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Abstract Optional stopping refers to the practice of peeking
at data and then, based on the results, deciding whether or not
to continue an experiment. In the context of ordinary
significance-testing analysis, optional stopping is discour-
aged, because it necessarily leads to increased type I error
rates over nominal values. This article addresses whether
optional stopping is problematic for Bayesian inference with
Bayes factors. Statisticians who developed Bayesian methods
thought not, but this wisdom has been challenged by recent
simulation results of Yu, Sprenger, Thomas, and Dougherty
(2013) and Sanborn and Hills (2013). In this article, I show
through simulation that the interpretation of Bayesian quanti-
ties does not depend on the stopping rule. Researchers using
Bayesian methods may employ optional stopping in their own
research and may provide Bayesian analysis of secondary data
regardless of the employed stopping rule. I emphasize here the
proper interpretation of Bayesian quantities as measures of
subjective belief on theoretical positions, the difference be-
tween frequentist and Bayesian interpretations, and the diffi-
culty of using frequentist intuition to conceptualize the
Bayesian approach.

Keywords Optional stopping . Bayesian testing . p-hacking .

Statistics . Bayes factors

The field of psychology is experiencing a crisis of confidence,
as many researchers believe published results are not as well
supported as claimed (Carpenter, 2012; Roediger, 2012;
Wagenmakers, Wetzels, Borsboom, van der Maas, & Kievit,
2012; Young, 2012). This crisis is comprised of publicized
failures to replicate claimed effects, the publication of fantastic
ESP claims, and the documentation of outright fraud. A

common focus is now on identifying practices that violate
the assumptions of our methods, and examples include
peeking at the results to decide whether to collect more data
(called optional stopping) and making additional inferential
comparisons that were not considered before data collection.
These questionable practices go under the moniker of p-
hacking, and a remedy for the crisis is to avoid these bad
practices (Simmons, Nelson, & Simonsohn, 2011).

An alternative viewpoint about the cause of the crisis is that
the dominant inferential method, significance testing, is inap-
propriate for scientific reasoning (Rouder, Morey, Verhagen,
Province, & Wagenmakers, 2014). Many who are critical of
significance testing recommend inference by Bayes factor as a
replacement (Edwards, Lindman, & Savage, 1963; Gallistel,
2009; Myung & Pitt, 1997; Rouder et al., 2014; Rouder,
Speckman, Sun, Morey, & Iverson, 2009; Sprenger et al.,
2013; Wagenmakers, 2007). The Bayes factor comes from
Bayesian analysis and results from using Bayes’s rule to
update beliefs about theoretical positions after observing ex-
perimental data.

This article is about the wisdom of optional stopping,
where the researcher collects some data, analyzes them, and
on the basis of the outcome, decides to proceed withmore data
collection or not. Optional stopping is considered one of those
bad p-hacking practices because it does affect conclusions
from conventional significance tests. Yu, Sprenger, Thomas,
and Dougherty (2013) have shown that common practices
inflate both type I and type II error rates. Despite these results,
there is a sense in which optional stopping seems like a smart
thing to do. We seemingly should monitor our results as they
come in, and we should end early when the results are clear
and perhaps keep going when they are not. The critical ques-
tion addressed here is whether optional stopping is problem-
atic in the Bayesian context.

The answer to this question seems like it should be straight-
forward, yet the literature is contradictory. On one hand, early
Bayesian theorists stated that Bayesian quantities are

J. N. Rouder (*)
Department of Psychological Sciences, University of Missouri, 210
McAlester Hall, Columbia, MO 65211, USA
e-mail: rouderj@missouri.edu

Psychon Bull Rev (2014) 21:301–308
DOI 10.3758/s13423-014-0595-4



interpretable under optional stopping. Lindley (1957) wrote,
“It follows that any significance test based onBayes’s theorem
does not depend on the sequential stopping rule used, at least
amongst a wide class of such rules. In the extreme case the
experimenter can go on sampling until he [has a Bayes factor
that] has reached the significance level c, and yet the fact that
he did so is irrelevant to a Bayesian" (p. 192). Likewise,
Edwards et al. (1963) wrote, “the rules governing when data
collection stops are irrelevant to data interpretation. It is en-
tirely appropriate to collect data until a point has been proven
or disproven, or until the data collector runs out of time,
money, or patience" (p. 193). Based on this earlier work,
Wagenmakers and colleagues now use and recommend op-
tional stopping in experimental design (Matzke et al., 2014;
Wagenmakers et al., 2012).

More recently, Yu et al. (2013) have called this sanguine
answer into question. They write,

Bayesian analysis is not the magic elixir it is sometimes
made out to be. One cannot simply apply Bayesian
statistics to any old dataset and be confident that the
outcome is free of bias. As our results illustrate, the BF
[Bayes factor] distribution shows substantial irregulari-
ties, which vary depending on which heuristic was used
to collect data. Thus, prior analysis in which BFs are
computed post hoc on data collected under the NHST
framework . . . are not interpretable if researchers used a
data-dependent stopping heuristic. (p. 32)

According to Yu et al., Bayesian methods are susceptible to
an optional-stopping-rule artifact, and researchers cannot re-
analyze previously collected data unless they are certain that
the original researcher did not use an optional-stopping rule.
Such a ramification would certainly put me and my colleagues
at a loss, as we have reanalyzed others’ data (see Rouder &
Morey, 2011; Rouder, Morey, & Province, 2013), yet we
remain unsure whether these studies were terminated option-
ally or not. Sanborn and Hills (2013) present a far more
nuanced argument, but their conclusions are not so different.
These authors write that under a reasonable interpretation of
the Bayes factor, “the choice of stopping rule can, in some
situations, greatly increase the chance of an experimenter
finding evidence in the direction they desire" (p. 1).

This article provides a critique of Yu et al. (2013) and
Sanborn and Hills (2013). Before proceeding, please note that
both Yu et al. and Sanborn and Hills make a number of
important contributions, and both papers recommend the
Bayes factor for inference, at least under certain circum-
stances. Moreover, Yu et al.’s main contribution was
documenting the degree of optional-stopping tendencies
among practicing researchers, and their critique of Bayesian
methods was secondary. The critical element addressed here is
whether optional stopping is problematic for Bayesians. My

argument is that both sets of authors use the wrong criteria or
lens to draw their conclusions. They evaluate and interpret
Bayesian statistics as if they were frequentist statistics. The
more germane question is whether Bayesian statistics are
interpretable as Bayesian statistics even if data are collected
under optional stopping.

Bayesian probability and model comparison

Most of us were taught the frequentist definition of probabil-
ity: Probability is a proportion in the long run. For example,
the probability that a flipped coin lands heads is the proportion
of heads in a very long series of flips. Frequentist probability
has substantial limits. For example, it cannot be used on
events that occur only once—say, the probability that the
Euro will collapse in the next decade—because there is no
concept of a long-run series (Jackman, 2009; cf. Hájek, 2007).
Likewise, because there is no concept of a long-run series,
probabilities may not be placed on models, hypotheses, or
theories. Bayesian analysts use probability to express a degree
of belief. For a flipped coin, a probability of 3/4 means that the
analyst believes it is three times more likely that the coin will
land heads than tails. Such a conceptualization is very conve-
nient in science, where researchers hold beliefs about the
plausibility of theories, hypotheses, and models that may be
updated as new data become available. Not only does
Bayesian probability quantify these beliefs, but also Bayes
Rule provides the ideal way of updating these beliefs as new
data become available. Bayes rule comes from careful
consideration of what plausibility means, and its logical
foundations may be found in Cox (1946), de Finetti (1995),
Ramsey (1931), and Savage (1972).

Here is how significance testing and Bayesian model com-
parison work: Let’s suppose that we wish to test the proposi-
tion that I can change the probability a coin lands tails simply
by asking the coin to do so. Let’s consider the null model that
the coins true probability of a tails is .5 versus an effect-model
that the true probability is .525, which is a 5% effect. Let’s
further suppose that I have asked 1,000 coins to land tails, and
after flipping each a single time, 527 of them do so. Figure 1
shows the probability of all outcomes under the null model
(open and light points) and under the 5% effect model (filled
points). First, let’s consider a significance test. To perform a
significance test, we calibrate our assessment to the null model
alone. As can be seen, 527, the value at the vertical line, is a
rare event under the null. It is so rare that the probability of
observing it or any greater number of tails (light points) is less
than 5%. Hence, we may reject the null at the conventional
level of p<.05, and I have now documented my coin cajoling
skills.

In the Bayesian approach, we may place probabilities di-
rectly on the models and then update these probabilities in
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light of the data. We start with our beliefs before seeing the
data. Whereas my coin-cajoling skills are at stake, I might be
inclined to believe that I am as likely as not to affect the
probability. You, of course, may be more skeptical and may
hold odds, say, of a million-to-one against my purported coin-
cajoling skills. This formulation of beliefs as odds is very
convenient and is retained throughout. Next, we update our
odds in light of the data, using Bayes rule:

P M 1

�
�
�Data

� �

P M 0

�
�
�Data

� � ¼
P Data

�
�
�M 1

� �

P Data
�
�
�M 0

� � � P M 1ð Þ
P M 0ð Þ; ð1Þ

where M1 and M0 denote the effect model and null model,
respectively. The left-hand term, P(M1|Data)/P(M0|Data) is
the posterior odds, the relative beliefs about the models after
seeing the data. The rightmost term, P(M1)/P(M0) is the prior
odds, the relative beliefs before seeing the data. The term
P(Data|M1)/P(Data|M0) is the Bayes factor, and it describes
how beliefs are to be updated. Evaluating the Bayes factor is
straightforward for the coin-cajoling example. We can use
Fig. 1 for the values. At the observed data of 527 tails, the
probability of this result under the alternative is .025, and the
probability under the null is .0058. The ratio, the Bayes factor,
is 4.3. I may now update my posterior odds to 4.3-to-1 in favor
of the existence of my abilities; you may update yours to
approximately 235,000-to-1 against. I am now modestly pos-
itive about my abilities; you are slightly less skeptical. Note
that even though we may not share posterior beliefs, we can
agree on how the data should obligate us to update our beliefs.
Bayes factors serves as an appropriate and transparent mea-
sure of evidence from data for theoretical positions, and we,

along with many others, recommend it be reported, rather than
significance test results.

The interpretation of posterior odds holds with optional
stopping

The main question here is whether Bayesian analysis is inter-
pretable even with optional stopping. Yu et al. (2013) and
Sanborn and Hills (2013) use computer simulations, rather
than mathematical derivation, to elucidate the properties of
analytic methods. This choice is wise for a readership of
experimental psychologists. Simulation results have a tangi-
ble, experimental feel; moreover, if something is true mathe-
matically, we should be able to see it in simulation as well.

Suppose a researcher is considering two hypotheses: a null
with an effect size of 0 and an alternative hypothesis with an
effect size of .4. Now let’s generate some data—say, 10
observations from one of the hypotheses.1 Moreover, let’s
pick which hypothesis we use to generate the data by flipping
a fair coin. Before observing the data, let’s set our prior odds to
1-to-1; after all, the generating hypothesis is chosen by coin
flip. Now, let’s observe the data and update our beliefs. The
updated beliefs are the posteriori odds, or the probability that
the data came from the alternative, relative to the probability
that the data came from the null, conditional on the data.2 It
may seem natural to study the distribution of the posterior
odds when the data come from one or the other hypothesis,
and Fig. 2a shows the distribution of posterior odds when the
null is true. The distribution was constructed by simulation,
and there are 20,000 replicate experiments of 10 samples each.
As can be seen, most of the posterior odds across these
repeated experiments favor the null; that is, they are smaller
than 1.0 in value. Figure 2b shows the distribution when the
alternative is true—that is, when the true effect size is .4.
Although the results are reasonable and the distributions are
well behaved, they do not address the interpretability of pos-
terior odds.

Posterior odds are the probability of competing hypotheses
given data. If updating through Bayes factor is ideal and if the
prior odds are accurate, then the posterior odds should be
accurate as well. If a replicate experiment yielded a posterior
odds of 3.5-to-1 in favor of the null, then we expect that the
null was 3.5 times as probable as the alternative to have
produced the data. We can check this interpretation with
simulations as follows: In repeated simulations, we can select
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Fig. 1 The probability of a certain number of tail-side flips out of 1000
for p = .5 (open and light points) and for p = .525 (dark points). Avalue of
527 is significant by a one-tail test at .05. Nonetheless, the value is only
4.3 times as probable under the alternative as under the null

1 Throughout this report, the standard deviation of data is assumed
known, for simplicity. All results about the interpretation of the Bayes
factor and posterior odds hold without this assumption.
2 With 1-to-1 prior odds, the posterior odds are P M1 jDatað Þ

P M0 jDatað Þ ¼
exp(nδ[ȳ−δ=2]), where δ is the effect size under the alternative, n is the
sample size, and ȳ is the sample mean.
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all those replicate experiments that yield the same posterior
odds—say, 3.5-to-1 in favor of the null—and tally how many
of these selected experiments came from the null truth and
how many came from the alternative truth. If the posterior
odds are interpretable as claimed, then about 3.5 times as
many of these selected experiments should come from the
null than from the alternative. Figure 2c shows the compari-
son. The histogram for the posterior odds from the alternative
is shown as in Fig. 2b, but the histogram from the null is that
from Fig. 2a projected downward. The arrow highlights a
small bin of posterior odds centered on .284, which is about
3.5-to-1 in favor of the null. If the posterior odds are

interpretable, there should be 3.5 times as many experiments
when the null serves as truth (projected downward) as when
the alternative serves as truth. In fact, for the 20,000 runs for
each hypothesis, there were 3,072 and 858 runs in this small
bin for when the null and alternative, respectively, served as
truth. The ratio here, which for the purposes of this demon-
stration is called the observed posterior odds, is 3,072-to-858,
which reduces to 3.6-to-1. This observed value agrees closely
with the nominal value of 3.5-to-1, and the difference is well
within the error of the simulation. Figure 2d shows the ob-
served posterior odds as a function of the nominal posterior
odds for all bins, and they are equal in value up to simulation
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Fig. 2 The interpretation of
posterior odds. a The distribution
of posterior odds (N = 10, with
20,000 replicate experiments)
under the null. b The same
distribution under the alternative
with an effect size of δ = .4. c
These distributions are displayed
back-to-back, with the
distribution for the null projected
downward. This display allows
for the selection of replicate
experiments with similar posterior
odds, regardless of the effect size
that generated the data. The ratio
of frequencies of replicates from
each hypothesis that generated the
data is the observed posterior
odds. d Observed posterior odds
as a function of nominal posterior
odds. The equality holds within
sampling noise. e Observed
posterior odds with optional
stopping. f Observed posterior
odds as a function of nominal
posterior odds with optional
stopping
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error (the small mismatches at the extreme values reflect small
numbers under one or the other truths).3

Does the interpretation hold with optional stopping? I ran a
simulation with the same setup, except that sampling occurred
until the posterior odds were at least 10-to-1 for either hypoth-
esis, unless a maximum of 25 samples was reached. With
these settings, about 58% of the trials achieve the 10-to-1
criterion. The histograms of posterior odds under both hy-
potheses are shown in Fig. 2e, and once again, the posterior
odds distribution for when the null served as truth is projected
downward. These distributions may be compared with those
from the previous simulation without optional stopping
(shown in Fig. 2c), and they are quite different. The distribu-
tions no longer have a characteristic normal shape and, in-
stead, have clumps at the stopping criteria of 10-to-1. Yu et al.
(2013) describes these distributions as “irregular" and
“distorted," in so much as they do not resemble those without
optional stopping, and it is this feature that drives their con-
clusion. For Sanborn and Hills (2013), optional stopping is
problematic when it changes the likelihood of obtaining pos-
terior odds of certain values, which it does here. Yet these
concerns are immaterial for the proper interpretation of pos-
terior odds. The critical question is whether the posterior odds
accurately reflect the probability that a given value came from
a given hypothesis. Figure 2e shows the observed posterior
odds as a function of nominal posterior odds for all bins, and
as can be seen, they match up to simulation error. Optional
stopping does not affect the interpretation of posterior odds.
Even with optional stopping, a researcher can interpret the
posterior odds as updated beliefs about hypotheses in light of
data.

In Bayesian analysis, researchers can hold beliefs on hy-
potheses that encompass more than a single point, called
composite hypotheses. Consider a model of the alternative in
which the effect size is distributed as a standard normal. This
alternative captures the belief that effect sizes as large as 1.0
are neither typical nor exceedingly rare. The posterior odds in
this case are the updated beliefs about this normally distribut-
ed alternative, relative to the null.4 I ran the above simulation
where, in one case, the null served as truth and, in the other,
the composite alternative served as truth. When the composite
serves as truth, there is no single truth for all experiments.
Instead, each experiment has a unique true value, yet these
values are from a common distribution (the standard normal,
in this case). In simulation, the true effect size is sampled for
the replicate experiment, and then the n samples are generated

from that true effect size. Following data generation, the
posterior odds are then computed. In the fixed stopping case,
the sample size was n = 10, and 20,000 replicate experiments
were sampled. Figure 3a shows the distribution of posterior
odds under this composite alternative (projected upward) and
under the null (projected downward). Figure 3b shows that the
observed posterior odds match the nominal values within
simulation error.

The effects of optional stopping on the interpretation of
posterior odds may be assessed as before. I performed the
previous optional stopping simulation for the composite hy-
pothesis case; sampling continued either until the posterior
odds first exceeded 10-to-1 in favor of either hypothesis or
until 25 samples were obtained. Figure 3c shows the histo-
grams of posterior odds for both truths for this stopping rule.
These distributions are different from those without optional
stopping, and such differences are expected and unimportant
in the interpretation of posterior odds. The critical question is
whether the nominal and observed posterior odds match.
Figure 3d shows that they do within simulation error. Hence,
posterior odds are interpretable for composite hypotheses
even with optional stopping.

I ran two additional simulations in which stopping was
based on p-values: In one simulation, sampling continued
until the p-value was less than .05 or until 25 samples were
obtained. In the second simulation, sampling continued until
the p-value was outside the interval from .05 to .50 or until 25
samples were obtained. This second simulation reflects the
findings of Yu et al. (2013), who report that researchers also
stopped when p-values became large. Figure 4 shows the
results: The top row is for optional stopping based on small
p-values; the bottom row is for optional stopping based on
small and large p-values. Optional stopping based on p-values
does not affect the interpretation of posterior odds. As an
aside, the simulations show the inflation of type I error in
significant tests. Consider the downward histogram in Fig. 3a,
which is the distribution of posterior odds under the null. The
second mode at about 2.5-to-1 in favor of the alternative
consists of those replicate experiments that were termi-
nated by optional stopping at p < .05. In fact, about
11.5% of the replicates met this criterion, meaning that
although the nominal type I error rate was set at .05, the
real type I error rate was .115.

Suppose the models are wrong?

In the above demonstrations, the analysts computed posterior
odds for models that were used to generate the data. In real
applications, however, there is no such guarantee that either
model is true. One of Sanborn and Hills’s (2013) demonstra-
tions is to show that optional stopping affects the distribution
of Bayes factors when the data come from a model not under

3 The situation here is ironic in that the simulations provide estimates of
odds from long-run frequencies. Nonetheless, the simulations are being
used as a computational tool to assess whether updating is rational, and
this usage is appropriate.
4 With 1-to-1 prior odds, the posterior odds for the composite that effect

sizes follow a standard normal are P M1 jDatað Þ
P M0 jDatað Þ ¼

exp n2y2

2 nþ1ð Þ
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ffiffiffiffiffiffi
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consideration. Given the plausibility of some level of
misspecification, it is wise to explore the interpretation of
posterior odds for wrong models.

Bayesian analysts update beliefs about competing models,
and, fortunately, updating does not require that any one model
be true. The enterprise is motivated as follows: Bayesian
analysts build models to capture differences between theoret-
ically important positions. Beliefs may be placed on the
models as surrogates for the positions, and these beliefs may
be updated as new data are acquired. The resulting updated
beliefs may be interpreted as the relative plausibility of these
positions, at least inasmuch as the models captured the impor-
tant relations between the positions (Morey, Romeijn, &
Rouder, 2013). Such a view places a responsibility on the
analyst to choose judicious models that indeed capture the
relations between positions. Analysts benefit when they ask
themselves what may be learned if the models are wrong, and
it is often the case that very little may be learned if all models
under consideration are dramatically misspecified. How to
choose these models is a matter of some debate, but there is
much agreement about the value of default models for com-
mon cases (see Rouder & Morey, 2012; Rouder, Morey,
Speckman, & Province, 2012; Rouder et al., 2013; Rouder
et al., 2009; Wagenmakers, 2007; Wetzels, Grasman, &
Wagenmakers, 2012).

Sanborn and Hills (2013) offer an example in which
models are dramatically wrong, and the following example
is similar in spirit: Considered two point hypotheses that the
effect size was small and positive (δ = .2) versus it was small
and negative (δ = −.2). Figure 5a shows the distribution of the
posterior odds for n = 40 when the data are generated with δ =
0, a truth represented by neither model. This posterior-odds
distribution is centered at about 1-to-1, which is expected.
Figure 5b shows the case for optional stopping. Here, sam-
pling occurred until the odds were 10-to-1 in favor of the
positive effect up to 80 samples. Note that the probability of
reaching a 10-to-1 odds in favor of the positive result is greatly
increased (in this case, reaching a 10-to-1 odds is twice as
likely as reaching a 1-to-10 odds).5 It is this fact that leads
Sanborn and Hills to conclude that optional stopping may
increase the chances of a desired result. These results, how-
ever, do not impinge on the interpretability of posterior odds.
When we update relative beliefs about two models, we make
an implicit assumption that they are worthy of our consider-
ation. Under this assumption, the beliefs may be updated
regardless of the stopping rule. In this case, the models are
dramatically wrong, so much so that the posterior odds
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Fig. 3 Posterior odds are
interpretable for composite
hypotheses and with optional
stopping. a The top histogram is
posterior odds when the truth is
distributed as a standard normal.
The bottom histogram is the
posterior odds under the null. b
Observed posterior odds as a
function of nominal posterior
odds. The equality holds within
sampling noise. c Observed
posterior odds with optional
stopping at 10-to-1 odds. d
Observed posterior odds as a
function of nominal posterior
odds with optional stopping

5 If the analyst is willing to sample enough data, then she or he can always
end up at a posterior odds of 10-to-1 for the positive result (Feller, 1968).
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contain no useful information whatsoever. Perhaps the more
important insight is not that optional stopping is undesirable,
but that the meaningfulness of posterior odds is a function of
the usefulness of the models being compared.

Discussion

As was discussed by early Bayesian theorists such as Lindley
(1957) and Edwards et al. (1963), the proper interpretation of

Bayesian statistics such as posterior odds and Bayes factors is
unaffected by the stopping rule. The following three recom-
mendations may prove helpful for substantive researchers.

1. Researchers should consider Bayesian methods to assess
the evidence from data for theoretically important propo-
sitions, relative to judiciously chosen alternatives.
Bayesian updating provides a rigorous and appealing
approach to communicating results in scientific discourse.
Enlightened advocacymay be found in a growing number
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Fig. 4 Posterior odds are
interpretable for composite truths
and with optional stopping based
on p-values. a–b. Posterior odds
with optional stopping from small
p-values (p < .05). c–d Posterior
odds with option stopping when
the p-value is outside the interval
from .05 to .50
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of sources, including Berger and Sellke (1987), Edwards
et al. (1963), Jeffreys (1961), Rouder et al. (2009), and
Wagenmakers (2007). How to choose models for com-
mon cases has been studied, and there is much gathered
wisdom in the Bayesian psychology community.

2. Researchers who use Bayesian testing should use the
proper interpretation as updated beliefs about the relative
plausibility of models in light of data. The critical error of
Yu et al. (2013) and Sanborn and Hills (2013) is studying
Bayesian updating conditional on some hypothetical truth
rather than conditional on data. This error is easy to make
because it is what we have been taught and grown familiar
with in our frequentist training. In my opinion, the key to
understanding Bayesian analysis is to focus on the degree
of belief for considered models, which need not and
should not be calibrated relative to some hypothetical
truth.

3. Bayesians should consider optional stopping in practice.
Wagenmakers et al. (2012) recommended a protocol
where researchers state, before data collection, that they
will sample until the Bayes factor reaches sufficient size in
favor of onemodel over the other, andMatzke et al. (2014)
implemented this protocol. Optional-stopping protocols
may be hybrids where sampling occurs until the Bayes
factor reaches a certain level or a certain number of sam-
ples is reached. Such an approach strikes me as justifiable
and reasonable, perhapswith the caveat that such protocols
be made explicit before data collection. The benefit of this
approach is that more resources may be devoted to more
ambiguous experiments than to clear ones.
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