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Abstract Why do faces become easier to recognize with
repeated exposure? Previous research has suggested that fa-
miliarity may induce a qualitative shift in visual processing
from an independent analysis of individual facial features to
analysis that includes information about the relationships
among features (Farah, Wilson, Drain, & Tanaka
Psychological Review, 105, 482–498, 1998; Maurer, Grand,
& Mondloch Trends in Cognitive Science, 6, 255–260, 2002).
We tested this idea by using a “summation-at-threshold” tech-
nique (Gold, Mundy, & Tjan Psychological Science, 23, 427–
434, 2012; Nandy & Tjan Journal of Vision, 8, 3.1–20, 2008),
in which an observer’s ability to recognize each individual
facial feature shown independently is used to predict their
ability to recognize all of the features shown in combination.
We find that, although people are better overall at recognizing
familiar as opposed to unfamiliar faces, their ability to inte-
grate information across features is similar for unfamiliar and
highly familiar faces and is well predicted by their ability to
recognize each of the facial features shown in isolation. These
results are consistent with the idea that familiarity has a
quantitative effect on the efficiency with which information
is extracted from individual features, rather than a qualitative
effect on the process by which features are combined.

Keywords Visual perception . Face perception and
recognition . Bayesianmodeling . Perceptual learning

The ability to accurately recognize the faces of others plays an
essential role in human social interactions. As such, the psy-
chological processes that underlie face perception have been
the source of a great deal of scientific interest (Farah, et al.,
1998; Johnston & Edmonds, 2009). Not surprisingly, many
experiments have shown that our ability to identify faces
significantly improves with repeated exposure and practice
(Bi, Chen, Weng, He, & Fang, 2010; de Heering & Maurer,
2013; Dolan, et al., 1997; Gold, Bennett, & Sekuler, 1999b;
Gold, Sekuler, & Bennett, 2004; Hussain, Sekuler, & Bennett,
2009, 2011). But what is the nature of the underlying psycho-
logical changes that take place as faces become more familiar
to us?

Gold, Bennett, and Sekuler (1999b) and Gold, Sekuler, and
Bennett (2004) addressed this question using a combination of
external noise masking techniques. This approach allowed
them to trace the effects of practice on two general classes of
perceptual mechanisms: 1) the magnitude of internal noise,
such as the random firing of neural mechanisms (Croner,
Purpura, & Kaplan, 1993) and random fluctuations in decision
criteria (Benjamin, Diaz, &Wee, 2009); and 2) internal signal
strength, which is related to the efficiency of other non-noisy
aspects of information processing, such as the tuning of re-
ceptive fields or templates (Lu & Dosher, 2004). They found
that observers’ ability to identify a set of initially unfamiliar
faces improved by a factor of 5 or more over the course of
6 days of training, and that these learning effects were attrib-
utable to increases in signal strength rather than reductions in
internal noise.

Although Gold et al.'s (1999b, 2004) results place impor-
tant constraints on the possible mechanisms that mediate the
changes occurring as faces become more familiar, there are
many different processes that can lead to overall increases in
signal strength. In a follow-up experiment, Gold et al. (2004)
explored whether changes in performance with familiarity
could be accounted for by improvements in the tuning of a
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linear template.1 They again added noise to face stimuli in
order to estimate the linear templates used by observers as
they learned to discriminate between two initially unfamiliar
faces. By correlating observers’ estimated linear templates
with those of an ideal discriminator, they found that the
changes in template tuning that took place with training could
generally account for the corresponding improvements in
recognition performance.

The results of Gold et al.'s (1999b, 2004) experiments
suggest that the changes that take place when we learn to
recognize a new set of faces are largely due to purely linear
changes in processing (e.g., adjustments to the relative
weights assigned to different stimulus locations or features);
however, there is some recent evidence suggesting that a
second-order relation-based or “configural” process may be
invoked when perceiving familiar faces but not unfamiliar
faces (Lobmaier & Mast, 2007; McKone, Brewer,
MacPherson, Rhodes, & Hayward, 2007; Megreya &
Burton, 2006). For example, Megreya and Burton (2006)
had observers perform a face-matching task with unfamiliar
faces, and found that performance with upright and inverted
versions of the faces was highly correlated, a relationship that
is not found with familiar faces (Valentine, 1988). Because
impaired performance with inverted in comparison with up-
right faces is often taken as a hallmark of “configural” pro-
cessing (Farah, Tanaka, & Drain, 1995; Maurer et al., 2002),
Megreya and Burton (2006) suggested that one interpretation
of their results is that familiar faces are processed configurally,
whereas unfamiliar faces are processed in a manner that is
more akin to simple pattern (i.e., linear template) matching.

In a related experiment, Lobmaier and Mast (2007) had
observers recognize unfamiliar and familiar faces that were
either spatially scrambled or spatially blurred. They argued
that spatially scrambling the features of a face should affect
configural processing (which relies on the relationships
among features) but not featural processing (which relies only
on the features themselves, not their relationships), whereas
spatially blurring a face should affect featural but not
configural processing. They found that performance was bet-
ter for scrambled than for blurred faces when the faces were
unfamiliar and that this difference was reversed for familiar
faces. Along these lines, several additional studies have found
that unfamiliar faces from a race other than one’s own show
less of an inversion effect than faces from one’s own race
(Megreya & Burton, 2007; Rhodes, Tan, Brake, & Taylor,
1989; Tanaka, Kiefer, & Bukach, 2004). Tanaka et al. (2004)
found that other-race inversion effects are more pronounced
for observers who have had relatively more experience

viewing faces of the other race; and McKone et al. (2007)
found that a small amount of training with other-race faces
yielded inversion effects for other-race and same-race faces
that were equivalent.

Despite the results of these experiments, several other
studies have found no differences between familiar and unfa-
miliar faces with respect to configural processing using a
variety of measures, including inversion effects (Ellis,
Shepherd, & Davies, 1979; Hole, 1994; Lobmaier & Mast,
2007; Schwaninger, Lobmaier, Wallraven, & Collishaw,
2009). Part of this confusion may be due to the use of widely
varying tasks and stimuli across different experiments
(Johnston & Edmonds, 2009). However, another, more fun-
damental issue is that the concept of “configural” processing
has often been defined in purely descriptive terms (however,
for several notable exceptions, see Amishav & Kimchi, 2010;
Boremanse, Norcia, & Rossion, 2013; Richler, Gauthier,
Wenger, & Palmeri, 2008; Sergent, 1984a, 1984b; and
Wenger & Ingvalson, 2002). As a result, it can be difficult to
interpret the results of experiments designed to test for
configural properties.

Recently, Gold et al. (2012) introduced a new approach that
allowed them to offer a mathematical definition of
configurality and make quantitative predictions about its ef-
fects on performance. In their experiment, they had observers
identify individual facial features shown in isolation (i.e., left
eye only, right eye only, nose only, or mouth only) and in
combination (i.e., all the features shown together). Six faces
were used in the experiment, all of which were unfamiliar to
the observers. They measured each observer’s contrast sensi-
tivity (i.e., the reciprocal of their RMS contrast threshold) in
each of the four isolated feature conditions as well as for the
combination of all four features. Using these sensitivities, it
can be shown (Nandy & Tjan, 2008) that an observer’s
squared contrast sensitivity for the combination of features
will equal the sum of her squared sensitivities across the
individual features if the context within which the features
are presented has no impact on her ability to make use of
information. That is, if an observer’s performance with the
combination can be directly predicted from her performance
with each of the features shown in isolation, then her squared
sensitivity to the combination should equal the sum of her
squared sensitivities to the isolated features. This prediction
can be expressed mathematically by computing an integration
index Φ:

Φ ¼ S2combined
S2left eye þ S2right eye þ S2mouth þ S2nose

ð1Þ

where S is contrast sensitivity, andΦ = 1. This is referred to as
“optimal” integration, because it is the integration index that is
predicted for a Bayesian observer who integrates across

1 A linear template match refers to a purely first-order analysis of the
stimulus. In the spatial domain, this typically amounts to a direct point-
by-point comparison of the template and the stimulus. A nonlinear
analysis involves higher-order comparisons, including second-order fea-
tures such as the distances and correlations between spatial regions.
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features in an optimal manner (Nandy & Tjan, 2008). If,
however, an observer derives some additional benefit from
viewing the features in combination that she did not derive
when the features were shown in isolation (e.g., relational or
“configural” processing), Φ should exceed 1. This is referred
to as “superoptimal” integration, because it exceeds the inte-
gration index predicted by an optimal Bayesian integrator.2

Alternatively, if there is a significant cost to processing all of
the features when they are shown in combination that exceeds
the cost of processing each of the features when they are
shown in isolation, Φ should be less than 1. This is referred
to as “suboptimal” integration, because it is less than the
integration index predicted by an optimal Bayesian integrator.

In their experiments, Gold et al. (2012) found that the
average integration index for upright faces was not significantly
different from 1. Further, they found that the average integra-
tion index was significantly less than 1 for inverted faces. Thus,
their results were inconsistent with the idea that observers were
using qualitatively different strategies for upright and inverted
faces (i.e., that they were using the relationships among features
when viewing upright but not inverted features). Rather, their
results indicated that the difference in performance between
inverted and upright facial features was due to quantitative
differences in information integration efficiency.

As mentioned above, the face stimuli used by Gold et al.
(2012) were completely unfamiliar to all of the observers who
participated in their experiments. Thus, it remains a possibility
that the inability to find evidence for configural processing of
faces in their experiments was due to their use of unfamiliar
faces. That is, it is possible that learning and familiarity serve
to promote the use of relational strategies, as some previous
experiments have suggested (Ellis et al., 1979; Hole, 1994;
Lobmaier &Mast, 2007; Schwaninger et al., 2009). Given this
possibility, the purpose of the present experiment was to
explicitly test whether the results reported by Gold et al.
(2012) are restricted to unfamiliar faces or if they extend to
highly familiar faces.

We tested the above possibility by recruiting two groups of
observers who were highly familiar with the faces of the
members of their own group yet entirely unfamiliar with the
faces of the members of the other group. We used the faces of
the observers themselves to generate two separate sets of
stimuli, and tested each group with both sets of faces. We also
tested observers in three successive sessions with each set of
face stimuli, to trace the shorter-term effects of training on
integration efficiency. If familiarity serves to shift observers
from using a parts-based to a relations-based strategy, we
should find unfamiliar face features to be integrated optimally

and familiar face features to be integrated superoptimally.
Further, we might also expect to find a systematic increase
in integration efficiency for the unfamiliar sets of faces across
training sessions.

Method

Observers

Two groups of seven participants served as observers in the
experiment. The participants in both groups were approxi-
mately the same age (~21 years). Group 1 (four females, three
males) were close friends, and had known each other for
approximately 6 years; Group 2 (four males, three females)
were also close friends, and had known each other for approx-
imately 4 years. One participant from each group (J.D.B.,
male; M.J., female) was an author; the remaining six partici-
pants in each group were experimentally naive.

Stimuli

Stimuli were generated using the general approach described
in Gold et al. (2012). The six naive participants from each
group (threemales and three females) also served as actors, and
were photographed making neutral expressions. Only the six
naive observers from each group were used as models, because
the seventh participant in each groupwas also an experimenter,
and thus was familiar with the face of the experimenter from
the other group. Neither experimenter was familiar with any of
the remaining six participants in the other group.

The face photographs were transformed into 256 × 256 pix-
el (4.18° × 4.18°) grayscale images and normalized to range
between 0 and 255. Next, the pixels in each image were
converted into values of contrast by subtracting the mean
value within the set of six images and then dividing by this
mean value. Once the images were expressed in values of
contrast, the four facial features (left eye, right eye, nose, and
mouth) were isolated from each image by multiplying by four
two-dimensional Gaussian windows, with each window cen-
tered at the general location where an individual feature ap-
peared in the faces (see the SupplementaryMaterial for a table
with the dimensions and locations of the Gaussian windows
applied to each feature in each face set). These dimensions
were fixed for all faces within each set. The above procedure
generated five groups of six images for each set of faces,
shown in Figure 1 and Figure 2 (right eye only, left eye only,
nose only, mouth only, and all features combined).

Unlike in Gold et al. (2012), pixel noise was not added to
the stimuli during the experiment. This was done in order to
maximize the range of contrast values that could be shown
when measuring observers’ contrast thresholds, and in partic-
ular to produce more reliable threshold estimates for

2 Note that superoptimal integration is only possible for an observer who
does not use all of the available information in one ormore of the isolated-
feature conditions. Superoptimal integration results when the combina-
tion allows the observer to make use of available information that she was
unable to use when the feature(s) were shown in isolation.
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individual features, such as the nose and mouth, that typically
have relatively higher thresholds.

Apparatus

Observers were tested on an Apple iMac computer and the
images were displayed on a Sony Trinitron G520 CRT (frame
rate: 85 Hz; resolution: 1024 × 768 pixels, 38.25 × 28.25 cm).

The display was calibrated using a Minolta LS-100 photom-
eter. Stimulus presentation was conducted within the
MATLAB programming environment (version 2008b), using
both in-house software and the extensions provided by the
psychophysics toolbox (Brainard, 1997). The CRT provided
the only source of illumination in the room. Viewing distance
was binocular with natural pupils, and was fixed at 130 cm
using a head/chin rest.

Fig. 1 The stimuli used in the experiments. The top panel shows the stimuli from Face Set 1 and the bottom panel shows the stimuli from Face Set 2.
Within each panel, the columns correspond to individual participants/actors and the rows correspond to different feature conditions
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Threshold measurement

Thresholds and corresponding sensitivities were measured in
each condition by varying the contrast of the images across
trials using a 2-down 1-up adaptive staircase procedure. As
described in Gold et al. (2012) and in further detail by Nandy
and Tjan (2008), the contrast of an image on a given trial was
set by adjusting the RMS contrast (i.e., square root of the
mean across contrast values) of the combined image to the
desired level and then removing all of the unwanted features
(e.g., removing the left eye, nose, and mouth from the com-
bined image in the right-eye-only condition).3 Weibull psy-
chometric functions were fit to the staircase data in each
condition in order to estimate 50 % correct RMS contrast
thresholds. These contrast thresholds were then converted into
squared sensitivities (where sensitivity is defined as 1/RMS
contrast) in each condition.

Procedure

Observers were initially exposed to 2 min of dark adaption at
the beginning of each experimental session. On each trial of
the experiment, a thin box that surrounded the perimeter of the
stimulus region appeared for an initial ~500 ms (43 frames),
followed by the stimulus presentation for ~500ms. Afterward,
a selection window appeared that contained high-contrast
versions of all six of the images that corresponded to the
condition from which the image was drawn (e.g., if a right

eye was shown, all six right-eye-only images were shown).
The observer made a selection by clicking on the correspond-
ing image in the selection window. Accuracy feedback was
given in the form of a high (correct) or low (incorrect) beep.

Design

Each observer completed three successive sessions on three
separate days for each face set, with face set order
counterbalanced across the six naive observers in each group.
The seventh observer in Group 1 completed Face Set 1 first;
the seventh observer in Group 2 completed Face Set 2 first.
Within each session, thresholds were measured in all five
conditions simultaneously, using five randomly interleaved
adaptive staircases. Thus, observers did not know from trial
to trial which condition theywould be tested on next. Also, the
identity of the face from which the stimulus was generated
was chosen randomly on each trial, with uniform probability.
There were 125 trials in each condition, for a total of 625 trials
per session.

Results and discussion

Figure 2a plots the mean integration indices for each group
with each set of faces, as a function of training session (see the
Supplementary Material for all individual observer sensitivi-
ties and integration indices, broken down by group, face set,
and testing session). In this plot, the dashed horizontal line
corresponds to the index that would be predicted by optimal
integration. The open symbols correspond to familiar faces
and the closed symbols correspond to unfamiliar faces. These

a b

Fig. 2 A) Mean integration indices for each observer group and face set
combination, plotted as a function of session. B) Mean sensitivities for
each isolated feature, the combined features, and the predicted sensitivity

based on the sum of the isolated features for each session. Error bars on all
symbols correspond to +/–1 SEM

3 This definition of contrast is called nominal contrast, and is necessary
for the computation of the integration index given in Equation 1 (see
Nandy & Tjan, 2008, for a formal treatment of the integration index and
nominal contrast).
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data exhibit three striking patterns. First, none of the mean
integration indices exceeded optimal integration, despite the
extensive long-term familiarity observers had with one set of
faces and the short-term training they received with both.
Second, long-term familiarity did not appear to have a consis-
tent effect on integration efficiency. And third, short-term
training appears to have reduced integration efficiency rather
than having increased it.

We tested the significance of these observations by carrying
out a 2 (Group: 1, 2) × 3 (Session: 1, 2, 3) × 2 (Face Set: 1, 2)
mixed, repeated-measures ANOVA. There were no significant
main effects or interactions [Group: F(1,11) =.59, p = .46,
ηp

2 = .05; Session: F(2,10) = 2.06, p = .15, ηp
2 = .16; Face Set:

F(1,11) = .27, p = .61, ηp
2 = .02]. This also included a

nonsignificant Face Set × Group interaction [F(1,11) =.13,
p = .72, ηp

2 = .01], indicating that familiarity had no significant
effect on integration efficiency.We followed up on these initial
analyses by conducting a series of one-sample t-tests (two-
tailed) to determine whether the mean index for each group,
face set, and session combination significantly differed from
the prediction of an index of 1. After we used a Bonferroni
correction for multiple comparisons, only one index signifi-
cantly differed from optimal [Group 1, Set 1, Session 3:
t(6) = –5.15, p = 0.002, Cohen’s d = 1.94; see the
Supplementary Material for a table with the complete t-test
results for all combinations of group, set, and session].

We further explored the effects of short-term learning by
computing the mean squared sensitivity across both groups and
face sets for each isolated feature condition and the combined
feature condition within each training session (Figure 2b). We
also computed the squared sensitivity that would be predicted
by optimal summation for each session (i.e., the summed
sensitivity across the individual feature conditions; rightmost
data points in Figure 2b). The increasing discrepancy between
combined and optimal sensitivity across sessions highlights the
negative effect short-term learning has on integration efficien-
cy. But more importantly, these data reveal that there was very
little improvement with the isolated noses and mouths, whereas
the combined improvements with the isolated eyes actually
exceeded the improvement when all the features were shown
in combination. Thus, the decreases in the integration indices
across sessions can be attributed almost exclusively to system-
atic increases in sensitivity to the eyes when they are shown in
isolation as opposed to when they appear within the context of
the other facial features. That is, the learning that takes place
when observers are trained to recognize individual eye features
shown in isolation does not appear to transfer fully to complete
face recognition performance. These results are consistent with
previous experiments that have found that the eyes receive
disproportionate weight during recognition (Gold et al., 2004;
Schyns, Bonnar, & Gosselin, 2002; Sekuler, Gaspar, Gold, &
Bennett, 2004; Vinette, Gosselin, & Schyns, 2004) and that this
disproportionate weighting becomes more exaggerated with

training (Vinette et al., 2004). Further, there is electrophysio-
logical evidence that eyes produce larger cortical responses (as
indexed by the magnitude of the N170) when presented in
isolation than when shown in the context of a complete face
(Bentin, Allison, Puce, Perez, & McCarthy, 1996).

So how might we reconcile our findings with the results of
previous experiments that have shown evidence for configural
processing of faces? One possibility may lie in the fact that we
have explicitly restricted our definition of configural process-
ing to those cases for which an observer benefits from viewing
all features in combination (i.e., when the integration index is
greater than 1). However, a more general definition of
configurality might also include cases in which there are costs
associated with viewing all features in combination (i.e., when
the integration index is less than 1). There are a few reasons
why we have chosen to adopt the more restrictive definition of
configural processing as superoptimal integration. First, this
definition naturally maps on to the common intuition that
configural processing supports rather than hinders an ob-
server’s ability to integrate information across the features
within a face. Second, it is straightforward to interpret an
integration index greater than 1: In such a case, processing
all of the parts in combination allows the observer to make
better use of information than when the parts are shown in
isolation. From this, we can infer that there must be some
process at work that allows the whole to be perceived better
than would be predicted from the individual parts. On the
other hand, interpreting an index that is less than or equal to 1
is more difficult. In the case of an index that is less than 1, we
can conclude that there is a cost to presenting the parts of a
face in combination. This may be for a multitude of reasons,
such as lateral masking or limitations on the ability to distrib-
ute attention across all features simultaneously. However, it
also remains a possibility that the beneficial effects of
configural processing remain at work, but are obscured by
the greater costs associated with other processes. Similarly, an
integration index of 1 could result from a perfect balance
between the benefits of configural processing and the costs
of other processes (although this would be a decidedly
unparsimonious account of the data). Thus, our definition of
configurality is somewhat conservative, in that it only allows
us to identify those cases in which the benefits associated with
configural processing outweigh the costs associated with pro-
cessing all of the features of a face simultaneously.

Another possible reason why we failed to find evidence for
superoptimal integration in our experiments is that configural
processing may be taking place at a more subordinate level
than is involved with the features we have defined in our
experiment. That is, our experiment was designed to reveal
only whether the parts of the faces that we have defined as
features (left eye, right eye, nose, and mouth) are processed
more efficiently when shown in combination than would be
expected from how they are processed in isolation. As a result,
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any relational dependencies that might be taking place within
each of the parts of the face that we have defined as a single
feature (e.g., the relationship between an eyebrow and a pupil
with an individual eye) would not be revealed by our
summation-at-threshold technique.

In fact, there are several lines of evidence that are consistent
with the idea that the individual regions we have chosen to
define as features in our experiment might exhibit within-
feature relational dependencies. First, individual facial features
similar to those that we have defined in our experiments have
been shown to exhibit inversion effects akin to those of com-
plete faces (Rakover & Teucher, 1997; however, see Rhodes,
Brake, & Atkinson, 1993). Second, recent results have shown
that a part of the brain thought to respond selectively to faces
(the fusiform face area or FFA) responds similarly to face parts
shown in isolation and in combination (Arcurio, Gold, &
James, 2012). And third, Moscovitch, Winocur, and
Behrmann (1997) found that a patient suffering from a pro-
nounced form of object agnosia (i.e., an inability to accurately
recognize objects) nevertheless exhibited a normal ability to
recognize whole faces as well as isolated facial features.
Although the results of our experiment cannot rule out the
possibility that configural processing is taking place within
individual facial features, future experiments could easily ex-
plore this possibility by applying our summation-at-threshold
approach to facial features defined at a more subordinate level.

Another aspect of our experiment worth considering is the
possibility that the generalizability of our results might be
limited by certain stimulus- and task-related factors, such as
the use of relatively small sets of stimuli under near-threshold
contrast conditions. With respect to the issue of stimulus set
size, our experiment is certainly not alone in the use of
relatively small sets of stimuli to explore face recognition
(see, e.g., Farah et al., 1998; Frowd, Bruce, McIntyre, &
Hancock, 2007; Gold et al., 1999a; Megreya & Burton,
2006; Schwaninger et al., 2009; Schyns et al., 2002; Tanaka
& Farah, 1993). Nevertheless, it is entirely possible that our
results might not extend to larger or unbounded sets of face
stimuli. Our use of only six face images within a set was
primarily motivated by two factors: 1) the difficulty of finding
two groups of participants who were highly familiar with the
faces of the other participants within their group, entirely
unfamiliar with the participants in the other group, and willing
to serve as participants in the experiment; and 2) the limited
number of combined stimuli that can be simultaneously
displayed within a selection window on a computer screen.
Although both of these factors are somewhat flexible, they do
place a relatively low practical limit on the number of stimuli
that can be used with our summation-at-threshold technique in
the context of face recognition.

With respect to the use of near-threshold contrast stimuli,
there are several reasons to think that our results are not
limited to low-contrast conditions. First, the recognition task

that observers were asked to perform was difficult enough
under all conditions to place the stimulus contrast at a level
that was significantly above detection threshold and thus
highly visible. Second, previous experiments have shown that
recognition thresholds for faces and objects increase linearly
as a function of the contrast of an externally added noise (Gold
et al., 2004; Pelli, Burns, Farell, & Moore-Page, 2006; Tjan,
Braje, Legge, & Kersten, 1995). This linear relationship be-
tween threshold and external noise contrast is exactly what
one would predict if observers were adopting a strategy that
was independent of the contrast of the external stimulus (Pelli,
1990).

Conclusions

Our goal was to test explicitly whether the optimal feature
integration reported by Gold et al. (2012) with unfamiliar
faces extends to familiar faces. We found that highly familiar
and completely unfamiliar faces yielded similar mean integra-
tion indices, and none exceeded what would be predicted by
optimal integration. Further, we found that short-term training
tended to decrease integration efficiency rather than increase
it, and that this effect was almost exclusively a result of
improvements in observers’ ability to recognize eyes when
shown in isolation as opposed to within the context of other
facial features. Whether this surprising negative effect of
short-term learning on integration efficiency is specific to
our task and stimuli or is instead indicative of a more general
property of face identification is an interesting and open
question that is worth pursuing in future research.
Regardless, our results support the conclusion that, as found
previously with unfamiliar faces, the perception of a familiar
face appears to be no more than the sum of its constituent
parts.
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