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Abstract The frequency distribution of words has been a key
object of study in statistical linguistics for the past 70 years.
This distribution approximately follows a simple mathemati-
cal form known as Zipf ’s law. This article first shows that
human language has a highly complex, reliable structure in the
frequency distribution over and above this classic law, al-
though prior data visualization methods have obscured this
fact. A number of empirical phenomena related to word
frequencies are then reviewed. These facts are chosen to be
informative about the mechanisms giving rise to Zipf’s law
and are then used to evaluate many of the theoretical expla-
nations of Zipf’s law in language. No prior account straight-
forwardly explains all the basic facts or is supported with
independent evaluation of its underlying assumptions. To
make progress at understanding why language obeys Zipf’s
law, studies must seek evidence beyond the law itself, testing
assumptions and evaluating novel predictions with new, inde-
pendent data.
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Introduction

One of the most puzzling facts about human language is also
one of the most basic: Words occur according to a famously
systematic frequency distribution such that there are few very
high-frequency words that account for most of the tokens in
text (e.g., “a,” “the,” “I,” etc.) and many low-frequency words
(e.g., “accordion,” “catamaran,” “ravioli”). What is striking is
that the distribution is mathematically simple, roughly

obeying a power law known as Zipf ’s law: The rth most
frequent word has a frequency f(r) that scales according to

f rð Þ∝ 1

rα
ð1Þ

for α≈1 (Zipf, 1936, 1949).1 In this equation, r is called the
frequency rank of a word, and f(r) is its frequency in a natural
corpus. Since the actual observed frequency will depend on
the size of the corpus examined, this law states frequencies
proportionally: The most frequent word (r = 1) has a frequen-
cy proportional to 1, the secondmost frequent word (r = 2) has
a frequency proportional to 1

2α , the third most frequent word
has a frequency proportional to 1

3α , and so forth.
Mandelbrot proposed and derived a generalization of this

law that more closely fits the frequency distribution in lan-
guage by “shifting” the rank by an amount β (Mandelbrot,
1953, 1962):

f rð Þ∝ 1

r þ βð Þα ð2Þ

for α≈1 and β≈2.7 (Mandelbrot, 1953, 1962; Zipf, 1936,
1949). This paper will study Eq. 2 as the current incarnation
of “Zipf’s law,” although we will use the term near-Zipfian
more broadly to mean frequency distributions where this law
at least approximately holds. Such distributions are observed
universally in languages, even in extinct and yet-untranslated
languages like Meroitic (R. D. Smith, 2008).

It is worth reflecting on the peculiarity of this law. It is
certainly a nontrivial property of human language that words
vary in frequency at all; it might have been reasonable to

1 Note that this distribution is phrased over frequency ranks because the
support of the distribution is an unordered, discrete set (i.e., words). This
contrasts with, for instance, a Gaussian that is defined over a complete,
totally ordered field (ℝn) and, so, has a more naturally visualized proba-
bility mass function.
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expect that all words should be about equally frequent. But
given that words do vary in frequency, it is unclear why words
should follow such a precise mathematical rule—in particular,
one that does not reference any aspect of each word’s mean-
ing. Speakers generate speech by needing to communicate a
meaning in a given world or social context; their utterances
obey much more complex systems of syntactic, lexical, and
semantic regularity. How could it be that the intricate process-
es of normal human language production conspire to result in
a frequency distribution that is so mathematically simple—
perhaps “unreasonably” so (Wigner, 1960)?

This question has been a central concern of statistical
language theories for the past 70 years. Derivations of Zipf’s
law from more basic assumptions are numerous, both in
language and in the many other areas of science where this
law occurs (for overviews, see Farmer & Geanakoplos, 2006;
Mitzenmacher, 2004; Newman, 2005; Saichev, Malevergne &
Sornette, 2010). Explanations for the distribution across the
sciences span many formal ideas, frameworks, and sets of
assumptions. To give a brief picture of the range of explana-
tions that have been worked out, such distributions have been
argued to arise from random concatenative processes (Conrad
& Mitzenmacher, 2004; Li, 1992; Miller, 1957), mixtures of
exponential distributions (Farmer & Geanakoplos, 2006),
scale-invariance (Chater & Brown, 1999), (bounded) optimi-
zation of entropy (Mandelbrot, 1953) or Fisher information
(Hernando, Puigdomènech, Villuendas, Vesperinas & Plastino,
2009), the invariance of such power laws under aggregation
(see Farmer & Geanakoplos, 2006), multiplicative stochastic
processes (see Mitzenmacher, 2004), preferential reuse
(Simon, 1955; Yule, 1944), symbolic descriptions of complex
stochastic systems (Corominas-Murtra & Solé, 2010), random
walks on logarithmic scales (Kawamura & Hatano, 2002),
semantic organization (Guiraud, 1968; D. Manin, 2008), com-
municative optimization (Ferrer i Cancho, 2005a, b; Ferrer i
Cancho & Solé, 2003; Mandelbrot, 1962; Salge, Ay, Polani, &
Prokopenko, 2013; Zipf, 1936, 1949), random division of
elements into groups (Baek, Bernhardsson & Minnhagen
2011), first- and second-order approximation of most common
(e.g., normal) distributions (Belevitch, 1959), and optimized
memory search (Parker-Rhodes & Joyce, 1956), among many
others.

For language in particular, any such account of the Zipf’s
law provides a psychological theory about what must be
occurring in the minds of language users. Is there a multipli-
cative stochastic process at play? Communicative optimiza-
tion? Preferential reuse of certain forms? In the face of such a
profusion of theories, the question quickly becomeswhich—if
any—of the proposed mechanisms provides a true psycholog-
ical account of the law. This means an account that is con-
nected to independently testable phenomena and mechanisms
and fits with the psychological processes of word production
and language use.

Unfortunately, essentially all of the work in language re-
search has focused solely on deriving the law itself in princi-
ple; very little work has attempted to assess the underlying
assumptions of the hypothesized explanation, a problem for
much work on power laws in science (Stumpf & Porter,
2012).2 It should be clear why this is problematic: The law
itself can be derived from many starting points. Therefore, the
ability of a theory to derive the law provides very weak
evidence for that account’s cognitive validity. Other evidence
is needed.

This article reviews a wide range of phenomena any theory
of word frequency distributions and Zipf’s law must be able to
handle. The hope is that a review of facts about word frequen-
cies will push theorizing about Zipf’s law to address a broader
range of empirical phenomena. This review intentionally
steers clear from other statistical facts about text (e.g., Heap’s
law, etc.) because these are thoroughly reviewed in other work
(see Baayen, 2001; Popescu, 2009). Instead, we focus here
specifically on facts about word frequencies that are informa-
tive about the mechanisms giving rise to Zipf’s law.3

We begin first, however, by pointing out an important
feature of the law: It is not as simple as Zipf and other since
have suggested. Indeed, some of the simplicity of the relation-
ship between word frequency and frequency rank is the result
of a statistical sin that is pervasive in the literature. In partic-
ular, the plots that motivate Eq. 2 almost always have unad-
dressed, correlated errors, leading them to look simpler than
they should. When this is corrected, the complexities of the
word frequency distribution become more apparent. This
point is important because it means that Eq. 2 is, at best, a
good approximation to what is demonstrably a much more
complicated distribution of word frequencies. This complica-
tion means that detailed statistical analysis of what particular
form the word frequency distribution takes (e.g. Eq. 1 vs.
Eq. 2 vs. lognormal distributions, etc.) will not be fruitful;
none is strictly “right.”

Following those results, this article presents and reviews a
number of other facts about word frequencies. Each fact about
word frequencies is studied because of its relevance to a
proposed psychological account of Zipf’s law. Most striking-
ly, the present paper provides experimental evidence that near-
Zipfian word frequency distributions occur for novel words in a
language production task. The sectionModels of Zipf’s law then

2 As they write, “Finally, and perhaps most importantly, even if the
statistics of a purported power law have been done correctly, there is a
theory that underlies its generative process, and there is ample and
uncontroversial empirical support for it, a critical question remains: What
genuinely new insights have been gained by having found a robust,
mechanistically supported, and in-all-other-ways superb power law? We
believe that such insights are very rare.”
3 Importantly, however, other statistical properties are also likely infor-
mative, since a “full” theory of word frequencies would be able to explain
a wide range of empirical phenomena.
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reviews a number of formal models seeking to explain Zipf’s
law in language and relates each proposed account to the em-
pirical phenomena.

The word frequency distribution is complex

Quite reasonably, a large body of work has sought to examine
what form most precisely fits the word frequency distribution
observed in natural language. Zipf’s original suggestion of
Eq. 1 was improved by Mandelbrot to that in Eq. 2, but many
other forms have been suggested, including, for instance, a
log-normal distribution (Carroll, 1967, 1969), which might be
considered a reasonably “null” (e.g., unremarkable)
hypothesis.

A superb reference for comparing distributions is Baayen
(2001, Chap. 3), who reviewed evidence for and against a log-
normal distribution (Carroll, 1967, 1969), a generalized in-
verse Gauss–Poisson model (Sichel, 1975), and a generalized
Z-distribution (Orlov & Chitashvili, 1983) for which many
other models (due to, e.g., Herdan, 1960, 1964; Mandelbrot,
1962; Rouault, 1978; Simon, 1955, 1960; Yule, 1924) are a
special case (see also Montemurro, 2001; Popescu, 2009).
Baayen finds, with a quantitative model comparison,
that which model is best depends on which corpus is
examined. For instance, the log-normal model is best
for the text The Hound of the Baskervilles, but the
Yule–Simon model is best for Alice in Wonderland.
One plausible explanation for this is that none of these
simple models—including the Zipf–Mandelbrot law in
Eq. 2—is “right,”4 instead only capturing some aspects
of the full distribution of word frequencies.

Indeed, none is right. The apparent simplicity of the distri-
bution is an artifact of how the distribution is plotted. The
standard method for visualizing the word frequency distribu-
tion is to count how often each word occurs in a corpus and to
sort the word frequency counts by decreasing magnitude. The
frequency f(r) of the rth most frequent word is then plotted
against the frequency rank r, typically yielding a mostly linear
curve on a log-log plot (Zipf, 1936), corresponding roughly to
a power law distribution.5 This approach—although essential-
ly universal since Zipf—commits a serious error of data
visualization. In estimating the frequency-rank relationship
this way, the frequency f(r) and frequency rank r of a word
are estimated on the same corpus, leading to correlated errors
between the x-location r and y-location f(r) of points in the
plot.

This is problematic because it may suggest spurious regu-
larity.6 The problem can be best understood by a simple
example. Imagine that all words in language were actually
equally probable. In any sample (corpus) of words, we will
find that some words occur more than others just by chance.
When plotted in the standard manner, we will find a strikingly
decreasing plot, erroneously suggesting that the true
frequency-rank relationship has some interesting structure to
be explained. This spurious structure is especially problematic
for low-frequency words, whose frequencies are measured
least precisely. Additionally, in the standard plot, deviations
from the Zipfian curve are difficult to interpret, due to the
correlation of measurement errors; it is hard to tell systematic
deviations from noise.

Fortunately, the problem is easily fixed: We may use two
independent corpora to estimate the frequency and frequency
rank. In the above case where all words are equally probable,
use of independent corpora will lead to no apparent struc-
ture—just a roughly flat frequency-rank relationship. In gen-
eral, we need not have two independent corpora from the start;
we can imagine splitting our initial corpus into two subcorpora
before any text processing takes place. This creates two cor-
pora that are independent bodies of text (conditioned on the
general properties of the starting corpus) and, so, from which
we can independently estimate r and f(r). A convenient tech-
nique to perform this split is to perform a binomial split on
observed frequency of each word: If we observe a word, say,
100 times, we may sample from a binomial (N = 100, p = .5)
and arrive at a frequency of, say, 62 used to estimate its true
frequency and a frequency of N − 62 = 38 to estimate its true
frequency rank. This exactly mirrors randomly putting tokens
of each word into two independent corpora, before any text
processing began. The choice of p = .5 is not necessary but
yields two corpora of approximately the same size. With this
method, the deviations from a fit are interpretable, and our
plotting method no longer introduces any erroneous structure.

Figure 1a shows such a plot, giving the frequency/
frequency-rank relationship from the American National Cor-
pus (ANC; Reppen & Ide, 2004), a freely available collection
of written American English. All figures in this paper follow
this plotting procedure unless otherwise noted. The plot shows
a two-dimensional histogram of where words fall in
frequency/frequency-rank space.7 The shading of the histo-
gram is done logarithmically with the number of words falling
into each hexagonal bin and is white for zero-count bins.

4 See Ferrer i Cancho and Servedio (2005) for related arguments based on
the range of Zipfian exponents.
5 Since linearity on a log-log plot means that log f = a log r + b,
so f = ebra∝ra.

6 Such estimation also violates the assumptions of typical algorithms
used to fit Zipfian exponents, since most fitting algorithms assume that
x is known perfectly and only y is measured with error. This concern
applies in principle to maximum-likelihood estimation, least squares (on
log-log values), and any other technique that places all of measurement
error on frequencies, rather than both frequencies and frequency ranks.
7 In these plots, tied ranks are not allowed, so words of the same
frequency are arbitrarily ordered.
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Because the plot has a logarithmic y-axis, words with zero
frequency after the split are not shown. The fit of Eq. 2 using
a maximum-likelihood method on the separate frequency and
frequency rank portions of the corpus is shown in the red solid
line. Additionally, a locally smoothed regression line (LOESS)
(Cleveland, Grosse, & Shyu, 1992) is shown in gray. This line
corresponds to a local estimate of the mean value of the data and
is presented as a comparison point to see how well the fit of
Eq. 2 matches the expected value of the points for each frequen-
cy rank (x-value). In the corner, several key values are reported:
the fit α and β, an R2 measure giving the amount of variance
explained by the red line fit, and an adjusted Radj

2 capturing the
proportion of explainable variance captured by the fit, taking the
smoothed regression as an estimate of the maximum amount of
variance explainable. For simplicity, statistics are computed only
on the original R2, and its significance is shown with standard
star notation (three stars means p < .001).

This plot makes explicit several important properties of the
distribution. First, it is approximately linear on a log-log plot,
meaning that the word frequency distribution is approximately
a power law, and moreover, is fit very well by Eq. 2 according
to the correlation measures. This plot shows higher variability
toward the low-frequency end, (accurately) indicating that we
cannot estimate the curve reliably for low-frequency words.
While the scatter of points is no longer monotonic, note that
the true plot relating frequency to frequency rank must be
monotonic by definition. Thus, one might imagine estimating
the true curve by drawing any monotonic curve through these
data. At the low-frequency end, we have more noise and, so,
greater uncertainty about the shape of that curve. This plot
also shows that Eq. 2 provides a fairly accurate fit (red) to the

overall structure of the frequency-rank relationship across
both corpora.

Importantly, because we have estimated r and f(r) in a
statistically independent way, deviations from the curve
can be interpreted. Figure 1b shows a plot of these devi-
ations, corresponding to the residuals of frequency once
Eq. 2 is fit to the data. Note that if the true generating
process were something like Eq. 2, the residuals should be
only noise, meaning that those that are above and below
the fit line (y = 0 in the residual plot) should be deter-
mined entirely by chance. There should be no observable
structure to the residual plot. Instead, what Fig. 1b reveals
is that there is considerable structure to the word frequen-
cy distribution beyond the fit of the Zipf–Mandelbrot
equation, including numerous minima and maxima in the
error of this fit. This is most apparent in the “scoop” on
the right-hand size of the plot, corresponding to misesti-
mation of higher ranked (lower-frequency) words. This
type of deviation has been observed previously with other
plotting methods and modeled as a distinct power law
exponent by Ferrer i Cancho and Solé (2001), among
others.

However, what is more striking is the systematic deviation
observed in the left half of this plot, corresponding to low-rank
(high-frequency) words. Even the most frequent words do not
exactly follow Zipf’s law. Instead, there is a substantial auto-
correlation, corresponding to the many local minima and max-
ima (“wiggles”) in the left half of this plot. This indicates that
there are further statistical regularities—apparently quite com-
plex—that are not captured by Eq. 2. These autocorrelations in
the errors are statistically significant using the Ljung–Box

a b

Fig. 1 a Relationship between frequency rank (x-axis) and (normalized)
frequency (y-axis) for words from the American National Corpus. This is
plotted using a two-dimensional hexagonal histogram. Bins are shaded
blue to green along a logarithmic scale depending on how many words
fall into the bin. The red line shows the fit of Eq. 2 to these data. b

Frequency rank versus the difference (in log space) between a word’s
frequency and the prediction of Eq. 2. This figure shows only a subset of
the full y range, cropping some extreme outliers on the right-hand side of
the plot in order to better visualize this error for the high-frequency words
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Q-test (Ljung & Box, 1978) for residual autocorrelation
(Q = 126,810.1, p < .001), even for the most highly ranked
25 (Q = 5.7, p = .02), 50 (Q = 16.7, p < .001), or 100
(Q = 39.8, p < .001) words examined.

Such a complex structure should have been expected:
Of course, the numerous influences on language produc-
tion result in a distribution that is complex and struc-
tured. However, the complexity is not apparent in stan-
dard ways of plotting power laws. Such complexity is
probably incompatible with attempts to characterize the
distribution with a simple parametric law, since it is
unlikely that a simple equation could fit all of the
minima and maxima observed in this plot. At the same
time, almost all of the variance in frequencies is fit very
well by a simple law like Zipf’s power law or its close
relatives. A simple relationship captures a considerable
amount about word frequencies but clearly will not
explain everything. The distribution in language is only
near-Zipfian.

Empirical phenomena in word frequencies

Having established that the distribution of word frequencies
is more complex than previously supposed, we now review
several basic facts about word frequencies that any theory
of the Zipfian or near-Zipfian distribution must account for.
The plan of this article is to present these empirical phe-
nomena in this section and then use them to frame specific
model-based accounts of Zipf’s law in the section, Models
of Zipf’s law. As we will see, the properties of word fre-
quencies reviewed in this section will have much to say
about the most plausible accounts of the word frequency
distribution in general.

The general method followed in this section is to study
relevant subsets of the lexicon and quantify the fit of Eq. 2.
This approach contrasts somewhat with the vast literature
on statistical model comparison to check for power laws (as
compared with, e.g., lognormal distributions, etc.). The
reason for this is simple: the previous section provides
strong evidence that no simple law can be the full story
behind word frequencies because of the complexities of the
frequency rank/frequency curve. Therefore, comparisons
between simple models will inevitably be between alterna-
tives that are both “wrong.”

In general, it is not so important which simple distribu-
tional form is a better approximation to human language.
What matters more are the general properties of word
frequencies that are informative about the underlying
mechanisms behind the observed distribution. This section
tries to bring out those general properties. Do the distribu-
tions appear near-Zipfian for systematic subsets of words?
Are distributions that look similar to power laws common

across word types, or are they restricted to words with
certain syntactic or semantic features? Any psychologically
justified theory of the word frequency distribution will
depend on appreciating, connecting to, and explaining the-
se types of high-level features of the lexical frequency
distribution.

Semantics strongly influences word frequency

As a language user, it certainly seems like we use
words to convey an intended meaning. From this simple
point of view, Zipf’s law is really a fact about the
“need” distribution for how often we need to commu-
nicate each meaning. Surprisingly, many accounts of the
law make no reference to meaning and semantics (ex-
cept see Semantic Accounts section and some work in
Communicative Accounts section), deriving it from prin-
ciples independent of the content of language. But this
view is incompatible with the fact that even cross-
linguistically, meaning is systematically related to fre-
quency. Calude and Pagel (2011) examined Swadesh
lists from 17 languages representing six language fam-
ilies and compared frequencies of words on the list.
Swadesh lists provide translations of simple, frequent
words like “mother” across many languages; they are
often used to do historical reconstruction. Calude and
Pagel reported an average interlanguage correlation in
log frequency of R2 = .53 (p < .0001) for these com-
mon words, indicating that word frequencies are surpris-
ingly robust across languages and predictable from their
meanings. Importantly, note that Swadesh words will
tend to be high frequency, so the estimated R2 is
almost certain to be lower for less frequent words. In
any case, if meaning has any influence on frequency, a
satisfying account of the frequency distribution will
have to address it.

We can also see a systematic frequency-rank relationship
across languages, grouping words by their meaning. Fig-
ure 2 shows frequency-rank plots of the Swadesh lists
compiled in Calude and Pagel (2011),8 plotted, like all
other plots in the article, according to the methods. How-
ever, unlike other plots in this article, the frequency rank
here is fixed across all languages, estimated independently
on 25% of the data from each language and then collapsed
across languages. Thus, the rank ordering—corresponding
to the x-location of each meaning on the Swadesh list—
does not vary by language and is determined only by
aggregate, cross-linguistic frequency (independently esti-
mated from the y-location). We can then compare the fre-
quencies at each rank to see whether they follow similar
distributions. As these plots reveal, the distributions are

8 We are extremely grateful to the authors for providing these data.
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extremely similar across languages and follow a near-
Zipfian distribution for the pooled rank ordering.

In this plot, because the rank ordering is fixed across all
languages, not only do frequencies fall off like Eq. 2, but they
do so with roughly the same coefficients cross-linguistically.
If frequency was not systematically related to meaning, these
plots would reveal no such trends.

Another domain where the meaning dependence of fre-
quency is apparent is that of number words (Dehaene &
Mehler 1992; Piantadosi, 2012). Figure 3 shows number word
frequencies (e.g., “one,” “two,” “three,” etc.), previously re-
ported in Piantadosi. These plots show cardinality versus
frequency in English, Russian, and Italian, using all the data
from the Google Books N-gram data set (Lin et al., 2012).
This clearly shows that across languages, number words fol-
low a near-Zipfian distribution according to the magnitude
(meaning)—in fact, a very particular one with exponent
α≈−2 (the inverse square law for number frequency), a
finding previously reported by Dehaene and Mehler.
Piantadosi shows that these trends also hold for the decade
words and across historical time. Thus, the frequency of these
words is predictable from what cardinality the words refer to,
even across languages.

The general point from this section is, therefore, that
word meaning is a substantial determinant of frequency,
and it is perhaps intuitively the best causal force in
shaping frequency. “Happy” is more frequent than “dis-
illusioned” because the meaning of the former occurs
more commonly in topics people like to discuss. A
psychologically justified explanation of Zipf’s law in
language must be compatible with the powerful influ-
ence that meaning has on frequency.

Near-Zipfian distributions occur for fixed referential content

Given that meanings in part determine frequencies, it is im-
portant to ask whether there are any phenomena that cannot be
straightforwardly explained in terms of meaning. One place to
look is words that have roughly the same meaning, at least in
terms of referential content. Facts like the principle of contrast
(Clark, 1987) may mean that true synonyms do not exist in
human language. However, taboo words provide a class of
words that refer, at least approximately, to the same thing (e.g.,
“fornicating,” “shagging,” “fucking,” etc.). Figure 4 shows
the frequency distribution of several taboo words, gerunds

referring to sex (Fig. 4a) and synonyms for feces (Fig. 4b),9

on data from the ANC. Both cases reveal that near-Zipfian
word frequency distributions can still be observed for words
that have a fixed referential content, meaning that other factors
(e.g., formality, social constraints) also play a role in deter-
mining word frequency.

Near-Zipfian distributions occur for naturally constrained
meanings

If meanings in part determine word frequencies, it is
plausible that the distribution arises from how human
languages segment the observable world into labeled cate-
gories. For instance, languages are in some sense free to
choose the range of referents for each word10: Should
“dog” refer to a specific kind of dog, to a broad class,
or to animals in general? Perhaps language evolution’s
process for choosing the scope of word meanings gives
rise to the frequency distribution (for a detailed account,
see D. Manin, 2008).

However, the distribution follows a near-Zipfian distribu-
tion even in domains where the objects of reference are highly
constrained by the natural world. Figure 5a–c shows several of
these domains,11 chosen a priori for their semantic fixedness:
months, planets, and element names. Intuitively, in each of
these cases, it is likely that the lexicon did not have much
freedom in how it labeled the terms in these categories, since
the referents of these terms are salient, fixed natural kinds. For
instance, our division of the world into 12 months comes from
phases of the moon and the seasons, not from a totally free
choice that languagemay easily adapt or optimize. These plots
all show close fits by Eq. 2, shown in red, and high, reliable
correlations.

The fit of Zipfian distributions vary by category

Zipf’s law is stated as a fact about the distribution of
words, but it is important to remember that there may
not be anything particularly special about analyzing lan-
guage at the level of words. Indeed, words may not even
be a precisely defined psychological class, with many
idiomatic phrases stored together by language-processing
mechanisms and some word forms potentially created on
the fly by grammatical or morphological mechanisms. It

�Fig. 2 Cross-linguistic word frequency distributions using words
from a Swadesh list (data provided by Calude & Pagel, 2011).
Here, the x-location of each point (word) is fixed across languages
according to the aggregate frequency rank of the word’s meaning on
an independent set of data. The systematicity here means that the
word frequency distribution falls off similarly according to word
meaning across languages and approximately according to a power
law like Eq. 2 (red)

9 More common taboo words meaning “penis” and “vagina” were not
used, since many of their euphemisms have salient alternative meanings
(e.g., “cock” and “box”).
10 Although there are compelling regularities in at least some semantic
domains (see, e.g., Kemp & Regier, 2012; Kay and Regier 2003).
11 In the elements, “lead” and “iron” were excluded due to their ambigu-
ity and, thus, frequent use as nonelements. In the months, “May” and
“March” were removed for their alternative meanings.
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is therefore important to examine the frequency distribu-
tion for other levels of analysis.

Figure 6 shows the frequency distribution of various syn-
tactic categories (part of speech tags on individual words)
from the Penn Treebank (Marcus, Marcinkiewicz, &
Santorini, 1993), using the tagged Brown corpus. This reveals
that word categories are also fit nicely by Eq. 2—perhaps even
more closely than words—but the shape of the fit (parameters
α and β) differs. The quality of fit appears to be off for the
lowest frequency tags, although it is not clear how much of
this effect is due to data sparsity. The general pattern suggests
that a full explanation of the word frequency distribution
would ideally call on mechanisms general enough to apply
to syntactic categories and possibly even other levels of
analysis.12

The same corpus can also be used to examine the fit and
parameters within syntactic categories. Figure 7a–c shows the
distribution of words within each of six categories from the
treebank: determiners, prepositions/subordinating conjunc-
tions, modals, singular or mass nouns, past participle verbs,
and third-person singular present tense verbs. None of these
were predicted to pattern in any specific way by any particular
theory but were chosen post hoc as interesting examples of
distributions. Determiners, modals, and some verbs appear to
have the lowest adjusted correlations when Eq. 2 is fit. These
figures illustrate that the word types vary substantially in the
best-fitting parameters α and β but show, in general, fairly
Zipfian distributions. Additionally, the residual structure (de-
viation from the red line fit) shows interesting variability
between categories. For instance, the verbs (Fig. 7f) show an
interesting concavity that is the opposite of that observed in

typical Zipfian distributions, bowing to the bottom rather than
the top. This concavity is primarily driven by the much larger
frequency of the first several words, like “is,” “has,” and
“does.” These auxiliary verbs may, in truth, belong in a
separate category than other verbs, perhaps changing the
shape of this curve. There also appears to be a cluster of
low-frequency modals, all of about the same frequency. The
determiner plot suggests that the rate at which frequency
decreases with rank changes through two scaling regimes—a
slow fall-off followed by a fast one—which is often argued for
the lexicon in general (Ferrer i Cancho & Solé, 2001) and
would be inconsistent with the simple fit of Eq. 2.

Overall, the variability across part-of-speech categories
suggests that some of the fit of Zipfian distribution arises by
collapsing together different parts of speech.

The distribution of word frequencies is not stationary

An often overlooked factor in the search for explanations of
Zipf’s law is that word frequencies are not stationary, meaning
that the probability of uttering eachword changes depending on
other factors. This phenomenon occurs at, for instance, a long
time scale reflecting the topic of discussion. One is more likely
to utter “Dallas” in a discussion about Lyndon Johnson than in a
discussion about Carl Sagan. The nonstationarity of text is
addressed by Baayen (2001, Chap. 5), who notes that the
clumpy randomness of real text leads to difficulties estimating
vocabulary sizes and distributions. Recently, Altmann,
Pierrehumbert, and Motter (2009) showed that word recur-
rences on a time scale compatible with semantics (not syntax)
follow a stretched exponential distribution, with a certain de-
gree of “burstiness.” The variability in frequencies is an impor-
tant method of classification of documents via topic models (see
Blei & Lafferty, 2007, 2009; Blei, Ng, & Jordan, 2003;

12 It is apparently unclear whether N-grams in text follow Zipf’s law (see
Egghe, 1999, 2000; cf. Ha, Hanna, Ming, & Smith, 2009; Ha et al. 2002).

a b c

Fig. 3 Power law frequencies for number words (“one,” “two,” “three,”
etc.) in English (a), Russian (b), and Italian (c), using data from Google
(Lin et al., 2012). Note that here the x-axis is ordered by cardinality, not
frequency rank, although these two coincide. Additionally, decades

(“ten,” “twenty,” “thirty,” etc.) were removed from this analysis due to
unusually high frequency from their approximate usage. Here and in all
plots, the red line is the fit of Eq. 2, and the gray line is a LOESS
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Steyvers & Griffiths, 2007) or latent semantic analysis
(Dumais, 2005; Landauer, Foltz, & Laham, 1998). Such
models work by essentially noting that word frequencies within
a document are cues to its semantic topic; one can then work
backward from the frequencies to the topic or set of possible
topics. The variability in word frequencies is also useful in
information retrieval (Manning & Schütze, 1999, Chap. 15).

The nonstationarity of word frequencies has an important
theoretical implication for explanations of Zipf’s law. The
frequencies of words we observe are actually averages over
contexts. The probability of uttering a word w is given by

P W ¼ wð Þ ¼
X

c

P cð ÞP W ¼ wjC ¼ cð Þ; ð3Þ

where P(W = w|C = w) is the probability of w in a particular
context c. If the observed frequency is an average over con-
texts, our explanation of Zipf’s law must respect the fact that it
is an average, and not explain it with a model that is incom-
patible with context-dependent frequencies.

Word frequency varies according to many forces

Thanks in large part to the recent availability of gigantic,
freely available, longitudinal corpora like Lin et al. (2012),
recent studies have also been able to chart changes in word
frequencies throughout modern time. These studies generally
reveal substantial complexity in the forces that shape word
frequencies. Altmann, Pierrehumbert, and Motter (2011)
showed that a word’s niche, its characteristic features and
the environment in which it is used, strongly influences the
word’s change in frequency. More specifically, they argued
that some of the nonstationarity of word frequencies results
from features of individuals like desires to convey information
or identify with a particular social group. Petersen,
Tenenbaum, Havlin, and Stanley (2012) showed that word
usage varies according to social, technological, and political
pressures. In the simplest case, of course people start saying
words like “e-mail” once e-mail is invented; but these trends
extend to, for instance, measurable differences in word fre-
quencies and word birth and death in periods of drastic social

Fig. 4 Distributions for taboo
words for a sex (gerunds) and b
feces

a b c

Fig. 5 Frequency distribution in the American National Corpus for words whose scope of meaning has been highly constrained by the natural world: a
months, b planets, and c elements
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and political change. Pagel, Atkinson, and Meade (2007)
showed that word frequency and language change are closely
linked, such that low-frequency words tend to evolve the
most.

In general, these studies suggest that any theory aiming to
explain Zipf’s law must connect to the forces that shape
frequencies and with language change in general. How is it
that processes affecting how frequencies change and how
lexica evolve all yield a relatively conserved distribution
across time? How does the nature of—perhaps drastic—lan-
guage change maintain the distribution? Any theory that is not
directly compatible with change must be missing a large part
of what determines frequencies.

Power laws arise from (almost) nothing

Awide range of explanations of Zipf’s law make reference to
optimization and language change. However, we next show
that this cannot be the entire story: A near-Zipfian word
frequency distribution occurs even for wholly novel words
whose content and use could not have been shaped by any
processes of language change.

In a behavioral experiment, 25 subjects were recruited from
Amazon’s Mechanical Turk, an online platform that is becom-
ing increasingly popular for experimental psychology
(Buhrmester, Kwang, & Gosling, 2011; Gibson, Piantadosi,
& Fedorenko, 2011; Mason & Suri, 2012; Paolacci, Chandler,
& Ipeirotis, 2010). Participants were given the following
prompt: “An alien space ship crashes in the Nevada desert.
Eight creatures emerge, a Wug, a Plit, a Blicket, a Flark, a
Warit, a Jupe, a Ralex, and a Timon. In at least 2000 words,

describe what happens next.” Subjects’ relative frequency
distribution of each of these eight novel words was then
computed on their produced text. Because different subjects
may pick a different creature as their “primary” character in
the text, the analysis aggregated statistics by rank across
subjects. It used the sampling methods described for Fig. 1a
to determine the estimated frequency f(r) of each subject’s rth
most frequent word and then collapsed this distribution across
subjects by rank. Thus, the frequency we report for the rth
most frequent word is the sum (or, scaled, mean) of each
individual subject’s rth most frequent word. This aggregation
was done to decrease noise, since each subject uses each word
only a handful of times.13

The resulting subject-average frequency distribution is
shown in Fig. 8. This clearly demonstrates near-Zipfian scal-
ing in frequency, despite the fact that all words are, in some
sense, equivalent in the prompt; participants are not told, for
instance, that one creature is extra salient or that they should
primarily describe one character. The context was chosen to
bias them as little as possible as to how much to describe each
creature and what role it should play in their novel story.
Moreover, subjects show this distribution even though they
are told almost nothing about the creatures (other than that
they crashed from an alien ship) and are told absolutely
nothing about what happens next. Even in this context, words
still approximately follow the power law distribution, al-
though larger-scale studies should be used to check that this
effect is seen within individuals and is not the result of
averaging together subjects.

In general, these findings suggest that a parsimonious,
broad-coverage explanation for near-Zipfian distributions in
language—one that can explain this experiment—should be
applicable to people speaking about entirely novel, relatively
unspecified referents.

Zipf’s law occurs in other human systems

Interestingly, Zipf’s law occurs in very many aspects of hu-
man society, including communication other than natural lan-
guage. For instance, Zipfian (or near-Zipfian) frequency dis-
tributions occur in music (see Manaris et al., 2005; Zanette,
2006, among others). They are observed in computer systems
in the distribution of hardware instructions for programming
languages (see Chen, 1991; Concas, Marchesi, Pinna, &
Serra, 2007; Shooman & Laemmel, 1977; Veldhuizen, 2005,
among others), across many levels of abstraction in software
(Louridas, Spinellis, & Vlachos, 2008), in n-tuples in com-
puter code (Gan, Wang, & Han, 2009), and in many aspects of
the Internet (Adamic & Huberman, 2002). These findings

13 However, because we use separate subsets of the sample to estimate r
and f(r), this method does not introduce any spurious effects or noninde-
pendence errors.

Fig. 6 Frequency distribution of syntactic categories from the Penn
Treebank
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complement the general result that Zipfian distributions occur
in some form in a striking number of physical and biological

systems (Farmer & Geanakoplos, 2006; S. A. Frank, 2009; Li,
2002; Mitzenmacher, 2004; Newman, 2005; Saichev et al.,
2010). An important question for future work is to determine
how broadly the word frequency distribution should be ex-
plained. Should we seek explanations that unify languagewith
music and perhaps other areas like computer software? Or
does the profusion of derivations of Zipf’s law mean that we
should not place such a strong weight on all-encompassing
explanations, since very different mechanisms may give rise
to the power law in different domains?

Models of Zipf’s law

Now that we have reviewed a number of empirical phenom-
ena about word frequencies, we next consider several of the
attempts to explain Zipf’s law in language and relate these to
the empirical phenomena just reviewed. These include expla-
nations based on very simple statistical models (random typ-
ing, preferential reuse), the organization of semantic systems,

Fig. 8 An approximate power law distribution of novel alien names used
by subjects in making up a story

a b c

d e f

Fig. 7 Frequency distribution of words within several syntactic catego-
ries from the Penn Treebank: determiners (DTs), prepositions or subor-
dinating conjunctions (INs), modals (MDs), nouns (NNs), past participle

verbs (VBNs), third-person singular present verbs (VBZs). These plots
represent a post-hoc selected subset of all syntactic categories
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deep optimization properties of communication, and universal
properties of computational systems. As was described above,
very little of this work has sought independent tests of the key
assumptions or addressed the range of empirical phenomena
described above. As we will see, none of the accounts is
compellingly adequate alone. However, it may be true that
there is no unitary explanation for word frequencies and that
multiple causal forces are at play.

Random-typing accounts

Given the ubiquity and robustness of Zipf’s law, some have
argued that the law is essentially a statistical artifact. This view
is even widespread in certain communities and advocated by
some prominent linguists such as Chomsky (personal com-
munication). The random-typing account holds that Zipf’s law
is uninteresting because it holds even in very trivial statistical
systems, like a monkey randomly banging on a typewriter
(Conrad & Mitzenmacher, 2004; Li, 1992; Miller, 1957).
Such a monkey will occasionally hit the space bar, creating a
word boundary, and we can then look at the distribution of
“word” frequencies. It turns out that they follow a Zipfian
distribution even though words are created entirely at random,
one letter at a time. Intuitively, short words will tend to have a
high probability, with the probability or frequency of words
falling off approximately geometrically in their length. Al-
though this process is clearly not an apt description of how
humans generate language (see Howes, 1968; Piantadosi,
Tily, & Gibson, 2013), the idea is that it should be treated as
a null hypothesis about how language may be in the absence
of other forces.

Indeed, the theoretical challenge raised by this model can be
illustrated by taking a corpus of text and dividing it on a
character other than the space (“ ”) character, treating, for
instance, “e” as a word boundary.14 Doing this robustly re-
covers a near-Zipfian distribution over these artificial “words,”
as shown in Fig. 9. This shows some interesting deviations
from the shape of the curve for natural language, but the general
pattern is unmistakably similar to Fig. 9, with a strong decrease
in “word” frequency that falls off like a power law (linear on
this plot) with length. So if the distribution occurs for even
linguistically nonsensical “word” boundaries (like “e”), per-
haps its presence in real language is not in need of explanation.

Some work has examined the ways in which the detailed
statistics of random-typing models look unlike that observed
in real human language (Baayen, 2001; Ferrer i Cancho &
Elvevåg 2010; Ferrer i Cancho& Solé, 2002; D. Manin, 2008,
2009; Tripp & Feitelson, 1982). For instance, random-typing
models predict that the number of word types of a given length
should decay exponentially in length; but in real language, this

relationship is not even monotonically decreasing (D. Manin,
2009). Indeed, even the particular frequency distribution does
not appear well-approximated by simple random-typing
models (Ferrer i Cancho & Elvevåg 2010), although in other
work, Ferrer i Cancho is a strong proponent of such models
(Ferrer i Cancho & Moscoso del Prado Martin, 2011). Of
course, random-typing advocates might point out that
tweaking the details of random-typing models (e.g., changing
letter frequencies, introducing Nth order Markov dependence)
might allow them to fit the details of human language (for
Zipf’s law in Markov processes with random transitions, see
Kanter & Kessler, 1995).

As such, a stronger argument than the details of the distri-
bution is to recognize that they do not capture anything like
the real causal process and, therefore, are poor scientific
theories (Howes, 1968; Piantadosi et al., 2013). Indeed, once
we appreciate that humans know words in their entirety and
generate them intentionally to convey a meaning, it no longer
makes sense to consider null hypotheses based on subword
processes whose key feature is that a word’s frequency is
wholly determined by its components (e.g., letters) (Ferrer i
Cancho & Elvevåg 2010; Howes, 1968; Piantadosi et al.,
2013). In the real cognitive system, people know whole words
and do not emit subword components at random, and so,
clearly, such processes cannot explain the cognitive origins
of the law; a “deeper” (D. Manin, 2008) explanation is needed.

This counterpoint was articulated early by Howes (1968),
but his reply has not been widely appreciated: “If Zipf’s law
indeed referred to the writings of ‘random monkeys,’Miller’s

14 Such that the string “I ate a enchilada for easter” would be segmented
into “words” I-at, -an-, nchilada-for-, ast, r.

Fig. 9 Frequency distribution of the 25,000most frequent “words” in the
ANC, where “e” rather than space (“ ”) was treated as a word boundary.
This exhibits a clear near-Zipfian distribution, with the frequency of these
words falling off much like Eq. 2
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[random-typing] argument would be unassailable, for the
assumptions he bases it upon are appropriate to the behavior
of those conjectural creatures. But to justify his conclusion
that people also obey Zipf’s law for the same reason, Miller
must perforce establish that the same assumptions are also
appropriate to human language. In fact, as we shall see, they
are directly contradicted by well-known and obvious proper-
ties of languages.” Those facts are, of course, that language is
not generated at random, by accidentally happening to create a
word boundary. The following question remains, then: Why is
it that real processes of language generation give rise to this
word frequency distribution?

Beyond the theoretical arguments against random-
typing accounts, such accounts are not compatible with
several empirical facts reviewed earlier. The systematicity
of word frequencies across meanings (see Semantics
strongly influences word frequency) are particularly prob-
lematic for random-typing models, since any process that
is remotely like random typing will be unable to explain
such patterns. One certainly would not be able to explain
why cardinal number words also follow a near-Zipfian
distribution, ordered precisely by magnitude. Moreover,
random-typing accounts cannot explain the variability
across syntactic categories (see The fit of Zipfian distribu-
tions vary by category). Why would certain word catego-
ries appear not to follow the model? Nor can it explain the
tendency of subjects to follow the distribution for novel
words (see Power laws arise from [almost] nothing), and
the simplest forms of random-typing models are incompat-
ible with the nonstationarity word frequencies exhibit (see
The distribution of word frequencies is not stationary).

Simple stochastic models

One of the oldest approaches to explaining Zipf’s law is to
posit simple stochastic models of how words tend to be reused
in text. The idea is that preferential reuse will lead to a very
skewed frequency distribution, since frequent words will tend
to get reused even more. Intuitively, if, say, you say “pineap-
ple” once, you are more likely to repeat it later in the text, and
such reuse can often be shown under certain assumptions to
lead to Zipfian or near-Zipfian distributions. For instance,
building on work of Yule (1944), Simon (1955) introduced a
stochastic model that assumes (1) preferential reuse of previ-
ously frequent words and (2) a constant probability of intro-
ducing a new word. The stochastic model that Simon de-
scribed can be imagined to sequentially generate a text ac-
cording to these assumptions, giving rise to a particular word
frequency distribution over word types. Extensive discussion
of this type of model and related ones can be found in
Mitzenmacher (2004), Baayen (2001), and Farmer and
Geanakoplos (2006), and a sophisticated and recent variant
can be found in Zanette and Montemurro (2005).

This general class of models occupies an interesting ground
between the psychological implausibility of random-typing
models and psychologically plausible models that capture, for
instance, subjects’ knowledge of whole words. However, like
random-typing models, they do not plausibly connect real
causal stories of language generation. As D. Manin (2008)
write, “Simon’s model seems to imply that the very fact of
somewords being frequent and others infrequent is a pure game
of chance.” Such models show only that if language generation
behaved like a certain stochastic model, then it would give rise
to Zipf’s law. It fails to establish what exactly it would mean for
real human speakers to behave like the model, especially
concerning the intentional production of meaningful language.

In this vein, Herdan (1961) wrote of Simon’s (1955) model:
“For mathematical models to be of real value it is necessary that
(1) the relationship between events of which the mathematical
structure is to be a model should be what the mathematician
believes it to be; (2) that the assumptions needed for construct-
ing the model should be sensible, i.e. in accordance with how
the operations in question take place; and (3) that the formulae
derived in this way should fit the observed facts. None of these
requirements must be neglected if the model is to fulfill its
purpose. It is now a sad fact that model construction in math-
ematical linguistics seems dogged by the neglect of one or other
of these requirements, especially the first, which cannot but
have in its wake the neglect of the other two.”Human speech is
created with a purpose, and the explanation for the frequency
distribution must take into account this intentionality: Why
does an intentional process result in the Zipfian distribution?
That is the fact that theories should seek to explain.

Furthermore, it is not clear that the randomness of this
kind of model can easily be connected to systematic rela-
tionships between meaning and frequency (see Semantics
strongly influences word frequency). However, in some sit-
uations, the simple stochastic model may actually be correct.
The near-Zipfian use of novel words (see Power laws arise
from [almost] nothing) may be explained by these kinds of
processes; perhaps, in deciding how to continue their story,
participants essentially sample from past referents with a
probability that scales with recent use. It is useful to consider
whether this idea might even generalize to all language
production: Perhaps language is constrained by other factors
like syntax but, on a large scale is characterized by stochastic
reuse along the lines of Simon’s model. Indeed, it is likely
that given the nonstationarity of word frequencies (see The
distribution of word frequencies is not stationary), something
like these models must be approximately true. Words really
are more likely to be reused later in discourse. However, the
underlying cause of this is much deeper than these models
assume. Words are reused in language (probably) not because
of an intrinsic preference for reuse itself, but instead because
there is a latent hidden variable, a topic, that influences word
frequencies.
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Semantic accounts

If the meanings of words in part determine frequency, it is
useful to consider whether semantic organization itself may
give rise to the word frequency distribution. Guiraud (1968)
argued that the law could result from basic ternary (true/false/
undefined) elements of meaning called semes (e.g., animate/
inanimate), with each word coding some number of semes. If
semes must be communicated in speech, this setup can give
rise to a Zipfian word frequency distribution. Another hypoth-
esis along the lines of semantics was put forth by D. Manin
(2008), who argued that the law could result from labeling of a
semantic hierarchy (e.g., Collins & Quillian, 1969; Fellbaum,
1998), combined with a pressure to avoid synonymy. Intui-
tively, if words label different levels of semantic space and
evolve to avoid too much overlap, the lexicon arrives at
coverings of semantic space, which, he shows via simulation,
will result in Zipf’s law.

This theory motivated the comparisons in the section
near-Zipfian distributions occur for naturally constrained
meanings, which examined words whose meanings are
strongly constrained by the world. It is unlikely that
language had much of a “choice”—or optimizing pres-
sure—in choosing which of the possible ways of labeling
months, planets, or elements, since these meanings are
highly constrained by the natural world. Yet we see
near-Zipfian distributions for even these words. We find
similar results for words whose referential content is
fixed, like taboo words (see Near-Zipfian distributions
occur for fixed referential content). The results on number
words (see Semantics strongly influences word frequency)
provide another compelling case where choice of seman-
tic referent by the lexicon is not likely to explain word
frequencies that are, nonetheless, power laws. The behav-
ioral experiment (see Power laws arise from [almost]
nothing) additionally indicates that even for words that
are initially, in some sense, on equal ground and whose
specific semantics is not given, people still follow a near-
Zipfian distribution. All of these results do not indicate
that semantic explanations play no role in determining
word frequencies, but only that they are likely not the
entire story.15

Communicative accounts

Various authors have also explained the Zipfian distribu-
tion according to communicative optimization principles.
Zipf (1949) himself derived the law by considering a
trade-off between speakers’ and listeners’ efforts. Mandel-
brot (1953) shows how the Zipfian distribution could arise
from minimizing information-theoretic notions of cost
(Mandelbrot (1962, 1966), ideas further developed by D.
Manin (2009), Ferrer i Cancho and colleagues (Ferrer i
Cancho, 2005a, 2005b; Ferrer i Cancho & Solé, 2003)
and, more recently, Salge et al. (2013).

In Ferrer i Cancho and Solé (2003), the authors imag-
ine optimizing a matrix A = {Aij}, where Aij is 1 if the ith
word can refer to the jth meaning. In their framework,
speakers pay a cost proportional to the diversity of signals
they must convey, and listeners pay a cost proportional
to the (expected) entropy over referents given a word
(for variants and elaborations, see Ferrer i Cancho &
Díaz-Guilera, 2007). There is a single parameter which
trades off the cost between speakers and listeners, and the
authors show that for a very particular setting of this
parameter, λ = 0.41 they recover a Zipfian distribution.

While mathematically sophisticated, their approach makes
several undesirable choices. In the implementation, it assumes
that meanings are all equally likely to be conveyed, an as-
sumption that is likely far from true even in constrained
semantic domains (Fig. 5). Later versions of this model
(Ferrer i Cancho, 2005c) study variants without this assump-
tion, but it is not clear—for any model—what the psycholog-
ically relevant distribution should be for how often each
meaning is needed and how robust this class of models is to
that distribution or how such accounts might incorporate
other effects like memory latency, frequency effects, or con-
text-based expectations.16

Second, the assumption that speakers’ difficulty is propor-
tional to the entropy over signals is not justified by data and is
not predicted from a priori means; a better a priori choice
might have been the entropy over signals conditioned on a
meaning, since this captures the uncertainty for the psycho-
logical system. In this vein, none of the assumptions of the
model are tested or justified on independent psychological
grounds.

Third, this work requires a very specific parameter, λ≈0.4,
to recover Zipf’s law, and the authors show that it no longer
does for λ = 0.5 or λ = 0.3. The required specificity of this
parameter is undesirable from the perspective of statistical
modeling, the so-called “Spearman’s principle” (Glymour,
Scheines, Spirtes, and Kelly 1987), as it suggests non-
robustness.

15 In evaluating theories, one might wonder whether these semantic
comparisons are essentially just random subsets of words and whether a
random subset of a Zipfian distribution may tend to look Zipfian. There-
fore, it may not be very strong evidence against theories based on
meaning that we still see Zipfian distributions when we control or
constrainmeaning. However, note that theories based onmeaning explain
the distribution starting from semantics. They explain patterns across the
entire lexicon by appealing to semantic properties of single words and, so,
cannot explain the subsets of words that look Zipfian but do not have the
required semantic properties. 16 A result on a large class of meaning distributions might help that issue.
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In the context of the corpus analyses provided above,
communicative accounts would likely have difficulty
explaining near-Zipfian distribution for fixed referential
content (see Near-Zipfian distributions occur for fixed
referential content) and variability of fits across syntactic
categories (see The fit of Zipfian distributions vary by
category). Theories based on communicative optimization,
like that in Ferrer i Cancho and Solé (2003), are based on
choosing which meanings go with which words; when
optimized for communication, this process is supposed to
give rise to the law. But we still see it in domains where
this mapping is highly constrained (see Near-Zipfian
distributions occur for naturally constrained meanings)
and for number words (see Semantics strongly influences
word frequency), where it is hard to imagine what such
optimization might mean. Therefore, it is unclear on a con-
ceptual level how these accounts might handle such data. It is
also not straightforward to see how communicative accounts
could accommodate the behavioral results (see Power law
occurs in other human systems), since it is hard to imagine
in what sense communication of names might be active-
ly optimized by speakers simply telling a story. The
intentionality of storytelling—wanting to convey a se-
quence of events you have just thought of—seems very
different than the language-wide optimization of
information-theoretic quantities required by communicative
accounts.

This is certainly not to say that there is no way a
communicative theory could account for the facts or
that communicative influences play no role. An ade-
quate theory has just not been formalized or empirically
evaluated yet.17

Explanations based on universality

The models described so far explain Zipf’s law from
psychological or statistical processes. But it is also
possible that Zipf’s law in language arises from a uni-
versal pressure that more generally explains its preva-
lence throughout the sciences. An analogy is that of the
central limit theorem (CLT) and the normal distribution.
When a normal distribution is observed in the world (in,
e.g., human heights), commonly the CLT is taken to
explain why that distribution is found, since the theorem

shows that normal distributions should be expected in
many places—in particular, where many independent
additive processes are at play.18,19 It is reasonable to
ask whether there is a such a theorem for power laws:
Do they simply arise “naturally” in many domains ac-
cording to some universal law? Perhaps even the mul-
titude of derivations of Zipf’s law indicate that the
presence of the law in language is not so surprising or
noteworthy.

There are, in fact, derivations of Zipf’s law from
very fundamental principles that, in principle, span
fields. Corominas-Murtra and Solé (2010)showed that
Zipfian distributions of symbol sequences can be de-
rived in the (maximally general) framework of algorith-
mic information theory (Li & Vitányi, 2008), consider-
ing symbols to be observations of a system growing in
size, but which is constrained to have bounded algorith-
mic complexity. Their account even explains the expo-
nent α≈1 observed in language, providing a compelling
explanation of Zipf’s law in general complex systems.
Y. I. Manin (2013) provides a related account deriving
Zipf’s law from basic facts about Kolmogorov complex-
ity and Levin’s probability distribution (see also
Veldhuizen, 2005). S. A. Frank (2009) studied entropy
maximizing processes, relating power laws to normal
distributions and other common laws in the sciences.
In general, these accounts say that we should have
expected Zipf’s law to appear in many systems simply
due to the intrinsic properties of information, complex-
ity, and computation.

Similarly, there have also been somewhat more de-
flationary universal explanations. Remarkably, Belevitch
(1959), showed how a Zipfian distribution could arise
from a first-order approximation to most common dis-
tributions; he then showed how the Zipf–Mandelbrot
law arose from a second-order approximation. In this
kind of account, Zipf’s law could essentially be a kind
of statistical artifact of using a frequency/frequency-rank
plot, when the real underlying distribution of frequen-
cies is any of a large class of distributions.

All of these accounts based on universal a priori no-
tions are interesting because they would explain the sur-
prising scope of Zipf’s law across the sciences without
requiring many domain-specific assumptions. However,

17 Moving forward, however, it will be important for communicative
accounts to explicitly address the predictability of words. As Shannon
(1948) demonstrated, the predictability (negative log probability) of a
word is the measure of the information it conveys. This means that a
theory based on communication should be intrinsically linked to theories
of what human language comprehenders find predictable (e.g. Demberg
&Keller, 2008; A. Frank& Jaeger, 2008; Jaeger, 2010; Levy, 2008; Levy
& Jaeger, 2007; Piantadosi, Tily, & Gibson, 2011; N. J. Smith & Levy, in
press) and how much information is effectively conveyed for such
mechanisms.

18 For generalizations of the CLT that are connected to power laws and
similar distributions, see Gnedenko and Kolmogorov (1968) and Roehner
and Winiwarter (1985).
19 In actuality, it may not even be clear for most common situations how
the assumptions of the CLT or its generalizations hold (Lyon, in press).
The true reason for the ubiquity of normal distribution may be related to
its other properties, such as entropy maximization (Lyon, in press),
suggesting that maximum-entropy derivations may be most fruitful for
explaining Zipf’s law broadly (see, e.g., S. A. Frank, 2009).
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one troubling shortcoming of these theories as expla-
nations is that they have not been used to generate
novel predictions; it is hard to know what type of data
could falsify them or how we would know whether
they are really the “right” explanation, as opposed to
any of the more psychologically motivated theories.
Do the assumptions they require really hold in human
psychology, and how would we know? One interesting
test might be for these kinds of explanations to derive
predictions for the variance beyond Zipf’s law that
should be expected in any finite sample and perhaps,
in some situations, even predict correlated errors like
those seen in Fig. 1b. If Zipf’s law is universal, we
would require additional mechanisms to explain do-
mains where Zipf’s law holds less well or for different
parameters (see The fit of Zipfian distributions vary
by category) or how it could also hold given system-
atic 1relationships with meaning (see Semantics
strongly influences word frequency). It is unclear
whether the behavioral experiment (see Power law
arises from [almost] nothing) is compatible with these
accounts. What might people be doing psychologically
in this experiment, and how does it translate into
universal derivations of Zipf’s law?

Other models

We note that there are many other accounts of Zipf’s
law in language and elsewhere, actually giving rise to a
fat tail of theories of the law. For instance, Baek et al.
(2011) showed how Zipf’s law can be derived from
processes that randomly divide elements into groups.
Arapov and Shrejder (1978) argued that Zipf’s law can
be derived by simultaneously maximizing two entropies:
the number of different texts creatable by a lexicon and
the number of different ways the same text can be
created by a lexicon. As was argued by D. Manin
(2008), this approach compellingly lacks a priori justi-
fication and a possible optimizing mechanism. Other
optimizations of, for example, Fisher information
(Hernando et al., 2009) can also give rise to Zipfian
distributions. Popescu (2009, Chap. 9) sketched a sim-
ple vocabulary growth model. Parker-Rhodes and Joyce
(1956) argued that the distribution arises by a linear
search through words in long-term memory ordered by
frequency during normal language processing, where the
time required to scan a word is proportional to the
number of words scanned. To date, there is no evidence
for this kind of process in normal language use. In
general, it is not clear that any of these kinds of accounts
could handle the gamut of empirical phenomena reviewed
above, and to our knowledge, none have proposed and eval-
uated independent tests of their assumptions.

Conclusion and forward directions

Word frequencies are extremely interesting. They are one of
the most basic properties of humans’ communicative system
and play a critical role in language processing and acquisi-
tion.20 It is, in short, remarkable that they can be well-
characterized by a simple mathematical law. With good cause,
many have attempted to derive this law from more basic
principles. Notably, theories of language production or dis-
course do not explain the law.

This review has highlighted several limitations in this vast
literature. First, the method of plotting word frequency distri-
butions has obscured an important fact: Word frequencies are
not actually so simple. They show a statistically reliable
structure beyond Zipf’s law that likely will not be captured
with any simple model. At the same time, the large-scale
structure is robustly Zipfian.

Second, essentially all of the prior literature has fo-
cused very narrowly on deriving the frequency/frequency-
rank power law, while ignoring these types of broader
features of word frequencies. This in some sense repre-
sents a misapplication of effort toward explaining an
effect—the Zipfian distribution—instead of uncovering
the causal forces driving word frequencies in the first
place. This is what makes so many derivations of Zipf’s
law unsatisfying: They do not account for any psycholog-
ical processes of word production, especially the inten-
tionality of choosing words in order to convey a desired
meaning. A focus on explaining what words are needed at
each point in a normal conversation would begin to ex-
plain why word frequencies look like they do. Until then,
a deep mystery remains: Why should language generation
mechanisms follow such a precise mathematical law, even
in cases of constrained meanings and totally novel words,
but apparently not identically for all syntactic categories?

It should be clear that this question will be addressable
only by broadly studying properties of word frequencies
beyond the frequency distribution itself. The empirical
phenomena reviewed here (see Near-Zipfian distributions
occur for naturally constrained meanings) have aimed to
encourage more comprehensive evaluation of theories of
the Zipfian distribution that is observed. This review has
revealed that, likely, none of the previous accounts are

20 While it rarely enters into discussions of the origins of Zipf’s law, it is
important to point out that people really do appear to knowword frequen-
cies. Evidence for this is apparent in both detailed, controlled (e.g.,
Dahan, Magnuson, & Tanenhaus, 2001) and broad-coverage (e.g.,
Demberg & Keller, 2008) analyses of language processing (for a
review, see Ellis, 2002). Similarly, frequency effects are observed in
language production (Jescheniak & Levelt, 1994; Levelt, 1999; Oldfield
& Wingfield, 1965). These effects show that speakers know something
about the frequencies with which words occur in their input and that this
type of knowledge is used in online processing.
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sufficient alone and that the facts surrounding word fre-
quencies are complex and subtle. A sticking point for
many theories will be the behavioral results showing
Zipf’s law for novel words. These results likely have to
do with properties of human memory, since it is hard to
think of other pressures in this experiment that would lead
people into power law use of words. Indeed, human
memory has independently been characterized as follow-
ing powers laws (see Wickelgren, 1974, 1977; Wixted,
2004a, 2004b; Wixted & Ebbesen, 1991, 1997). Such
scaling relationships are broadly observed elsewhere in
cognition (Kello et al. 2010). If these properties of
memory are the underlying cause of near-Zipfian laws
in language, it could provide a parsimonious and gen-
eral explanation, able to unify word frequencies with
memory, while also explaining the occurrence of related
laws in other systems humans use, such as computer
software and music (Zipf’s law occurs in other human
systems).

Interestingly, if human memory is the underlying
cause of Zipf’s law in language, we are left to ask why
memory has the form that it does. A plausible hypothesis
advocated by Anderson and Schooler (1991) is that
memory is well-adapted to environmental stimuli, mean-
ing that Zipfian structures in the real world might ulti-
mately create the observed form of word frequency dis-
tributions. Of course, any such theory of word frequen-
cies would require substantial elaboration in order to
address the complexities of how well Zipfian distribu-
tions fit different types of words, the residual deviations
from the distribution observed in language (see Near-
Zipfian distributions occur for fixed referential content),
and interactions with semantics (see Semantics strongly
influences word frequency).

In general, the absence of novel predictions from authors
attempting to explain Zipf’s law has led to a very peculiar
situation in the cognitive sciences, where we have a profu-
sion of theories to explain an empirical phenomenon, yet
very little attempt to distinguish those theories using scien-
tific methods. This is problematic precisely because there
are so many ways to derive Zipf’s law that the ability to do
so is extremely weak evidence for any theory. An upside of
this state of the field is that it is ripe for empirical research.
The downside is that because proposals of theories have
not been based on incremental empirical discoveries, many
can be easily shown to be inadequate using only minimal
new data. The key will be for explanations of Zipf’s law to
generate novel predictions and to test their underlying as-
sumptions with more data than the law itself. Until then, the
prior literature on Zipf’s law has mainly demonstrated that
there are many ways to derive Zipf’s law. It has not provided
any means to determine which explanation, if any, is on the
right track.
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