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Abstract Inattentional blindness is the failure to notice
unexpected objects in a visual scene while engaging in an
attention-demanding task. We examined the effects of
animacy and perceptual load on inattentional blindness.
Participants searched for a category exemplar under low or
high perceptual load. On the last trial, the participants were
exposed to an unexpected object that was either animate or
inanimate. Unexpected objects were detected more frequently
when they were animate rather than inanimate, and more
frequently with low than with high perceptual loads. We also
measured working memory capacity and found that it
predicted the detection of unexpected objects, but only with
high perceptual loads. The results are consistent with the
animate-monitoring hypothesis, which suggests that animate
objects capture attention because of the importance of the
detection of animate objects in ancestral hunter–gatherer
environments.
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Inattentional blindness (IB) is the inability to notice objects
that appear in one’s line of sight. In typical inattentional

blindness studies, an unexpected object appears while
participants are engaged in an attention-demanding task. IB
has been demonstrated for a variety of unexpected objects and
primary tasks (for a review, see Most, Scholl, Clifford, &
Simons, 2005), and it has important implications for failures
to attend to objects in real-world settings such as automobile
driving (Strayer, Drews, & Johnston, 2003) and eyewitness
memory (Rivardo et al., 2011).

Several factors affect the susceptibility to IB. One factor is
task difficulty. During dynamic-monitoring tasks, complex
tracking tasks result in a greater incidence of IB than simple
tasks do (Simons & Chabris, 1999), even after controlling for
individual differences in participants’ ability to perform the
primary task (Simons & Jensen, 2009). With static tasks,
participants are less likely to notice unexpected objects when
the primary task includes a higher perceptual load (e.g.,
Cartwright-Finch & Lavie, 2007). Thus, in dynamic and static
IB studies, difficulty with the primary task increases IB.

The effect of primary-task difficulty on IB is explained by
load theory (Lavie, 1995). Providing a compromise between
early and late selection views, load theory posits that
information is processed late until capacity is exceeded, at
which point early selection of information processing will
occur (Lavie, 2005). When this theory is applied to IB,
unexpected stimuli will receive attention only when the
demands of the primary task do not exceed the available
capacity (Cartwright-Finch & Lavie, 2007). Therefore,
more-difficult primary tasks should result in increased
susceptibility to IB.

Another factor that may influence susceptibility to IB is
participants’ working memory capacity (WMC). Because one
of the primary functions of working memory is attentional
control (e.g., Kane & Engle, 2003), WMC may be crucial in
individual differences in IB. Indeed, individuals with greater
WMC tend to be less susceptible to IB than are individuals
with lower WMC (Richards, Hannon, & Derakshan, 2010).
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However, this relationship may only exist among individuals
who perform well on the primary task (Seegmiller, Watson, &
Strayer, 2011), and it may depend on the working memory
task assessing executive functioning (Hannon & Richards,
2010). Another study, however, showed that the three separate
measures of WMC failed to predict the incidence of IB
(Bredemeier & Simons, 2012). These inconsistent findings
highlight the need for additional research on the relationship
between WMC and IB.

Characteristics of the unexpected objects also affect their
detection (Mack, 2003). The nearer to the center of a stimulus
display, the more likely it is that individuals will detect it
(Most, Simons, Scholl, & Chabris, 2000). Physical similarity
between the unexpected object and the objects in the stimulus
display, as well as participants’ attentional goals, increases
detection (e.g., Most et al., 2005). Semantic similarity also
plays a role. Participants searching for an exemplar of a
specific category are more likely to notice an unexpected
object from that category than to notice one from another
category (Koivisto & Revonsuo, 2007), and this effect is not
diminished with high perceptual loads (Koivisto & Revonsuo,
2009). In addition to the task-specific attentional goals of the
participants, personal relevance influences the detection of
unexpected objects. Personally meaningful stimuli, such as
participants’ own names, are less susceptible to IB than are
other familiar words (Mack & Rock, 1998).

Animacy may be a meaningful feature that facilitates the
detection of unexpected objects. Animate objects’ self-
propelled and self-determined motions may make them
especially meaningful and important to detect in the
environment. Evidence supports the importance of attention
to animate objects. Individuals look longer at animate than at
inanimate objects (Yang et al., 2012); animate objects are
located more quickly than inanimate objects (Jackson &
Calvillo, 2013); and animate motion is detected more quickly
than inanimate motion (Pratt, Radulescu, Guo, & Abrams,
2010). Infants appear to differentiate between animate and
inanimate objects (Rakison & Poulin-Dubois, 2001), and the
processing of animate and inanimate objects activates
different brain regions (e.g., Mormann et al., 2011).

Failure to notice animate objects has likely been detrimental
over evolutionary time. Other humans may be friends or foes,
and nonhuman animals may be predators or prey. New,
Cosmides, and Tooby (2007) proposed the animate -
monitoring hypothesis , which posits that animate stimuli, due
to their importance in humans’ ancestral hunter–gatherer
environments, may be processed differently than inanimate
stimuli. Using a change detection task, New et al. found that
changes to animate objects are detected more quickly than
changes to inanimate objects. Research in other domains also
supports this claim. We found that the negative effects of
perceptual load can be partially ameliorated when participants
search for animate, rather than inanimate, stimuli—especially

those that were relevant in the environments in which humans
evolved (Jackson & Calvillo, in press).

The goals of the present study were to examine the effects
of animacy and perceptual load on IB and to examine the
relationship between WMC and IB. A few studies have used
animate unexpected objects. Faces (Devue, Laloyaux, Feyers,
Theeuwes, & Brédart, 2009) and silhouettes of human bodies
(Downing, Bray, Rogers, & Childs, 2004) are detected more
frequently than inanimate objects. We propose, on the basis of
the animate-monitoring hypothesis (New et al., 2007), that the
animacy of these objects is what reduces their susceptibility to
IB, due to the importance of attending to animate objects in
humans’ ancestral environments.

In the present study, participants searched for a color word
among many (high perceptual load) or few (low perceptual
load) other words. In the third search trial, an unexpected
animate or inanimate image appeared in the center of a screen,
and we assessed participants’ recognition of the unexpected
image. We also assessed participants’ WMC. We predicted
that participants with a low perceptual load would recognize
unexpected objects more frequently than participants with a
high perceptual load, and that participants would recognize
animate objects more frequently than inanimate objects. We
also examined the relationship between recognizing
unexpected objects and WMC.

Method

Participants and design

A total of 200 undergraduate students from California State
University San Marcos participated in exchange for credit
toward the completion of a research requirement in an
introductory psychology course. The 49 men and 151 women
participating in the study ranged in age from 18 to 51 years
(M = 21.07, SD = 4.64)years. For the experiment, we
employed a 2 (perceptual load: high or low) × 2 (animacy:
animate or inanimate) between-subjects factorial design. The
dependent variable was the recognition of the unexpected
objects.

Materials and procedure

The materials consisted of an IB task, adapted from Koivisto
and Revonsuo (2007, 2009), and the automated operation
span task (Aospan; Unsworth, Heitz, Schrock, & Engle,
2005). In the IB task, participants were instructed that they
would briefly see a set of words, that one of the words would
be the name of a color, and that they should search for the
color name and write it down after the words disappeared. In
each trial, participants saw a white viewing area with a
centered fixation cross for 1 s, followed by a set of words
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for 1 s, followed by a perceptual mask. Figure 1 illustrates this
procedure. We manipulated perceptual load by varying the
size of the set of words. We presented half of the participants
with trials that contained a color word among five additional
words (high load), and the other half with trials that contained
a color word among two additional words (low load). In the
low-load condition, three “X”s appeared in the location of the
additional words for the high-load condition. The words and
“X”s appeared equidistant from the centered fixation cross.

Participants were randomly assigned to the four conditions,
with an equal number participating in each condition (n = 50).
They gave informed consent, read the instructions, and
completed three practice trials followed by three test trials.
In the third test trial, an unexpected object appeared,
simultaneously with the words, in the center of the screen.
After writing down the color word on this last trial,
participants answered questions that assessed their perception
of the unexpected picture. Specifically, we asked participants,
“Did you notice anything new or additional that was not
present in the previous trials?” If they noticed anything other
than the words, we asked them to describe what it was. We
varied the unexpected object that appeared in the last trial. We
presented half of the participants with an illustration of an
animate object (animal or human) and the other half with an
illustration of an inanimate object (tool or transportation).
Examples of the critical trials for the four conditions are
presented in Fig. 1.

We used a total of 20 illustrations taken from standardized
sets (Bates et al., 2003; Snodgrass & Vanderwart, 1980): five
exemplars apiece for the two animate and two inanimate
categories. The animals were illustrations of a snake, bear,
elephant, mouse, and horse; the humans were illustrations of a
woman, man, girl, boy, and baby; the tools were illustrations
of a hammer, saw, screwdriver, wrench, and scissors; and the
transportation illustrations consisted of an airplane, boat, bus,
car, and truck. All illustrations were black-and-white line
drawings and were edited to be the same size in their longest
dimension. The color words in the three practice and three test
trials of the primary task were the first six exemplars of Van
Overschelde, Rawson, and Dunlosky’s (2003) norms for
color: blue, red, green, yellow, purple, and orange.

After completing the last test trial in the IB task,
participants completed the Aospan task. In the Aospan,
participants attempted to remember series of three to seven
letters. Each letter was separated by a math operation [e.g.,
(2 * 3) – 1 = ?]. Participants saw a letter followed by a math
operation, which was followed by a possible answer to the
math operation (e.g., 5). Participants judged the truth of the
possible answer and then saw another letter, followed by
another math operation and possible answer. At the end of
the series, participants selected the letters that were presented,
in the order that they were presented, among a 3 × 4 matrix of
letters. The Aospan produces a score with a range of 0 to 75 on

the basis of the total number of letters recalled in the correct
position across all of the trials. The Aospan was administered
using E-Prime 1.0 (Schneider, Eschman, & Zuccolotto, 2002).

Results

Participants reported whether they had noticed anything other
than the words on the last trial, and, if so, they described what
they had noticed. Following Koivisto and Revonsuo (2007),
we coded participants as recognizing the object if they
accurately identified the image. In the following analyses of
recognition ratings, we report the percentages of participants
who recognized the unexpected objects, followed by the 95 %
confidence interval (CIs) for those percentages. The CIs were
calculated on the basis of the method proposed by E.B.
Wilson (1927), and include continuity corrections suggested
by Newcombe (1998). Because the CIs were asymmetric, we
report the lower and upper limits.

Time

High Load-Animate Low Load-Animate 

High Load-Inanimate Low Load-Inanimate 

MILLIMETER

+

STEELHOME

VOWEL

YELLOW

+

BRICK

STEPS

COIN

PUNCHGREEN

ALARM

BRICK

STEPS

COIN

PUNCHGREEN

ALARM

X

STEPS

X

PUNCHGREEN

X

X

STEPS

X

PUNCHGREEN

X

Fig. 1 Examples of the trial sequence (top) and of critical trials for the
four conditions (bottom)
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As is illustrated in Fig. 2, recognition rates were dependent
on animacy and perceptual load. More participants recognized
animate objects (50 % [39.9, 60.1]) than inanimate objects
(29 % [20.6, 39.1]), χ2(1, N = 200) = 9.23, p = .002, φ = .22,
and more participants recognized objects under a low
perceptual load (51 % [40.9, 61.1]) than under a high
perceptual load (28 % [19.7, 38.0]), χ2(1, N = 200) = 11.07,
p = .001, φ = .24. The recognition rates for the two animate
categories, humans and animals, were identical (50 % [35.7,
64.3]).

These findings do not appear to be an artifact of one or two
of the animate exemplars being frequently recognized. The six
most frequently recognized objects were all animate {baby
(70 % [35.4, 91.9]), girl (60 % [27.4, 86.3]), man (60 % [27.4,
86.3]), bear (60 % [27.4, 86.3]), horse (60 % [27.4, 86.3]), and
snake (60 % [27.4, 86.3])}, and the three most infrequently
recognized objects were all inanimate {screwdriver (10 %
[0.5, 45.9]), wrench (10 % [0.5, 45.9]), and hammer (20 %
[3.5, 55.8])}. The (binomial) probability of this replication
across all of the top six recognized exemplars is roughly
p = .016.

To examine possible interactions of animacy and perceptual
load, we examined the effect of animacy separately for the two
perceptual-load conditions. In the low-load condition,
participants recognized more animate (64 % [49.1, 76.7]) than
inanimate unexpected objects (38 % [25.0, 52.8]), χ2(1, N =
100) = 6.76, p = .009, φ = .26. The effect of animacy failed to
reach significance in the high-load condition; participants did
not recognize significantly more animate (36 % [23.3, 50.9])

than inanimate (20 % [10.5, 34.1]) objects, χ2(1, N = 100) =
3.18, p = .075, φ = .18.

To examine the relationship between working memory
capacity and IB, we compared the Aospan scores of
participants who recognized the unexpected objects to those
who did not. The Aospan scores for 30 participants were
considered invalid because their math accuracy was less than
85 % (as recommended by Unsworth et al., 2005). The mean
Aospan score for the remaining 170 participants was 53.86
(SD = 14.11), which is slightly less than the normed mean
from 6,236 individuals (57.26; Redick et al., 2012). Across all
conditions, the Aospan scores of participants who recognized
the unexpected object (n = 69,M = 56.09, SD = 12.70) were
marginally greater than the scores of participants who did not
recognize the unexpected object (n = 101, M = 52.34, SD =
14.84), t (168) = 1.71, p = .089, d = 0.27. When separated by
perceptual load, the Aospan scores for participants who
recognized the unexpected objects under high perceptual load
(n = 20,M = 59.80, SD = 9.65) were greater than the scores of
those who did not recognize the unexpected objects (n = 60,
M = 51.47, SD = 15.72), t(78) = 2.23, p = .029, d = 0.64. This
difference was not significant in the low-perceptual-load
condition (recognized, n = 49, M = 54.57, SD = 13.55; did
not recognize, n = 41,M = 53.61, SD = 13.60), t (88) = 0.34,
p = .739, d = 0.07.

Discussion

The results of the present study confirmed our predictions.
Participants were less susceptible to IBwith animate than with
inanimate unexpected objects and with low than with high
perceptual loads. The effect of animacy on IB is consistent
with the animate-monitoring hypothesis (New et al., 2007):
Animate objects appear to capture attention more easily than
inanimate objects. The exemplars from the animate categories,
animals and humans, were recognized and detected at similar
levels. New et al. also found similar preferences for animals
and humans over inanimate objects in the time to detect
changes in visual scenes.

The finding that participants recognized fewer objects
during high than during low perceptual load replicates prior
research (e.g., Cartwright-Finch & Lavie, 2007) and
supports the load theory of attention (Lavie, 1995).
Furthermore, high perceptual load appeared to emolliate
the effect of animacy. With low loads, animate objects were
detected more frequently than inanimate objects, but this
difference was not significant with high perceptual loads.
These findings also support load theory. With low
perceptual loads, information is selected later in processing,
so animacy is processed, whereas with high perceptual
loads, information is selected early in processing, and
objects’ animacy, therefore, may go unprocessed.

Fig. 2 Recognition of unexpected objects by animacy and perceptual
load (error bars show 95 % confidence intervals)
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It is possible that participants noticed inanimate unexpected
items, but due to memory limitations, the memory traces
decayed before participants could report what they saw (e.g.,
Horowitz &Wolfe, 1998). Inattentional amnesia occurs when
individuals have seen objects but lack the memory of having
seen them (Wolfe, 1999). If our findings reflected inattentional
amnesia rather than IB, it would suggest that animacy
influences memory. Similar retention advantages have been
demonstrated for information processed for survival relevance
(e.g., Nairne, Thompson, & Pandeirada, 2007), for the
location of evolutionarily relevant stimuli in a pelmanism
game (Wilson, Darling, & Sykes, 2011), for nonwords paired
with animate objects over nonwords paired with inanimate
objects (VanArsdall, Nairne, Pandeirada, & Blunt, 2013), and
for animate words over inanimate words (Nairne, VanArsdall,
Pandeirada, Cogdill, & LeBreton, 2013).

Findings on the relationship between WMC and IB have
been inconsistent. Some studies have shown WMC to predict
IB, with lower-WMC participants showing greater
susceptibility (Richards et al., 2010), whereas others have
not shown this relationship (Bredemeier & Simons, 2012).
WMC was marginally related to IB in the present study. With
high perceptual load, however, participants who recognized
the unexpected objects had significantly greater WMC than
did those who did not. Consequently, WMCmay only predict
IB with more difficult primary tasks.

We recommend avenues for future research. The precise
features necessary to detect unexpected animate objects
warrant further study. Categorization of animate objects shows
less of an advantage over inanimate objects when defining
features, such as eyes, mouths, and limbs, are not included
(Delorme, Richard, & Fabre-Thorpe, 2010). Differences in the
detection of different animals could also be examined. Animals
that have continually served as an evolutionary threat, such as
snakes, may have led to adaptations in anthropoids’ visual
systems to detect these threats (Isbell, 2006; see also Soares,
Esteves, Lundqvist, & Öhman, 2009). In visual search tasks,
snakes are detected more quickly than other animate and
inanimate objects by both adults and children (e.g., LoBue &
DeLoache, 2008). Therefore, snakes may show less
susceptibility to IB than do animals that have not continually
served as an evolutionary threat. A snake was included as an
unexpected object in the present study, but the sample who
received each exemplar was too small (n = 10) to make
meaningful comparisons within categories. In a recent IB study,
spiders captured more eye fixations and greater skin
conductance responses than did flowers, but no differences in
detection rates emerged (Wiemer, Gerdes, & Pauli, 2013).
Snakes may have a special quality (e.g., Öhman & Mineka,
2003), however, that increases detection in an IB task.
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