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Disentangling posterror and postconflict reduction of interference
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Abstract Conflict monitoring theory (CMT; Botvinick,
Braver, Barch, Carter, & Cohen Psychological Review, 108,
624–652, 2001) states that response conflict, the simultaneous
activation of two competing responses, increases task focus and
reduces interference from irrelevant information. CMT also
defines errors as conflict, and reduced interference effects have
consistently been reported following errors (Ridderinkhof
Psychological Research, 66, 312–323, 2002). However, previ-
ous computations of this posterror reduction of interference
(PERI) have overlooked the congruency of the previous trial.
This is problematic, because most errors are made on incon-
gruent trials, creating a confound between (previous) accuracy
and (previous) congruency. Therefore, it is likely that reduced
interference following errors is in fact the congruency sequence
effect (i.e., reduced interference following incongruent, relative
to congruent, trials). Our results corroborate this idea by dem-
onstrating that participants indeed showed significant PERI
following a congruent trial, but inverse PERI following an
incongruent trial. These findings are discussed in light of the
adaptation-by-binding account (Verguts & Notebaert
Psychological Review, 115, 518–525, 2008, Trends in
Cognitive Sciences, 13, 252–257, 2009).
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Adaptation-by-binding account

Although we are continuously exposed to irrelevant and con-
flicting signals, we often succeed in selecting the signals that are
relevant, while ignoring what is irrelevant. This quality is de-
fined as cognitive control. In the laboratory, cognitive control is
studied using conflict tasks. For example, in a Simon task,

participants have to respond to the color of stimuli that are being
presented on the left or the right side of the screen. Incongruent
stimuli (the response location and the [irrelevant] stimulus
location differ) are typically found to result in slower and more
error-prone responses than do congruent stimuli (Lu & Proctor,
1995; Simon, 1969).

Interestingly, this interference effect (i.e., the difference
between incongruent and congruent trials) is often reduced
following incongruent trials, relative to congruent trials (the
congruency sequence effect; Frith & Done, 1986; Gratton,
Coles, & Donchin, 1992). This congruency sequence effect,
according to the influential conflict monitoring theory (CMT;
Botvinick, Braver, Barch, Carter, & Cohen, 2001), demon-
strates that response conflict triggers an adaptive mechanism
that enhances task-specific processes, leading to so-called
conflict adaptation. Response conflict is defined by, and
equated with, the simultaneous activation of two competing
response units. On incongruent trials, one response is activat-
ed by the relevant dimension, and another by the irrelevant
dimension (Cohen, Dunbar, & McClelland, 1990; Kornblum,
1994). However, the idea that the congruence sequence effect
is a measure of conflict adaptation needs some nuance, since
this is often confounded with feature repetition effects
(Hommel, 2004; Mayr & Awh, 2009; Mayr, Awh, & Laurey,
2003; but see Duthoo & Notebaert, 2012) or contingency
learning (Mordkoff, 2012; Schmidt & De Houwer, 2011).

Importantly, CMTalso defines errors as conflicts, assuming
that both the incorrect (executed) and correct response re-
ceived activation. Consequently, CMT predicts reduced inter-
ference effects following errors. Indeed, posterror reduction of
interference (PERI; King, Korb, von Cramon, & Ullsperger,
2010; Ridderinkhof, 2002; Ridderinkhof et al., 2002) has been
observed. Other studies have failed to replicate this effect
(Carp & Compton, 2009; Orr, Carp, & Weissman, 2012), or
have even found increased interference following errors
(Bombeke, Schouppe, Duthoo, & Notebaert, 2013).
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Surprisingly, none of these studies included Preceding
Congruency as a factor in their analyses, even though the vast
majority of errors in congruency tasks are made on incongru-
ent trials (Hajcak, McDonald, & Simons, 2003; King et al.,
2010). Therefore, what has been reported as PERI might have
been confounded by the high proportions of congruent correct
and incongruent incorrect trials. In order to show increased task
focus following errors, we would need to account for previous
congruency and demonstrate a smaller congruency effect fol-
lowing errors, regardless of the previous congruency (i.e., PERI
after errors on both congruent and incongruent trials).

We designed two experiments that would allow us to
include the factors Previous Congruency and Previous
Accuracy. Experiment 1 was based on the study by
Ridderinkhof (2002) in which PERI was first reported. In
Experiment 2, we balanced the proportions of congruent and
incongruent trials.

Experiment 1

In a paradigm based on Ridderinkhof (2002), we used a
Simon task with .75/.25 probabilities for congruent/
incongruent trials. A feedback mechanism encouraged partic-
ipants to respond quickly while keeping accuracy above 85%.
To ensure reliable numbers of errors on both congruent and
incongruent trials, 2,000 trials were administered.

Method

Participants Twenty students at Ghent University (16 female,
fourmale) participated (mean age = 18.7 years, SD= 1.6 years)
for course credits.

Stimuli and material Stimuli were presented on a 17-in. com-
puter screen. The viewing distance was about 60 cm. A cen-
trally presented black square contour (0.5 × 0.5 cm) was
horizontally flanked by two larger black square contours (3.0
× 3.0 cm), with a center-to-center distance of 2.3 cm between
the middle square and the lateral squares. The stimulus was a
black or a white diamond (1.6 × 1.6 cm) presented in one of the
lateral squares. Feedback (“0,” “5,” or “9”) was presented in the
middle square (0.3 cm vertically and 0.2 cm horizontally). All
of the stimuli were presented against a light-gray background,
and responses were recorded using a Cedrus response box. The
experiment was conducted using Tscope software (Stevens,
Lammertyn, Verbruggen, & Vandierendonck, 2006).

Procedure Participants had to respond to the color of the
diamond by pressing, for instance, a left key when a black
diamond or a right key when a white diamond was presented
(counterbalanced between subjects). The participants were
informed that on 75 % of the trials the location would

correspond to the correct response side. However, it was
stressed that the response should be based on the color of
the figure. Each trial started with the presentation of a stimulus
inside one of the lateral squares, until a response was given or
2 s had passed. Following response, feedback was presented
for 750 ms, after which a new trial started. Participants earned
points for performing quickly and accurately. A “0” was
presented when the participant responded incorrectly, and a
“5” when the response was correct. When the participant was
correct and faster than his or her running average reaction
time, a “9” was presented. The average was updated on every
trial for congruent and incongruent trials separately. An up-
dated score was presented after each block.

After the instructions, participants performed a practice
block of 32 trials. Next, they received instructions about the
feedback procedure and were told that the participant with the
most points would win an additional reward of €10. The
experiment consisted of 20 blocks of 100 trials.

Results

Responses faster than 100 ms or exceeding the response
deadline, as well as their preceding and subsequent trials, were
excluded from the analysis. Postcorrect trials that were follow-
ed by a correct response were also discarded. On average, 276
trials (SD = 130) were included in the analysis. The mean
reaction time was 388 ms (SD = 47 ms), and the mean error
rate was 7 % (SD = 4 %).

Both error rates and reaction times were first analyzed with
only Previous Accuracy and Current Congruency as fixed
factors. Second, we included the factor Previous
Congruency, as well as Stimulus Sequence (color repetition
or alternation from trial n – 1 to n; see also Braem, Verguts, &
Notebaert, 2011) to measure the effects of low-level stimulus
repetitions on response repetition effects. Importantly, al-
though the factor Stimulus Sequence allowed us to have an
idea of the relative contribution of low-level repetitions, it did
not rule out feature repetition effects, since the sequence of the
irrelevant feature could not be accounted for (Hommel, 2004;
Mayr & Awh, 2009; Mayr et al., 2003).

The results were analyzed using linear mixed-effects
models, as implemented in the R package lme4 (Bates,
Maechler, Bolker, & Walker, 2013). As was proposed by
Barr, Levy, Scheepers, and Tily (2013), we used a maximal
linear mixed-effects model with a random effect for subjects.
However, when we included the factors Previous Congruency
and Stimulus Sequence, the model did not converge. We
therefore simplified the random-effects structure by removing
the random slope for previous congruency.

Error rates were analyzed using a logistic link function. For
reaction times—a continuous variable—we report F statistics
with Kenward–Roger adjustment of the degrees of freedom
(Kenward & Roger, 1997). For binary responses, no such
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small-sample adjustments of the degrees of freedom have
been proposed in the literature1; therefore, we adopted the
standard strategy of reporting χ2 statistics.2

PERI is calculated by subtracting the congruency effect
(incongruent – congruent) following an error from the con-
gruency effect following a correct response. Because we
selected trials present in specific local sequences (i.e., C–X–
E for postcorrect trials and E–X for posterror trials), all trials
originated from moments close to each other in time, render-
ing this analysis immune to global performance fluctuations
(Dutilh et al., 2012). However, the significance of our results
did not differ when we used all postcorrect trials.

Error rates The traditional analysis for error rates (only Previous
Accuracy and Current Congruency were included) showed a
main effect of current congruency, χ2(1) = 282.89, p < .001,
but no significant effect of previous accuracy, χ2(1) < 1, p = .37.
We observed a significant interaction of congruency and previ-
ous accuracy, χ2(1) = 21.63, p < .001, showing that the congru-
ency effect after an error (15 %) was smaller than that effect on
trials following a correct response (23 %).

Extending the analysis with the factors Previous
Congruency and Stimulus Sequence again showed a main
effect of current congruency, χ2(1) = 126.60, p < .001, indi-
cating that participants made fewer errors on congruent (3 %)
than on incongruent (17 %) trials. No significant effects were
apparent of previous congruency, χ2(1) < 1, p = .50, or
previous accuracy, χ2(1) = 1.53, p = .225. The congruency
of the previous trial interacted significantly with the congru-
ency of the current trial (16 %), χ2(1) = 52.57, p < .001.
However, we found no significant interaction of previous
accuracy with previous congruency, χ2(1) < 1, p = .94, or
with the congruency of the current trial,χ2(1) < 1, p = .71. The
three-way interaction was significant, χ2(1) = 53.02, p < .001.
This interaction is shown in Fig. 1a. Significant PERI oc-
curred after a congruent trial (18 %), χ2(1) = 30.98,
p < .001, but after an incongruent trial, significant inverse
PERI emerged instead (–15 %), χ2(1) = 21.77, p < .001. This
pattern of results did not interact significantly with stimulus
sequence, χ2(1) = 1.61, p = .20.

Reaction times Analyzing reaction times with only Previous
Accuracy and Current Congruency as factors showed main
effects of both current congruency, F(1, 18.3) = 118.25,
p < .001, and previous accuracy, F(1, 22.1) = 52.37,
p < .001. However, we found no significant interaction of
previous accuracy and current congruency in this data set,
F(1, 4987.2) < 1, p = .57.

When we included the factors Previous Congruency and
Stimulus Sequence, a significant congruency effect was visi-
ble (55 ms), F(1, 19.4) = 6.99, p < .05, as well as a significant
effect of previous accuracy, F(1, 23.8) = 42.64, p < .001,
showing posterror slowing (63 ms). The effect of previous
congruency was not significant, F(1, 4935.9) = 2.15, p = .14.
The congruency of the current trial showed a significant
interaction with previous congruency, F(1, 4943.1) = 15.32,
p < .001, indicating a congruency sequence effect (35 ms). We
also observed a significant interaction of previous accuracy
and previous congruency, F(1, 4937.1) = 4.22, p < .05, show-
ing smaller posterror slowing following incongruent trials
(54 ms) than following congruent trials (73 ms). Previous
accuracy also interacted significantly with the congruency of
the current trial, F(1, 4967.4) = 6.55, p < .05 (–22 ms, inverse
PERI). Interestingly, the three-way interaction of previous
congruency, previous accuracy, and current congruency was
also significant, F(1, 4944.6) = 18.15, p < .001. This interac-
tion is shown in Fig. 1b. For postcongruent trials, we found no
significant PERI (16 ms), F(1, 2592.43) = 2.03, p = .15. After
an incongruent trial, however, significant inverse PERI was
apparent (–60 ms), F(1, 2109.81) = 22.25, p < .001. This
pattern of results did not interact significantly with stimulus
sequence, F(1, 4953.2) < 1, p = .58.

Discussion

In line with the results of Ridderinkhof (2002),
Experiment 1 showed significant PERI in error rates
when the factor Previous Congruency was omitted.
This effect was not replicated in reaction times.
However, when previous congruency was included, a
significant three-way interaction showed significant
PERI following a congruent trial, but inverse PERI
following an incongruent trial.

Experiment 2

The method of this experiment was identical to that of
Experiment 1, with the exception that half of the trials
were congruent and the other half incongruent. This
balanced design served as a replication, while simulta-
neously controlling for contingency learning by no lon-
ger allowing participants to predict the response on the
basis of the irrelevant information (Mordkoff, 2012;
Schmidt & De Houwer, 2011).

Twenty students at Ghent University (17 female, three
male) participated (mean age = 19.3 years, SD = 1.8 years)
for course credits. On average, 378 trials (SD = 154) were
included in the analysis. The mean reaction time was 364 ms
(SD = 38 ms), and the mean error rate was 11 % (SD = 6 %).

1 For binary dependent variables, small-sample inference is approximate
because the number of possible outcomes is limited.
2 χ2 andF statistics are related in the same way as z and t statistics:F and t
assume a finite sample, and with increasing sample size they converge
with the χ2 and z statistics, which assume an infinite sample.
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Results

Error rates Analyzing error rates with only Previous
Accuracy and Current Congruency as factors showed a main
effect of current congruency, χ2(1) = 45.79, p < .001, but no
significant effect of previous accuracy, χ2(1) < 1, p = .75. We
observed a significant interaction of congruency and previous
accuracy, χ2(1) = 5.76, p = .02, showing that the congruency
effect after an error (7 %) was smaller than that effect after a
correct response (11 %).

Extending the analysis with the factors Previous
Congruency and Stimulus Sequence again showed a main
effect of current congruency, χ2(1) = 38.84, p < .001, indicat-
ing that participants made fewer errors on congruent (5 %)
than on incongruent (13 %) trials. No significant effects were
apparent of previous accuracy, χ2(1) = 1.10, p = .30, or
previous congruency, χ2(1) < 1, p = .63. The congruency of
the previous trial interacted significantly with the congruency
of the current trial (11 %), χ2(1) = 67.23, p < .001. We found
no significant interaction of previous accuracy and previous
congruency, χ2(1) = 1.12, p = .29, but the interaction of
previous accuracy and the congruency of the current trial
was marginally significant, χ2(1) = 3.65 1, p = .06, showing
a smaller congruency effect following an error (6 %) than
following a correct response (8 %). The three-way interaction
of previous accuracy, previous congruency, and current

congruency was significant, χ2(1) = 123.18, p < .001. This
interaction is shown in Fig. 2a. After a congruent trial, signif-
icant PERI emerged (20 %), χ2(1) = 64.34, p < .001, but after
an incongruent trial, significant inverse PERI was seen instead
(–12 %), χ2(1) = 48.40, p < .001. This pattern of results did
not interact significantly with stimulus sequence, χ2(1) = 1.11,
p = .28.

Reaction times Analyzing reaction times with only Previous
Accuracy and Current Congruency revealed a main effect of
previous accuracy, F(1, 19) = 4.64, p < .05, but not an effect of
current congruency, F(1, 19) < 1, p = .46. No significant
interaction of previous accuracy and current congruency was
apparent, F(1, 6542.9) < 1, p = .96.

When we included the factors Previous Congruency and
Stimulus Sequence, a significant congruency effect emerged
(27 ms), F(1, 20.8) = 54.41, p < .001, as well as a significant
effect of previous accuracy, F(1, 19.4) = 34.19, p < .001,
showing posterror slowing (56 ms). The effect of previous
congruency was not significant, F(1, 6538.4) < 1, p = .61. The
congruency of the current trial showed a significant interac-
tion with previous congruency (35 ms), F(1, 6501.3) = 39.67,
p < .001, showing a congruency sequence effect. Previous
accuracy did not interact significantly with previous congru-
ency, F(1, 6536.4) = 2.36, p = .12, or with current congruency,
F(1, 6534.7) = 1.38, p = .24. The three-way interaction of
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Fig. 1 a Error rates (as percentages) and b reaction time (in milliseconds)
dependent on previous accuracy and current congruency, following a
congruent and incongruent trial. Error bars represent 95 % confidence

intervals around the mean. For each level of previous accuracy the
percentage of previous congruent and incongruent trials can be found in
the graph
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previous accuracy, previous congruency, and current congru-
ency was significant, F(1, 6501.8) = 40.53, p < .001. This
interaction is shown in Fig. 2b. After a congruent trial, signif-
icant PERI was apparent (31 ms), F(1, 2858.59) = 13.40,
p < .001, but after an incongruent trial, we observed signifi-
cant inverse PERI instead (–45 ms), F(1, 3620.8) = 30.12,
p < .001. Importantly, this effect did not interact significantly
with stimulus sequence, F(1, 6535.9) = 1.41, p = .24.

General discussion

In order to better understand behavioral adjustments following
errors, we investigated the modulation of posterror reduction
of interference following congruent and incongruent trials
separately. Omitting the factor Previous Congruency, in line
with Ridderinkhof (2002), resulted in significant PERI in the
error rates from both experiments. However, when previous
congruency was included, PERI was observed following con-
gruent trials, but inverse PERI following incongruent trials,
casting doubt on earlier reports of the PERI effect (King et al.,
2010; Ridderinkhof, 2002; Ridderinkhof et al., 2002).

Our results thus pose a challenge for CMT. Following
congruent trials, the expected pattern was observed.
However, following incongruent trials, significant inverse
PERI effects were demonstrated for both error rates and

reaction times. Regardless of whether errors on congruent or
incongruent trials elicit more conflict (Yeung, Botvinick, &
Cohen, 2004), error trials should elicit more conflict than
correct trials do, and CMT would always predict PERI. One
could assume that making an error on an incongruent trial
induces roughly the same amount of conflict as does a correct
incongruent trial, but this would still not be compatible with
the finding of inverse PERI after incongruent trials. This
pattern of results could, however, be described in terms of
the adaptation-by-binding account (Verguts & Notebaert,
2008, 2009). This account proposes that conflict engages
Hebbian learning processes on all currently active representa-
tions. This mechanism results in a stronger task focus follow-
ing conflict trials, and a weaker task focus following no-
conflict trials. Interestingly, both the up- and down-
regulation of cognitive control occur only on correct trials,
because the Hebbian mechanism requires correctly activated
associations. It is rather speculative to describe the activation
pattern on errors; therefore, the safest assumption is that no
adjustments occur following errors. However, as compared to
postcorrect trials, posterror trials would show a smaller con-
gruency effect for congruent trials (i.e., PERI) and a larger
congruency effect for incongruent trials (i.e., reversed PERI),
due to the adaptation following correct trials.

Contrary to our findings, Maier, Yeung, and Steinhauser
(2011) calculated PERI following incongruent trials only and
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showed a reduction of interference following flanker errors
(responding to the irrelevant flanker feature), relative to cor-
rect trials or nonflanker errors (responses to neither the target
nor the flanker). However, in their design, neutral trials were
presented instead of congruent trials. Therefore, focusing on
the task-irrelevant dimension was never beneficial for efficient
task performance, promoting a task strategy that probably
differed from the one in our paradigm. Still, further research
will be needed to see under which conditions errors might
indeed help conflict processing.

Our data also revealed posterror slowing (Rabbitt &
Rodgers, 1977), which has traditionally been described as
the result of an increase in cognitive control, and as such is
predicted to be observed alongside a posterror accuracy in-
crease (Botvinick et al., 2001). The lack of accuracy improve-
ments after errors in the literature (Bombeke et al., 2013;
Hajcak et al., 2003; King et al., 2010; Ridderinkhof, 2002)
has given rise to so-called nonfunctional explanations for
posterror slowing (Jentzsch & Dudschig, 2009; Notebaert
et al., 2009). Our data show an interesting dissociation be-
tween posterror slowing and PERI: Although PERI was only
observed following congruent trials, posterror slowing was
observed following congruent and incongruent trials. This
dissociation is again an indication that the originally reported
PERI effects reflected a modulation by congruency, primarily
driven by congruent trials (Compton, Huber, Levinson, &
Zheutlin, 2012) rather than by errors.
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