As such, information
criteria (AIC and BIC) cannot fully measure the paramet-
ric complexity of the stochastic specifications considered
herein. In simple terms, this is problematic, since models
with the same number of free parameters can differ greatly
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in complexity. For example, WADDprob (with e1 ≤ e3 ≤
e2 ≤ c = .50) has three unknown parameters—exactly like
a model with completely unconstrained error parameters
(letting e1, e2, and e3 freely vary). However, WADDprob
can actually account for (i.e., fit) a substantially smaller
portion of the data space than can a model with complete-
ly unconstrained error parameters and is, therefore, far less
flexible. When comparing two models that differ in the
functional form but comprise the same number of free
parameters, information criteria always select the model
with the largest likelihood. Classifications based on infor-
mation criteria would thus induce a systematic bias.

Aviable solution is to rely on selection criteria that take the
functional form of a model into account (Pitt, Myung, &
Zhang, 2002). This is the case for model selection criteria
based on the principle of minimum description length (MDL;
Grünwald, 2007; Myung, 2000; Myung et al., 2006), which
have already been used in decision strategy classification
(Davis-Stober & Brown, 2011). In simple terms, this approach
can be understood as an implementation of Occam’s razor
(Myung & Pitt, 1997) with the idea of penalizing flexibility in
the sense of how much of the data space a model could
potentially account for. Once parametric order constraints
are added to models, this approach to penalizing flexibili-
ty—unlike those correcting only for the number of free pa-
rameters (AIC and BIC)—will ensure that the model compar-
ison remains “fair.”Of course, model selection drawing on the
MDL principle will (typically) more heavily panelize models
involving many free parameters than models with only a few
free parameters. Thus, using the MDL principle ensures that
the increased flexibility of the WADDprob (as compared with
the deterministic WADD or TTB) is still appropriately taken
into account in the comparison process.

The MDL of a model is the sum of goodness of fit and a
model complexity term, which, in the case of multinomial
models, can be defined as the sum of the maximum likeli-
hoods of all possible data vectors from the outcome space.
Models that are able to account for almost arbitrary data
patterns will therefore receive a larger complexity term, rela-
tive to models that fit only a few data patterns. Since it is
difficult for many applications to find an explicit solution, the
Fisher information approximation (FIA) of the complexity
term (cFIA; Rissanen, 1996; Wu, Myung, & Batchelder,
2010), in conjunction with numerical integration techniques,
is often used for approximation. Note, however, that cFIA can
be misleading in small samples—in the extreme, leading to
the selection of the more complex model with certainty
(Navarro, 2004; Wu et al., 2010). As a practical remedy,
Heck, Moshagen, and Erdfelder (2014) proposed estimating
the lower bound sample size, ensuring stable rank orders of
FIA complexity terms. Model comparisons using FIA should
be performed only if the actual sample size exceeds this lower
bound sample size.

Recovery simulations

To test whether the generalized strategy classification method
with the MDL selection criterion will reliably identify under-
lying strategies, including those with probabilistic choice
rules, we ran a recovery simulation similar to the one reported
above: We generated 1,000 data sets for each of the strate-
gies—viz. WADDprob as specified above (predicting choice
of option Awith probabilities .88, .40, and .77, respectively),
EQW, and TTB (each with a strategy execution error of .10),
and GUESS. For each of the three item types, 30 trials were
simulated per data set.

For each data set, we then determined the fit and MDL of
each of the models under consideration using multiTree
(Moshagen, 2010). As was explained above, WADDprob
was represented by a multinomial model constraining
e1 ≤ e3 ≤ e2 ≤ c = .50. The constraints for EQW
were e1 = e2 ≤ e3 = c = .50, and those for TTB
e1 = e2 = e3 ≤ c = .50. Finally, GUESS was represented
by e1 = e2 = e3 = .50. Across all data sets and strate-
gies, the simulation revealed a recovery rate (proportion
of correct classifications given data-generating models)
of 97.4 %, which is highly satisfactory given the mod-
erate number of simulated trials per item type. The
recovery ra tes per s t ra tegy were 99.2 % for
WADDprob, 99.7 % for TTB, 97.4 % for EQW, and
93.2 % for GUESS, also indicating that there was no
particular bias for any of the models (Cohen’s w = .06).

Despite these promising results, an important caveat needs
to be addressed. As was previously argued with respect to
Bröder and Schiffer’s (2003) and Glöckner’s (2009) ap-
proaches, the classification rests entirely on the assumption
that the data-generating model is among those considered.
Data generated by a nonconsidered model will lead to mis-
classifications and, thus, heavily flawed conclusions
(Moshagen & Hilbig, 2011). In the original approach by
Bröder and Schiffer (2003), this could be circumvented by
assessing the absolute fit of each model to each data set (by
means of G2) prior to entering the model comparison
competition, thus retaining only models for classification
that fit the data. As was shown by Moshagen and Hilbig
(2011), data generated by a model outside the set of those
considered will then induce misfit and remain unclassified (as
is desirable).

However, in the present generalization, assessment of
absolute model fit is no longer feasible using usual proce-
dures, because some models in the comparison, such as
WADDprob, differ from the saturated model in inequality
constraints only. In the presence of such inequality con-
straints, the limiting distribution of G2 is no longer χ2(df),
but a weighted mixture of independent χ2 distributions
(see, e.g., Davis-Stober, 2009). Although a number of
methods for conducting formal hypothesis tests in
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corresponding situations exist (Andrews, 2000; Chechile,
1998; Davis-Stober, 2009; Klugkist & Hoijtink, 2007),
none of these is particularly straightforward or implement-
ed in standard software. An alternative approach equally
suited in the present context is to additionally implement a
baseline model in the classification. 6 Specifically, a model
with entirely unconstrained error parameters (letting e1, e2,
and e3 vary freely) should be added to the set of competing
models. This baseline model is maximally flexible, since it
can account for any choice vector without misfit. Thus, it
will also be penalized most strongly for its flexibility by the
MDL criterion. Nonetheless, a phantom data set produced
by some unknown alternative strategy—and thus, one at
least somewhat distinct from those produced by the models
considered—should be best accounted for by this baseline
model.

To test this solution, we reran the above recovery simula-
tion adding another data-generating strategy (a “phantom”
strategy) that predicts guessing in item type 1 and choice of
option B in item types 2 and 3, respectively. For example, this
vector would be produced by an equal weights strategy that
ignores the first cue. Classifying the 1,000 phantom data sets
with the models above, but without a baseline model, revealed
that 93 % of the data sets were falsely classified as EQW, and
the remaining 7 % were falsely classified as GUESS. By
contrast, including the baseline model in the model competi-
tion resulted in 99.9 % of the phantom data sets remaining
unclassified (since the baselinemodel accounted for these data
sets best). At the same time, inclusion of the baseline model
did not negatively affect the recovery rate of the other data sets
(i.e., those generated by models actually included in the com-
petition), which was 96.8 %. In other words, inclusion of a
baseline model (letting e1, e2, and e3 vary freely) ensured that
phantom data—generated by some unknown strategy outside
the set of models considered—remained unclassified, whereas
data sets generated by a model actually under consideration
continued to be (correctly) classified.

In sum, we have shown that the proposed generalization
with parametric order constraints allows for the inclusion of
models with probabilistic choice rules and that strategy clas-
sification based on this method is reliable. However, as holds
for previous variants of the strategy classification method, the
reliability of the results also depends on the number of trials
per item type. In particular, the lower bound sample size
(Heck et al., 2014) ensuring the correct rank order of TTB
and WADDprob complexity terms (cFIA) in the setup used
above was n′ = 27 per item type. Since the number of trials

required to ensure stability in the rank orders depend on both
the models under consideration and the number of item types,
we recommend routinely determining the lower bound sample
size prior to collecting data.

Moreover, if one wanted to distinguish between the same
model with a deterministic versus probabilistic choice rule
(e .g. , the original determinis t ic WADD and our
WADDprob), more trials per item type would be advisable.
In corresponding simulations (generating data under both
model variants and entering both models into the classifi-
cation competition), we found that with 30 trials per item
type, as used above, the recovery rate was satisfactory at
85 %. Nonetheless, increasing the number of trials per item
type to 50 yielded a still more satisfactory recovery rate of
92 %, and an additional increase to 100 trials per item type
resulted in an excellent recovery rate of 96 %. As these
findings demonstrate, the required number of trials heavily
depends on the models to be distinguished, although a
lower bound of 27 trials per item type seems necessary for
obtaining stable estimates of the MDL selection criterion.

Experiment

To demonstrate the usefulness of the present generalization,
we additionally ran an experiment. The setup closely
matched the situation depicted in Table 1 with three item
types for which the classical models (WADD, TTB, EQW,
and GUESS) made the exact choice predictions displayed
in Table 1. Likewise, WADDprob again predicted e1 ≤ e3 ≤ e2.
The specific cue patterns used can be found in the supple-
mentary material, along with the raw choice data of partic-
ipants. The task for participants was modeled on typical
previous investigations: Participants were instructed to re-
peatedly choose one of two options, labeled “A” and “B.”
They were told that these represent fictitious products and
that they should infer which product is superior in terms of
quality. For each inference, they were openly provided with
the values of four cues, explained to them as fictitious
expert ratings. It was further explained that the four experts
differ in how well they typically predict product quality
(i.e., cue validity—namely, .90, .80, .70, and .60, respec-
tively). To ensure that automatic information integration
would not be hampered by enforcing serial search
(Glöckner & Betsch, 2008c; Hilbig & Glöckner, 2011), all
information was openly available in a matrix. Columns
represented the choice options (the order of options was
counterbalanced across trials), and rows contained the cue
values (with “+” and “−” representing a positive vs. nega-
tive cue value, respectively). The order of rows was con-
stant, with cues in descending order of validity.

Participants made 32 choices per item type and, thus, 96
in total. They were promised feedback about the quality of

6 The advocated approach involving a baseline model yields essentially
equivalent results when compared with assessing absolute fit referring to
the appropriate mixture distribution with estimated component weights,
as outlined in Davis-Stober (2009). In the present simulation study, the
correspondence was close to perfect; that is, classification results were
equivalent in over 95 % of cases.
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their inferences at the end of the task, and the normative
Bayesian solution (Lee & Cummins, 2004) served as the
benchmark against which participants’ responses were
compared. Participants’ decisions conformed to this nor-
mative solution very well (M = 90 %, SE = 1 %), and the
task including all instructions required 8.5 min on average.
We recruited a total of 79 participants (44 female; 18–27
years of age,M = 20 years, SD = 2.2 years). They completed
the current task as part of a 45-min experimental battery of
otherwise unrelated tasks.

Strategy classification proceeded exactly as described
in detail above. First, we took the classical approach:
For each individual data set and model (WADD, EQW,
TTB, and GUESS), we computed the error parameter
estimates, excluded strategies displaying significant
model misfit or an average error probability exceeding
.40, and, of the remaining strategies, selected the one
with the smallest BIC. As can be seen in Table 2, more
than one third of data sets were left unclassified due to
absolute model misfit (with a type I error of .05) or an
average error larger than .40 for all models considered.
The majority of classified data sets were best accounted
for by WADD. By comparison, using the generalized
approach as proposed above, only three data sets
(3.8 %) were left unclassified—that is, the baseline
model accounted for these data sets best—whereas the
clear majority was best explained by WADDprob.
Closer inspection revealed that out of these data sets
best accounted for by WADDprob, 41 % were originally
classified as WADD, and the remaining 59 % were
originally left unclassified due to model misfit.

Overall, the findings demonstrate two noteworthy as-
pects. First, from a modeling perspective, the generalized
approach proposed herein will remedy the drawback that a
substantial proportion of data sets may have to remain
unclassified, even though they can actually be accounted
for. Decision strategies approximating weighted–additive
information integration with a probabilistic choice rule will
lead to misfit in the classical approach, because they

inherently violate the requirement of a constant choice
probability across item types. However, once a probabilis-
tic model can be included in the comparison by means of
the generalized approach proposed herein, practically all
data sets can be accounted for.

Second, from a substantive point of view, our find-
ings corroborate recent investigations concluding that
there is a strong predominance of cognitive processes
characterized by weighted-additive information integra-
tion (Glöckner & Betsch, 2008c, 2012; Glöckner,
Betsch, & Schindler, 2010; Glöckner & Bröder, 2011;
Glöckner & Hodges, 2011) in an open display format in
which information search costs are minimized. Indeed,
87 % of data sets were best accounted for by WADD or
WADDprob. However, for the most part, choices are
unlikely to stem from sequential deliberate calculation
of weighted sums (as must be presumed in the classical
model comparison approach and represented by the
classical WADD). Rather, they mostly conform to plau-
sible cognitive process models assuming automatic/
intuitive information integration, as represented by the
probabilistic version of WADD, which predicts that
choice probability is a function of the difference in
evidence between options.

Discussion

Much research in judgment and decision making has
focused on which decision strategies are used by whom
and under which circumstances—that is, which process
models account for observable behavior. However,
investigations of this nature have been fraught by the
challenge to infer underlying strategies or processes
from choice data. One elegant and commonly applied
solution was proposed by Bröder and Schiffer (2003),
who made use of different item types across which to-
be-compared strategies/models make qualitatively dis-
tinct predictions. Thus, choice vectors were diagnostic
for the models under consideration, which were imple-
mented with deterministic choice rules, allowing for a
constant strategy execution error across item types
(Bröder, 2010). Other extensions of this method to
multiple dependent measures (Glöckner, 2009; Jekel
et al., 2010) or strategy mixtures (Davis-Stober &
Brown, 2011) notwithstanding, we herein addressed a
limitation of this approach: Models with probabilistic
choice rules—predicting a specific rank order rather
than constant or exact choice probabilities across item
types—could not be included in the comparison. The
upshot of this limitation has been that psychologically
plausible implementations of integration models—such
as a weighted addi t ive s t ra tegy for mul t icue

Table 2 Classification results based on the classical approach (classify-
ing data sets by means of the BIC, excluding models producing signifi-
cant misfit or an average error above .40) and our generalized approach
(classifying data sets by means of the MDL)

Classified model Classical approach Generalized approach

WADD 55.7 % 29 %

TTB 3.8 % 3.8 %

EQW 0 % 0 %

GUESS 3.8 % 5 %

Unclassified 36.7 % 3.8 %

WADDprob − 58 %
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inferences—were not taken into account or forced to
produce misfit due to their inherently probabilistic
choice predictions. Among these plausible models are
evidence accumulation and neural network models (for
an overview, see Glöckner & Witteman, 2010).

Herein, we have proposed a remedy for this limita-
tion, using the technique of implementing parametric
order constraints (Knapp & Batchelder, 2004) in multi-
nomial processing tree models (Batchelder & Riefer,
1999; Erdfelder et al., 2009) and relying on minimum
description length as the model selection criterion (Wu
et al., 2010), in combination with a baseline model to
rule out misclassification of phantom strategies. By
means of this generalization, models can be included
that predict a specific rank order of model-consistent
choice probabilities across item types. As shown in a
series of simulations, this extension of Bröder and
Schiffer’s (2003) approach reliably uncovers underlying
strategies. Also, by adding a maximally flexible baseline
model into the competition, the caveat of false classifi-
cations of data sets produced by models not under consider-
ation can be counteracted. An empirical demonstration further
revealed that the generalized approach put forward herein
indeed practically eliminates nonclassification due to model
misfit and provides evidence for cognitive processes in line
with psychologically plausible probabilistic integration
models.

Note that the extension proposed herein actually al-
lows for comparing various types of models within the
same competition. For one, the typical deterministic
models (predicting the same strategy execution error
across item types) can be considered. In addition,
models predicting an order of choice probabilities (such
as a weighted additive model with a probabilistic choice
rule) can be included. Note that, as in the original
method, it is also possible to consider a model that
predicts exact choice probabilities for each item type;
thereby, even different specifications of the same model
class could be distinguished (e.g., two specific evidence-
accumulation models). In any case, models need not
yield the same degree of specification, and varyingly
strict model variants may be put to the test. Of course,
these possibilities are not limited to the realm of prob-
abilistic inferences. For example, Bröder and Schiffer’s
(2003) original method and the present generalization
could just as well be applied to risky choice tasks
where item types would be defined as gamble pairs
such that models considered predict distinct choice vec-
tors across these groups of gamble pairs.

Despite the potential of the present generalization of
Bröder and Schiffer’s (2003) strategy classification, a
number of limitations remain. For one, there is no
way to safely conclude that a classified model actually

corresponds to the data-generating cognitive process
(Moshagen & Hilbig, 2011). All models are abstrac-
tions, and even the best-fitting model may not corre-
spond to underlying processes at all (Roberts & Pashler,
2000). Thus, one cannot say that a participant classified
as, say, TTB must have used this strategy. It is merely
appropriate to say that TTB is most likely to have
generated the data from among the models considered.
Although this limitation is certainly not specific to the
present method, it seems worthwhile to bear it in mind
when applying the method to judgment and decision-
making research. Second, it must be acknowledged that
the method can distinguish only between models that
make different predictions. In the original approach, it
was necessary for models to predict different choices
across item types or point predictions (such as guess-
ing). With the present generalization, models may also
predict different ordering of choice probabilities across
item types. Nonetheless, even two models predicting the
same choices with the same ordering of choice proba-
bilities may be distinguishable if both make at least one
divergent point prediction or predict different upper
bounds for the strategy execution error. This will ulti-
mately depend entirely on the models under consider-
ation and item types used, but there certainly is no
guarantee that any two models can be distinguished.

Overall, the method extended herein may further
broaden researchers’ repertoire for model comparisons
in judgment and decision making—most important,
allowing for the consideration of psychologically plau-
sible and well-established process models that make
probabilistic choice predictions. At the same time, the
approach is straightforward, in the sense that all
algorithms required are implemented in freely available
software.

Appendix

Model equations for each of the strategies considered by Bröder
and Schiffer (2003), referring to the item types in Table 1.
WADD (implement with e1 = e2 = e3):

p “B”jItem type 1ð Þ ¼ e1
p “A”jItem type 1ð Þ ¼ 1−e1ð Þ
p “A”jItem type 2ð Þ ¼ e2
p “B”jItem type 2ð Þ ¼ 1−e2ð Þ
p “B”jItem type 3ð Þ ¼ e3
p “A”jItem type 3ð Þ ¼ 1−e3ð Þ
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EQW (implement with e1 = e2 and e3 = .50):

p “B”jItem type 1ð Þ ¼ e1
p “A”jItem type 1ð Þ ¼ 1−e1ð Þ
p “B”jItem type 2ð Þ ¼ e2
p “A”jItem type 2ð Þ ¼ 1−e2ð Þ
p “B”jItem type 3ð Þ ¼ e3
p “A”jItem type 3ð Þ ¼ 1−e3ð Þ

TTB (implement with e1 = e2 = e3):

p “B”jItem type 1ð Þ ¼ e1
p “A”jItem type 1ð Þ ¼ 1−e1ð Þ
p “A”jItem type 2ð Þ ¼ e2
p “B”jItem type 2ð Þ ¼ 1−e2ð Þ
p “A”jItem type 3ð Þ ¼ e3
p “B”jItem type 3ð Þ ¼ 1−e3ð Þ

GUESS (implement with e1 = e2 = e3 = .50):

p “A”jItem type 1ð Þ ¼ e1
p “B”jItem type 1ð Þ ¼ 1−e1ð Þ
p “A”jItem type 2ð Þ ¼ e2
p “B”jItem type 2ð Þ ¼ 1−e2ð Þ
p “A”jItem type 3ð Þ ¼ e3
p “B”jItem type 3ð Þ ¼ 1−e3ð Þ

The multiTree freeware tool (Moshagen, 2010) requires
model equations as plain text comprising one row for each
equation consisting of three columns (separated by at least one
blank character). The first column refers to the item type (see
Table 1), the second column specifies the category label, and
the third specifies the model equation. The model file for
WADD is thus:

1 1A (1-e1)

1 1B e1

2 2A e2

2 2B (1-e2)

3 3A (1-e3)

3 3B e3

All model files can be found in the supplementary material
A corresponding data file is organized as follows:

Data set name

1A <frequency of option-A choices in item type 1>

1B <frequency of option-B choices in item type 1>

2A <frequency of option-A choices in item type 2>

2B <frequency of option-B choices in item type 2>

3A <frequency of option-A choices in item type 3>

3B <frequency of option-B choices in item type 3>
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