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Abstract Ashby (2014) has argued that state-trace analysis
(STA) is not an appropriate tool for assessing the number of
cognitive systems, because it fails in its primary goal of
distinguishing single-parameter and multiple-parameter
models. We show that this is based on a misunderstanding
of the logic of STA, which depends solely on nearly universal
assumptions about psychological measurement and clearly
supersedes inferences based on functional dissociation and
the analysis of interactions in analyses of variance. We dem-
onstrate that STA can be used to draw inferences concerning
the number of latent variables mediating the effects of a set of
independent variables on a set of dependent variables. We
suggest that STA is an appropriate tool to use when making
arguments about the number of cognitive systems that must be
posited to explain behavior. However, no statistical or infer-
ential procedure is able to provide definitive answers to ques-
tions about the number of cognitive systems, simply because
the concept of a “system” is not defined in an appropriate way.

Keywords State-trace analysis - Multiple systems - Math
modeling - Model evaluation - Categorization

A fundamental aim of cognitive psychology is to characterize
the mental processes that enable people to perform different
tasks, such as learning to assign objects to categories.
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Fulfillment of this aim is made difficult by the fact that the
processes themselves are not open to view and cannot be
isolated for individual study—their nature and very existence
must always be inferred. As a result, the logic of this inference
will always be subject to debate and criticism. Ashby (2014;
hereafter, simply “Ashby”) has recently contributed to this
debate through a critique of the inferential logic of state-
trace analysis (STA). He argues that STA fails to provide an
appropriate inferential tool for assessing the number of cog-
nitive systems involved in a given task. His argument has
three main parts: (1) that STA frequently fails in its primary
goal of distinguishing single-parameter and multiple-
parameter models; (2) that it equally fails to distinguish
single-system and multiple-system models, each of which
may have multiple parameters; and (3) that STA lacks the
statistical power to reject single-parameter outcomes, and thus
that any failure to reject can be attributed to a Type II error.
We have employed STA to address claims that category
learning relies on multiple cognitive systems (Dunn, Newell,
& Kalish, 2012; Newell, Dunn, & Kalish, 2010), and have
also separately argued that STA provides evidence that can be
used to reason about the number of cognitive systems in-
volved in categorization (Newell & Dunn, 2008; Newell,
Dunn, & Kalish, 2011). Perhaps surprisingly, we are also on
record as having argued, in agreement with Ashby, that STA
cannot be used directly to distinguish between single-system
and multiple-system models, each of which may have multi-
ple parameters. We have suggested that “state-trace analysis
does not offer a principled means of distinguishing between an
interpretation of the data in terms of multiple parameters of a
single system . . . or in terms of parameters of multiple
systems” (Newell et al., 2011, p. 198). This agreement extends
to recommendations as to how such interpretations should be
distinguished. Ashby acknowledges that “more traditional
dissociation logic is also flawed” (p. 9), and proposes that
single-system and multiple-system accounts can only be
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distinguished via a converging-operations approach in which
“it is vital to consider @/l the available data” (p. 9). In the same
vein, we earlier suggested that “distinguishing between these
interpretations requires additional criteria such as the nature of
experimental effects, their internal logic, and their respective
abilities to account for the data” (Newell et al., 2011, p. 198),
and called for a theory based on explicit mathematical formu-
lations that precisely define its constructs and allows for its
quantitative evaluation.

Despite these points of agreement, we do not agree with the
final conclusion that STA is an inappropriate tool for assessing
the number of cognitive systems. In addressing Ashby’s three-
part argument, we will take the opportunity to describe more
fully the logic of STA and how it can be used to weigh
different claims concerning the numbers and natures of psy-
chological processes, latent variables, or parameters underly-
ing performance on different cognitive tasks. The following
sections address each part of Ashby’s argument. In addition,
we will briefly discuss the implications of our analysis for the
“more traditional dissociation logic” and distinguish between
the empirical question of how many latent variables underlie a
particular data set and the philosophical question of how many
cognitive systems are involved in a given task.

To foreshadow, our reply to Ashby’s objections are that (1)
STA succeeds in distinguishing single-parameter and
multiple-parameter models whenever the exceptionally mild
and nearly universal assumption of monotonicity of measure-
ments is met, in contrast to inferences based on function
dissociation or the analysis of interactions in analyses of
variance (ANOVAs), which do not; (2) the attempt to distin-
guish single-system and multiple-system models cannot be
made purely statistically, but only rhetorically; (3) although
the statistical power of STA is a topic of current research,
significant results have already been obtained in relevant
experiments.

What is state-trace analysis?

STA was introduced by Bamber (1979) as a general meth-
od to determine properties of the latent structure that
mediates the effects of two or more independent variables
on two or more dependent variables. Since that time, it
has undergone two lines of development. The first is
associated with the work of Geoffrey Loftus and col-
leagues (e.g., Busey, Tunnicliff, Loftus, & Loftus, 2000;
Loftus & Irwin, 1998; Loftus, Oberg, & Dillon, 2004) and
is based on the original description of STA by Bamber
and on an earlier article by Loftus (1978) that emphasized
the critical concept of monotonicity in psychological mea-
surement. Both of these articles highlighted the distinction
between the latent variables (e.g., memory strength, de-
gree of learning, or visual acuity) that are the targets of
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psychological theory and the manifest dependent variables
(e.g., proportions correct, hit rates, or response times) that
are presumed to measure them in some way. Loftus pro-
posed that the nature of this relationship is fundamentally
unknown, and that it is therefore a mistake to interpret a
change in a manifest variable as being equivalent to a
change of equal magnitude in the latent variable that it
measures. He further proposed that the best that might be
hoped for is that the relationship between the two kinds of
variables is at least monotonic. That is, if the value of the
latent variable increases between two conditions, the val-
ue of the manifest variable should not decrease (or should
not increase, if the relationship is inversely monotonic).
The second line of development is associated with the
work of Dunn and colleagues (Dunn, 2008; Dunn &
James, 2003; Dunn & Kirsner, 1988, 2003; Newell &
Dunn, 2008) and is concerned with the implications of
Loftus’s argument for monotonicity in the logic of infer-
ences based on functional dissociation. The conclusion
drawn from this work was that functional dissociation is
neither necessary nor sufficient to infer the existence of
more than one latent variable, and that dissociation logic
is superseded by the logic of STA.

As is discussed by Ashby, STA can be used to distinguish
two kinds of models: a single-parameter model, in which the
effects of two or more independent variables on two (or
potentially more) dependent variables are mediated by exactly
one latent variable; and a multiple-parameter model, in which
the effects are mediated by more than one latent variable. In
the first case, a plot of the observed values of one dependent
variable against those of the other (called the state-trace plof)
is confined to a one-dimensional curve in two-dimensional
outcome space (the space of all possible values of the two
dependent variables). In the second case, the plot is not so
confined. This is a simple consequence of the underlying
mathematics.

Unfortunately, the distinction between a one-dimensional
curve and two-dimensional space is a mathematical idealiza-
tion that is difficult to make in practice. Because only a
relatively small number of points are typically sampled in an
experiment, it is impossible to determine, without additional
assumptions, whether or not they fall on a one-dimensional
curve. As Ashby shows, without any constraints on the forms
of the relationships between a single latent variable and two
dependent variables, it is possible to generate a great variety of
curves in outcome space. For this reason, and following
Loftus (1978), STA has assumed that each dependent variable
is a monotonic function of the underlying latent variable. As a
consequence, the one-dimensional curve, and any points that
fall on it, is constrained to be monotonically increasing (or
decreasing) in outcome space. This makes it possible—in
principle, at least—to distinguish a one-dimensional from a
two-dimensional state trace.
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Is monotonicity a reasonable assumption?

Ashby has proposed that in many situations the monotonicity
assumption is unlikely to be true, rendering STA irrelevant.
This will occur if the measure of performance (the manifest
variable) peaks at some intermediate value of a latent variable
(e.g., response criterion, bias, learning rate, or relative atten-
tion). We make the following three comments on this
argument.

First, monotonicity represents a very modest assumption in
comparison to the much stronger assumption that a latent
variable and the manifest variable that measures it are either
identical or linearly related. As was recently discussed by
Wagenmakers, Krypotos, Criss, and Iverson (2012), this view
is still widely (if covertly) held by most researchers. The
assumption of monotonicity follows from the construct valid-
ity of the measures: that changes in the latent variable (be it
strength of association, or memory, or acuity of perception, or
intensity of sensation) are never accompanied by changes in
the manifest variable (percent correct on a test, recognition
accuracy, detection, or rating) in the opposite direction.
Ashby’s claim appears to be that little, if anything, can be
known about the relationship between a latent and a manifest
variable. But this claim goes too far, because if it were true, no
inference about the number and nature of psychological pro-
cesses would be possible. Any experimental effect would be
meaningless—if performance on a task increased between
two conditions, it would be just as possible for the underlying
latent variable (learning rate, memory strength, etc.) to have
increased, decreased, or remained unchanged.

Second, the monotonicity assumption is just that—an as-
sumption. Confronted by a nonmonotonic state trace, the
researcher may choose to argue for the existence of multiple
latent variables or for a violation of monotonicity. One of these
options may be more reasonable than the other. Violations of
monotonicity represent failures of operational definition. If a
latent variable is nonmonotonically related to some perfor-
mance measure, then some way to measure it needs to be
found. For example, Ashby highlights the fact that response
bias in a signal detection task is nonmonotonically related to
the proportion of correct responses. However, it is monoton-
ically related to both hit rate and false alarm rate, which is
another reason to prefer these measures. On the other hand, if
the state trace is monotonic, it can be concluded that the data
are consistent with a single-parameter model.

Finally, it may be the case that in a particular domain it is
more reasonable to assume that each manifest variable is a
(different) nonmonotonic function of a single latent variable.
However, it may also be reasonable to assume that the relevant
functions are not completely unconstrained but have a pre-
dictable form, as is shown in the examples offered by Ashby.
In these examples, each manifest variable reaches a single
maximum at a different value of the latent variable. This

assumption can also serve as a constraint on the form of the
resulting one-dimensional curve, to enable it to be distin-
guished from a two-dimensional alternative. Because it is less
constraining than monotonicity, the relevant conclusion will
be more difficult to achieve, and more data points may be
required, but it may well be possible. The assumption of
monotonicity is not integral to STA, it simply facilitates its
application.

What can be inferred from the state-trace plot?

The second part of Ashby’s argument is that even if it is
possible to identify a given state trace as being unambiguously
one-dimensional or two-dimensional, nothing follows from
this, since both outcomes are consistent with any number of
cognitive systems. He demonstrates this by generating differ-
ent state-trace plots from two different category-learning
models—the single-system GCM and the dual-system COVIS
model. As we discussed previously, since STA is sensitive to
the number of latent variables (or model parameters), it does
not directly identify whether these are packaged into one, two,
or more “‘systems.” From the point of view of STA, both GCM
and COVIS are simply multiple-parameter models that, all
things considered, should both predict a high-dimensional
state trace. In contrast, Ashby was able to generate a one-
dimensional state trace from each model, as is shown in his
Table 1, and concluded that this demonstrated that nothing
useful can be inferred from the dimensionality of the state
trace.

We contend, contra Ashby, that the dimensionality of the
state trace is highly informative, even when the choice is
between two different multiple-parameter models. To see this,
it is necessary to understand how two multiple-parameter
models are able to produce a one-dimensional state trace.
Figure 1 illustrates the three ways in which this can be done.
In each case, it is supposed that there are two dependent
variables, labeled x and y, each of which is a different multi-
variate function of a set of parameters, represented here by u
and v, which, in turn, are each a function of a set of indepen-
dent variables, represented by a and b. Whether these param-
eters are grouped into different “systems” is immaterial for the
following argument.

Figure 1A shows the first way of producing a one-
dimensional state trace from a multiparameter model. In this
instance, the two independent variables affect only one latent
variable, which, in turn, affects both dependent variables. The
resulting state trace is necessarily a one-dimensional curve. In
addition, if each dependent variable is a monotonic function of
the latent variable, then the state trace is also monotonic (either
increasing or decreasing).'

! An example of such a state trace is shown in Ashby’s Table 1.
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Table 1 Decision table for state-trace analysis

Actual Number of Latent Variables Affected

Observed State-Trace One More Than One

One-dimensional One latent variable Functional dependence

Two-dimensional Failure of monotonicity Multiple latent variables

Figure 1b shows the second way of producing a one-
dimensional state trace from a multiparameter model. In this
case, although each latent variable is a multivariate function of
both independent variables, and each dependent variable is a
multivariate function of both latent variables, the latter func-
tions have the property that they are dependent. This means
that each dependent variable is essentially the same function
of the two latent variables. Put another way, the nature of the
functional relationships means that the latent variables do not
differentially influence the two dependent variables. This is
illustrated in Fig. 1b by the appearance of a virtual latent
variable, q, that is a function of the set of (actual) latent
variables. If each dependent variable is, in turn, a monotonic
function of ¢, then the resulting state trace will be a monotonic
curve.” An example of this form of functional dependence,

(A)
Independent Latent Dependent
variables variables variables

b/v\y
(B)

a u\q/x
b v Ny
(C)
a\p/u X
b N, y

Fig. 1 Three different ways in which a multiparameter model may
generate a one-dimensional state trace: (a) The independent variables
affect only one latent variable. (b) The independent variables affect
several latent variables, but these do not differentially affect the dependent
variables. (¢) The independent variables fail to differentially affect several
latent variables
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drawn from signal detection theory, is given in Appendix A.
For further discussion of functional dependence in this con-
text, see Dunn and Kirsner (1988), Kadlec and Van Rooij
(2003), and Pratte and Rouder (2012).

Figure 1c shows the third way of producing a one-
dimensional state trace from a multiparameter model. It also
involves functional dependence, but in this case between the
independent and latent variables. In Fig. 1c, the two independent
variables do not differentially influence the set of latent variables.
Each latent variable is essentially the same function of the two
independent variables, which can therefore be replaced by a
single virtual independent variable, p. The resulting state trace
is necessarily a one-dimensional curve. If, in addition, the func-
tions that relate p to each latent variable are also monotonic, and
the functions that relate each latent variable to each dependent
variable (holding the other latent variables constant) are mono-
tonic, then the state trace will also be a monotonic curve. An
example of this form of functional dependence, also drawn from
signal detection theory, is given in Appendix B.

What can we conclude from all of this? First, in agreement
with Ashby, it is clearly possible for a multiple-parameter
model to generate a one-dimensional state trace. Second,
rather than this telling us nothing, the result can be highly
informative: It reveals that manipulation of the independent
variables has not differentially influenced the relevant latent
variables. This indicates either (1) that the effects of the
independent variables on the dependent variables are mediat-
ed by a single latent variable (Fig. 1a); or (2) that the effects
are mediated by several latent variables, but they are function-
ally dependent—either the latent variables do not differential-
ly influence the dependent variables (Fig. 1b) or the indepen-
dent variables do not differentially influence the latent vari-
ables (Fig. 1c). In each case, this tells us something about the
model in question. This is the logic that Dunn et al. (2012)
used in their study of the effects of number of trials, feedback
type, feedback delay, and mask type on learning rule-based
and non-rule-based category structures. They applied STA
and observed a statistically significant two-dimensional state
trace when number of trials and feedback delay were manip-
ulated under minimal (yes/no) feedback and using a
confusable mask. When the same independent variables were
manipulated under full feedback, or when a less confusable
mask was used, a two-dimensional state trace was not ob-
served.® This pattern of results was unexpected, and they
concluded that “the present results pose a challenge for all
current models of categorization” (Dunn et al., 2012, p. 855).

Table 1 shows the decision table for STA, summarizing the
points discussed in the current and previous sections. The
rows correspond to classifications of the observed state-trace
plot as either one-dimensional (i.e., monotonically increasing

2 An example of such a state trace is shown in Ashby’s Table 1.
3 Subject to qualification that it may be the result of a Type II error.
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or decreasing) or two-dimensional (assuming two dependent
variables). The columns correspond to the true state of affairs
—whether the experimental manipulations affect one latent
variable or more than one. The cells of the table correspond to
the inferences that can be drawn at the conjunction of each
row and column. If a one-dimensional state trace is observed,
then one of two inferences is possible: Either only one latent
variable has been affected, or more than one latent variable has
been affected but the latent variables are functionally depen-
dent. Depending on the context, these two alternatives may
not be equally plausible. It should be apparent from the
previous discussion that functional dependence may require
a very special set of relationships between variables that,
although it is possible, may be highly improbable. The exper-
imenter then has to decide which interpretation of the state-
trace plot is the more reasonable one, in terms of the features
of the experiment, the theoretical background, and so on. If it
is possible that the independent variables have not differen-
tially influenced the latent variables, one strategy that is open
to the experimenter is to examine the effects of other sets of
independent variables. If these also produce a one-
dimensional state trace, it becomes more difficult to attribute
this to fortuitous relationships between some combinations of
independent variables on the multiple latent variables. More
likely, only one latent variable is actually involved.

A similar dichotomy exists if the state trace is observed to
be two-dimensional. In this case, two inferences are again
possible: Either two or more latent variables have been affect-
ed, or only one latent variable has been affected but there has
been a failure of monotonicity. And, as in the one-dimensional
case, the experimenter must decide which interpretation of the
state-trace plot is the more reasonable one. In some contexts it
may be more reasonable to question monotonicity, but if this
were so, it is unclear why STA (or any other approach, such as
ANOVA, which depends on even stronger assumptions)
would be attempted in the first place.

In summary, STA is not a magic bullet. It cannot be used to
decide unequivocally whether the effects of a set of indepen-
dent variables on two or more dependent variables are medi-
ated by one or more than one latent variable. It provides one
useful source of evidence, but this must be weighed against
other evidence and evaluated accordingly.

Is a one-dimensional state trace a Type II error?

Ashby notes that several studies have reported one-dimensional
(i.e., monotonic) state-trace plots in the category-learning liter-
ature. Because all models of category learning, whether single-
system or multiple-system, find it necessary to invoke more
than one parameter, he attributes all apparent claims of a one-
dimensional state trace to a classical Type II error—failure to
reject the null hypothesis. However, as we explained above, the

fact that multiple parameters may be in play does not guarantee
that the state trace will itself be multidimensional. It will be one-
dimensional if only one parameter has been affected, or if
several parameters are affected but they are functionally depen-
dent. In either case, the result provides evidence concerning the
architecture of the system in question.

A Type II error for STA occurs when the true state trace is
multidimensional but monotonicity cannot be rejected. Al-
though the question of the statistical power of any test of the
dimensionality of the state trace is currently open, if a Type Il
error is suspected, then it may be better to consider alternative
experimental designs rather than relying on traditional designs
and statistical analyses (Prince, Brown, & Heathcote, 2012).
Needless to say, because many functional dissociations rely on
accepting the null hypothesis (thereby asserting that a factor has
no effect on a variable), they are likely to generate inherently
high Type II error rates. Inference based on ANOVA also has
its problems, in relation to the Type I error rate. A Type I error
for STA occurs when the true state trace is one-dimensional but
the statistical test concludes that it is multidimensional. Be-
cause of its reliance on a linear relationship between latent and
manifest variables, a significant ANOVA interaction is often
found even when the true state trace is one-dimensional, thus
leading to an inherently high Type I error rate.

The claim by Ashby that failures to reject a one-
dimensional state trace in relevant experiments in the
category-learning literature can be attributed to a Type II error
is refuted by experience. The detection of a two-dimensional
state trace by Dunn et al. (2012, Exp. 1) makes it impossible
for STA to always return a Type Il error.

‘What can be inferred from functional dissociations?

In his article, Ashby acknowledges that his arguments against
STA also imply that the “more traditional dissociation logic is
also flawed” (p. 9), but he also wants to infer the existence of
multiple cognitive systems from such dissociations, as long as
there are a large number of them. Thus, although he acknowl-
edges that “even though a careful examination of each dissoci-
ation in isolation would likely show that that one result, by
itself, was, at best, only weakly diagnostic,” he also argues that
if a “multiple-systems model predicts ten new empirical disso-
ciations a priori and . . . all ten are empirically supported” and if
“no single-system model is known that can account for all these
results,” then “collectively, these ten dissociations should be
interpreted as strong support for multiple systems” (p. 9).

We have argued elsewhere that STA supersedes the logic of
dissociation (Newell & Dunn, 2008). This is because many
dissociations are consistent with a one-dimensional state trace,
as was originally shown by Dunn and Kirsner (1988) and
again noted by Ashby (p. 5). Briefly, under a model in which
two dependent variables are monotonically increasing
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functions of a single latent variable, STA tests exclusively for
crossover interactions (or negative associations) in which one
dependent variable increases and the other decreases between
two experimental conditions. A dissociation, which relies on
the absence of an effect, sits on the boundary of a positive
association, in which both dependent variables increase (or
decrease), and a crossover interaction. If the null difference is
nudged in one direction, it is consistent with a one-
dimensional state trace, but if sufficiently nudged the other
way, it is consistent with a two-dimensional state trace. Be-
cause it sits on the fence in this way, a dissociation has no
evidential value.

These considerations motivated the study by Newell et al.
(2010), in which they applied STA in order to determine
whether a dissociation reported by Zeithamova and Maddox
(2006) was or was not associated with a two-dimensional state
trace. Zeithamova and Maddox had found that the addition of
a working memory load affected learning a rule-based cate-
gory structure but had little effect on learning a non-rule-based
structure, and they argued that this was consistent with the
view that there were two different category-learning systems:
One system, principally involved in learning rule-based struc-
tures, is affected by working memory load, and another sys-
tem, principally involved in learning non-rule-based struc-
tures, is unaffected by load. In contrast, Newell et al. argued
that a dissociation can only be viewed as providing evidence
in support of a multiple-systems model if it is also inconsistent
with a one-dimensional state trace. They found that the rele-
vant dissociation was in fact consistent with a one-
dimensional state trace when participants who failed to learn
any structure were excluded. If these participants were includ-
ed, the state trace became more obviously two-dimensional,
but this was a necessary consequence of the differential inclu-
sion of nonlearners across the two category structures.

It follows from this that ten or 100 dissociations, each
consistent with a one-dimensional state trace, provide no
support for the existence of multiple systems. In contrast, if
at least one of these dissociations corresponds to a two-
dimensional state trace, then this does offer support for the
existence of multiple latent variables that may (or may not) be
packaged into different “systems.”

What is a system?

Ashby criticizes STA for not directly identifying whether one
or multiple cognitive systems exist. But this is an impossible
task for any statistical procedure or inferential logic, because
the concept of a “system” is itself not well defined. The same
term means different things to different people. Sherry and
Schacter (1987) have suggested that systems may have
evolved because they perform incompatible functions, but
other theorists have stressed their interdependence (e.g., Kim
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& Baxter, 2001; Klein, Cosmides, Tooby, & Chance, 2002),
and others have emphasized functional differences based on
anatomical features of the brain (e.g., Ashby, Alfonso-Reese,
Turken, & Waldron, 1998; Manns & Eichenbaum, 2006). The
question of how many systems are present is therefore not a
strictly empirical question, at least not in the same way as the
question of how many latent variables are present. This is
because, as we have argued here, the question of how many
latent variables are present can be decided empirically: Dif-
ferent hypotheses make predictions that directly interface with
the data. Questions about how many systems are present turn
just as much on philosophical judgments or rhetorical moves
as they do on empirical judgments. We therefore do not see
that placing questions about parameters and questions about
systems in opposition to one another, as Ashby does, is useful.
Any warning that STA will not solve philosophical problems
is like having a warning label on your car that reminds you
that the car will not take you to Mars.*

Conclusion

In summary, we have argued that Ashby’s critique is uncon-
vincing because the premises on which his argument rests fail
to support his conclusion. We believe that there should be
universal agreement that when a set of dependent variables are
monotonically related to the latent variable they purport to
measure (which is generally what “measure” means), then
STA is a useful tool to draw inferences concerning the mini-
mum number of latent variables that mediate the effects of a
set of independent variables on that set of dependent variables.
However, like all tools, STA must be used carefully, and
should not be applied to tasks for which it is not suited.
Specifically, no statistical or inferential procedure is able to
provide definitive answers to questions about the number of
cognitive systems, simply because the concept of a “system”
is not defined in an appropriate way. We have also shown that
STA logically supersedes reliance on functional dissociation
and provides a principled foundation for theorizing about the
complexity of the mechanisms of cognition. To the extent that
this kind of theorizing is relevant to assessing the number of
cognitive systems that exist, STA is an appropriate tool upon
which to base such arguments.
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Appendix A: Functional dependence between latent
and dependent variables

The first form of functional dependence affects the relation-
ship between a set of latent variables and a set of dependent
variables. To illustrate it, we draw on a hypothetical example
from the theory of signal detection. As is well known, this
theory is used to account for the proportions of hits and false
alarms in a detection task. It has two parameters: discrimina-
bility d' and a response criterion ¢ (corresponding to the latent
parameters # and v in Fig. 1b). In one parameterization, the
false alarm rate is a monotonic function® of ¢, whereas the hit
rate is a (potentially different) monotonic function of ¢ and @'
(for a complete discussion, see Macmillan & Creelman,
2005). Imagine that an experiment is performed in which both
d' and c are differentially affected. If the hit rate is plotted
against the false alarm rate for each condition, the resulting
state trace will be two-dimensional. However, suppose that we
are not interested in the dependent variables, hit rate and false
alarm rate, but are interested in two other commonly used
measures of performance—overall proportion correct and the
difference between the hit and false alarm rates. In this case,
the state trace will be a one-dimensional monotonically in-
creasing curve. The reason for this is that the functions that
relate the model parameters to these dependent variables are
functionally dependent (unlike the functions relating the same
parameters to hit rate and false alarm rate). Let g be the
difference between hit rate and the false alarm rate. Then
proportion correct is, by definition, equal to (1 + ¢)/2. In other
words, proportion correct and the difference between hit and
false alarm rates are both functions of the same derived
parameter (or virtual latent variable), ¢, and all information
relating to the two underlying parameters is lost.

Appendix B: Functional dependence between independent
and latent variables

The second form of functional dependence affects the rela-
tionship between a set of independent variables and a set of
latent variables. To illustrate this, we again draw on a hypo-
thetical example from the theory of signal detection. Imagine
that an experiment is conducted in which detection of a faint
light is tested under four conditions defined by the orthogonal
combination of two independent variables: target contrast
(low vs. high) and retinal location (central vs. peripheral).
Four experienced observers are tested, and each is assigned
to a different combination of target contrast and retinal loca-
tion. Each observer is unbiased and minimizes their overall
error rate by placing their decision criterion at the midpoint

> Al The monotonic function corresponds to a cumulative distribution
function that is often assumed to be Gaussian.

between the signal and noise distributions on the perceptual
continuum—assuming, for the sake of argument, that these
distributions are equal-variance Gaussian. The two dependent
variables are hit rate (a monotonic function of ' and ¢) and the
false alarm rate (a monotonic function of ¢). We also suppose
that d' is some (complex) multivariate function of target
contrast and retinal location. But, because each observer
places his or her decision criterion optimally, it turns out that
cis afunction of d'. Specifically, because it is assumed that the
target and noise distributions are Gaussian with equal vari-
ances, ¢ = %d'. Both parameters can therefore be considered
functions of a single virtual independent variable, p, where d'
=p and ¢ = Y4p. The result is that the state-trace plot (of hit rate
against false alarm rate) is necessarily a one-dimensional (and,
in this case, monotonically decreasing) curve. Because the
two independent variables do not differentially influence the
two latent variables, all information concerning the separate
identities of these latent variables is lost.

References

Ashby, F. G. (2014). Is state-trace analysis an appropriate tool for
assessing the number of cognitive systems? Psychonomic Bulletin
& Review. doi:10.3758/s13423-013-0578-x

Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M.
(1998). A neuropsychological theory of multiple systems in catego-
ry learning. Psychological Review, 105, 442—481. doi:10.1037/
0033-295X.105.3.442

Bamber, D. (1979). State-trace analysis: A method of testing simple
theories of causation. Journal of Mathematical Psychology, 19,
137-181. doi:10.1016/0022-2496(79)90016-6

Busey, T., Tunnicliff, J., Loftus, G., & Loftus, E. (2000). Accounts of the
confidence—accuracy relation in recognition memory. Psychonomic
Bulletin & Review, 7, 26-48. doi:10.3758/bf03210724

Dunn, J. C. (2008). The dimensionality of the remember—know task: A
state-trace analysis. Psychological Review, 115, 426-446. doi:10.
1037/0033-295X.115.2.426

Dunn, J. C., & James, R. N. (2003). Signed difference analysis: Theory
and application. Journal of Mathematical Psychology, 47, 389-416.
doi:10.1016/S0022-2496(03)00049-X

Dunn, J. C., & Kirsner, K. (1988). Discovering functionally independent
mental processes: The principle of reversed association.
Psychological Review, 95, 91-101. doi:10.1037/0033-295X.95.1.91

Dunn, J. C., & Kirsner, K. (2003). What can we infer from double
dissociations? Cortex, 39, 1-7. doi:10.1016/S0010-9452(08)
70070-4

Dunn, J. C., Newell, B.R., & Kalish, M. L. (2012). The effect of feedback
delay and feedback type on perceptual category learning: The limits
of multiple systems. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 38, 840-859. doi:10.1037/
20027867

Kadlec, H., & Van Rooij, I. (2003). Beyond existence: Inferences about
mental processes from reversed association. Cortex, 39, 183—187.
doi:10.1016/S0010-9452(08)70098-4

Kim, J. J., & Baxter, M. G. (2001). Multiple brain-memory systems: The
whole does not equal the sum of its parts. Trends in Neurosciences,
24, 324-330. doi:10.1016/S0166-2236(00)01818-X

Klein, S. B., Cosmides, L., Tooby, J., & Chance, S. (2002). Decisions and
the evolution of memory: Multiple systems, multiple functions.

@ Springer


http://dx.doi.org/10.3758/s13423-013-0578-x
http://dx.doi.org/10.1037/0033-295X.105.3.442
http://dx.doi.org/10.1037/0033-295X.105.3.442
http://dx.doi.org/10.1016/0022-2496(79)90016-6
http://dx.doi.org/10.3758/bf03210724
http://dx.doi.org/10.1037/0033-295X.115.2.426
http://dx.doi.org/10.1037/0033-295X.115.2.426
http://dx.doi.org/10.1016/S0022-2496(03)00049-X
http://dx.doi.org/10.1037/0033-295X.95.1.91
http://dx.doi.org/10.1016/S0010-9452(08)70070-4
http://dx.doi.org/10.1016/S0010-9452(08)70070-4
http://dx.doi.org/10.1037/a0027867
http://dx.doi.org/10.1037/a0027867
http://dx.doi.org/10.1016/S0010-9452(08)70098-4
http://dx.doi.org/10.1016/S0166-2236(00)01818-X

954

Psychon Bull Rev (2014) 21:947-954

Psychological Review, 109, 306-329. doi:10.1037/0033-295X.109.
2.306

Loftus, G. R. (1978). On interpretation of interactions. Memory &
Cognition, 6, 312-319. doi:10.3758/bf03197461

Loftus, G. R., & Irwin, D. E. (1998). On the relations among different
measures of visible and informational persistence. Cognitive
Psychology, 35, 135-199. doi:10.1006/cogp.1998.0678

Loftus, G. R., Oberg, M. A., & Dillon, A. M. (2004). Linear theory,
dimensional theory, and the face-inversion effect. Psychological
Review, 111, 835-863. doi:10.1037/0033-295X.111.4.835

Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: A user’s
guide. Mahwah: Erlbaum.

Manns, J. R., & Eichenbaum, H. (2006). Evolution of declarative mem-
ory. Hippocampus, 16, 795-808. doi:10.1002/hipo.20205

Newell, B. R., & Dunn, J. C. (2008). Dimensions in data: Testing
psychological models using state-trace analysis. Trends in
Cognitive Sciences, 12, 285-290. doi:10.1016/].tics.2008.04.
009

Newell, B. R., Dunn, J. C., & Kalish, M. (2010). The dimensionality of
perceptual category learning: A state-trace analysis. Memory and
Cognition, 38, 563-581. doi:10.3758/MC.38.5.563

@ Springer

Newell, B. R., Dunn, J. C., & Kalish, M. (2011). Systems of category
learning: Fact or fantasy? In B. H. Ross (Ed.), The psychology of
learning and motivation (Vol. 54, pp. 167-215). San Diego:
Academic Press.

Pratte, M. S., & Rouder, J. N. (2012). Assessing the dissociability of
recollection and familiarity in recognition memory. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 38,
1591-1607. doi:10.1037/a0028 144

Prince, M., Brown, S., & Heathcote, A. (2012). The design and analysis
of state-trace experiments. Psychological Methods, 17, 78-99. doi:
10.1037/a0025809

Sherry, D. F., & Schacter, D. L. (1987). The evolution of multiple
memory systems. Psychological Review, 94, 439-454. doi:10.
1037/0033-295x.94.4.439

Wagenmakers, E.-J., Krypotos, A.-M., Criss, A. H., & Iverson, G. J.
(2012). On the interpretation of removable interactions: A survey of
the field 33 years after Loftus. Memory & Cognition, 40, 145-160.
doi:10.3758/513421-011-0158-0

Zeithamova, D., & Maddox, W. T. (2006). Dual-task interference in
perceptual category learning. Memory & Cognition, 34, 387-398.
doi:10.3758/BF03193416


http://dx.doi.org/10.1037/0033-295X.109.2.306
http://dx.doi.org/10.1037/0033-295X.109.2.306
http://dx.doi.org/10.3758/bf03197461
http://dx.doi.org/10.1006/cogp.1998.0678
http://dx.doi.org/10.1037/0033-295X.111.4.835
http://dx.doi.org/10.1002/hipo.20205
http://dx.doi.org/10.1016/j.tics.2008.04.009
http://dx.doi.org/10.1016/j.tics.2008.04.009
http://dx.doi.org/10.3758/MC.38.5.563
http://dx.doi.org/10.1037/a0028144
http://dx.doi.org/10.1037/a0025809
http://dx.doi.org/10.1037/0033-295x.94.4.439
http://dx.doi.org/10.1037/0033-295x.94.4.439
http://dx.doi.org/10.3758/s13421-011-0158-0
http://dx.doi.org/10.3758/BF03193416

	State-trace analysis can be an appropriate tool for assessing the number of cognitive systems: A reply to Ashby (2014)
	Abstract
	What is state-trace analysis?
	Is monotonicity a reasonable assumption?
	What can be inferred from the state-trace plot?
	Is a one-dimensional state trace a Type II error?
	What can be inferred from functional dissociations?
	What is a system?
	Conclusion
	Appendix A: Functional dependence between latent and dependent variables
	Appendix B: Functional dependence between independent and latent variables
	References


